The interval analysis of multilinear expressions

C. Laneve, T.A. Lascu, V. Sordoni

Università di Bologna TAPAS 2010

C. Laneve, T.A. Lascu, V. Sordoni The interval analysis of multilinear expressions

Interval analysis

Input:

- a polynomial arithmetic expression E
- the range of every variable $x_i \in E$

Output:

• the range of expression E

Context:

• static analysis of source code

→ Ξ → < Ξ →</p>

A ►

Example

Compute the range of:

$$\Xi = x * (y - z) + z$$

knowing that:

$$\begin{cases} x \in X = [\underline{X}, \overline{X}] = [0, 1] \\ y \in Y = [\underline{Y}, \overline{Y}] = [0, 2000] \\ z \in Z = [\underline{Z}, \overline{Z}] = [0, 2000] \end{cases}$$

イロト 不得 とくほと くほとう

E 990

Standard Interval Arithmetics (SIA) - [Moore '66]

Example

X * (Y - Z) + Z = [0, 1] * ([0, 2000] - [0, 2000]) + [0, 2000] == [0, 1] * [0 - 2000, 2000 - 0] + [0, 2000] = = [0, 1] * [-2000, 2000] + [0, 2000] = = [-2000, 2000] + [0, 2000] = = [-2000, 4000]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Drawback: expressions with *multiple occurrences of the same variable*

Example

 $\textit{range}_{\textit{SIA}}(\textit{E}) = [-2000, 4000] \supsetneq [0, 2000] = \textit{range}(\textit{E})$

Dependency Problem: different occurrences of the same variable are abstracted by independent intervals

ヘロン 人間 とくほ とくほ とう

Expressions that are linear w.r.t. every variable.

Example E = x * (y - z) + z

Meaningful class because all expressions in it share an interesting property ...

ヘロト ヘアト ヘビト ヘビト

æ

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a multilinear function. If f has a local minimum or a local maximum then f is constant.

Corollary

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a multilinear function. The lower and upper bounds of f in the hypercube

$$H = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$$

occur at the vertices of H.

ヘロト ヘアト ヘビト ヘビト

æ

Vertex Evaluation Technique (VE)

VertexEvaluation:

- find the hypercube's vertices
- evaluate the expression in each of these points
- keep the minimum and maximum values: min(E) and max(E)
- set $range_{VE}(E) := [min(E), max(E)]$

Computational complexity: $O(n \cdot 2^{2n})$

Gaganov, *Computational complexity of the range of a polynomial in several variables*, ['85] shows that this problem is *NP-hard*.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

VertexEvaluation:

- find the hypercube's vertices
- evaluate the expression in each of these points
- keep the minimum and maximum values: min(E) and max(E)
- set $range_{VE}(E) := [min(E), max(E)]$

Computational complexity: $O(n \cdot 2^{2n})$

Gaganov, *Computational complexity of the range of a polynomial in several variables*, ['85] shows that this problem is *NP-hard*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Two steps:

- reduce a generic expression to a multilinear one
- 2 apply VertexEvaluation

Example

$$E = x^5 - x^3z + xy - xz + z$$

1^{*st*} step: *u* replaces x^3 ($u \in U = X^3$)

$$E' = \frac{ux^2 - uz + xy - xz + z}{uz + xy - xz + z}$$

2^{*nd*} step: v replaces x^2 ($v \in V = X^2$)

$$E'' = uv - uz + xy - xz + z$$

N.B. reduction strategy is not unique!

ヘロン 人間 とくほ とくほ とう

1

Proposition

In the general case:

$$range(E) \subseteq range_{VE}(E)$$

because we loose some information on dependence.

Example

$$ux^2 - uz + xy - xz + z \quad \rightsquigarrow \quad uv - uz + xy - xz + z$$

in the right-hand side there is no dependence between x and v!

イロト イポト イヨト イヨト

ъ

Computational complexity: $O(n(1 + d/2) \cdot 2^{2n(1+d/2)})$

Pros:

- multilinear case \rightarrow exact range
- we pay an exponential cost at compile time

Cons:

no guarantee that it returns a sharper range

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

Two possible sources of imprecision:

- over-approximating the range of exponential terms as *xⁿ*
- poor handling of dependence

Tradeoff between these two aspects.

Example expression:

$$E = x^3 - x^2 y + y$$

A E > A E >

Comparison with Miné's symbolic methods - 2

Miné's method gives:

$$x^3 - x^2y + y \quad \rightsquigarrow \quad [a,b]^3 + (-[a,b]^2 + [1,1])y$$

our technique gives:

$$x^3 - x^2y + y \quad \rightsquigarrow \quad ux - uy + y \quad \text{with } u \in U = X^2$$

Instance	Miné	Our technique	Exact range
$x \in [-2, 4]$	[-23, 64]	[-47, 64]	[-11, 64]
<i>x</i> ∈ [−2, 2]	[-1,7]	[-1,7]	[1,7]
<i>x</i> ∈ [0, 2]	[-3,9]	[-4, 4]	[0, 4]

(雪) (ヨ) (ヨ)

ъ

Comparison with Miné's symbolic methods - 2

Miné's method gives:

$$x^3 - x^2y + y \quad \rightsquigarrow \quad [a, b]^3 + (-[a, b]^2 + [1, 1])y$$

our technique gives:

$$x^3 - x^2y + y \quad \rightsquigarrow \quad ux - uy + y \quad \text{with } u \in U = X^2$$

Instance	Miné	Our technique	Exact range
<i>x</i> ∈ [−2, 4]	[-23,64]	[-47,64]	[-11,64]
<i>x</i> ∈ [−2, 2]	[-1,7]	[-1,7]	[1,7]
<i>x</i> ∈ [0, 2]	[-3,9]	[-4,4]	[0,4]

通 とくほ とくほ とう

ъ

Conjecture

In the case of positive intervals our technique attains a sharper range.

... still to be proven ... for the moment we can show that the following result holds:

Proposition

When all variables' ranges are positive:

 $range_{VE}(E) \subseteq range_{Miné}(E)$

ヘロト ヘ戸ト ヘヨト ヘヨト

Contribution:

- an alternative technique:
 - multilinear case \rightarrow exact range
 - general case \rightarrow over-approximation
 - soundness proof
- tool:
 - to be used @ Magneti Marelli
 - static analysis of C code

For the future:

- impact of different reduction strategies
- estimate of the error introduced by the chosen strategy
- Iclassification of expressions w.r.t. precision

ヘロト 人間 ト ヘヨト ヘヨト

Contribution:

- an alternative technique:
 - multilinear case \rightarrow exact range
 - general case \rightarrow over-approximation
 - soundness proof
- tool:
 - to be used @ Magneti Marelli
 - static analysis of C code

For the future:

- impact of different reduction strategies
- estimate of the error introduced by the chosen strategy
- Classification of expressions w.r.t. precision

・ 同 ト ・ ヨ ト ・ ヨ ト …