
SARDANA :
An Abstract Interpretation Based Tool for Optimization of

Numerical Expressions in LUSTRE Programs

Arnault Ioualalen, Matthieu Martel
University of Perpignan Via Domitia

TAPAS’10 - 17 september

Arnault Ioualalen, Matthieu MartelUniversity of Perpignan Via Domitia ()SARDANA :An Abstract Interpretation Based Tool for Optimization of Numerical Expressions in LUSTRE ProgramsTAPAS’10 - 17 september 1 / 17

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 2 / 17

Objectives

Sardana is a compiler
for synchronous language like LUSTRE (critical system)
which improves numerical accuracy by re-writing expressions.

Why talk about numerical accuracy ?
Float operators are not the same as the R operators ⇒ rounding error !

What do we expect ?
Find an expression over F which the evaluation is a good approximation of
the evaluation of the expression over R.

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 2 / 17

Rounding Error Semantic (M. Martel, JHOSC’06)

Each variable f ∈ R is decomposed as
A floating point number : ↑◦ (f) ∈ F
A real rounding error : ↓◦ (f) ∈ R

such as f =↑◦ (f)+ ↓◦ (f)

Any operator is defined like the following
Ex : (x1, ε1) + (x2, ε2) = (↑◦ (x1 + x2), ↓◦ (x1 + x2) + ε1 + ε2)

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 3 / 17

Current state of our analyzer

Current specification
Works on simple LUSTRE langage (Caspi & al. POPL’87)
Optimizes floating point numerical expressions composed with +, -, *
operators

Is re-writing hard ?
Yes, usual laws of R field imply combinatorial explosion of number of
equivalent expressions.
Also, there are very few good ways of writing a non-trivial expression
(L.Thévenoux, P. Langlois, M.Martel, PASCO’10)

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 4 / 17

How to represent all these expressions ?

They share some parts. . .
. . . or at least they are derived one from an other through a re-writing rule.

(a * b) * (c + d) (a * ((c + d) * b)

*

* +

a b c d

+

c d

a

b

*

*

(a * ((c * b) + (c * d))

*

c b

a +

*

*

d b

distributivityassociativity

commutativity

Figure: Example of relation between expressions

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 5 / 17

PEG and EPEGs, POPL’09, (R.Tate, M.Stepp, Z.Tatlock,
S.Lerner)

Equivalence Program Expansion Graph
Designed for the phase ordering problem.

PEGs and E-PEGs have properties of interest
Useful to eliminate redundant information (compactness) for
imperative program
Build through a saturation of equivalence rules of program
transformation (equivalence class)

But that’s not enough
Even without redundancy, combinatory explosion doesn’t fit in it.

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 6 / 17

E-PEG construction

An E-PEG is build as a transitive closure
The key point is the rules set used to make the saturation of the structure.

Application de R1, ect...

+

Application de R2

R2 : a + (b + c) = (a + b) + c
R1 : a + b = b + a

+

+

a b

c

Arbre initial : (a + b) + c

+

+

a b

c

+

+

Application de R1initial tree of

ofof

+

+

a b

c

+ +

+a

b c

+

+

a b

c

+

+

+

+a

b c

+

+

1

2

3

Figure: (Incomplete) Example of E-PEG
Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 7 / 17

Abstract EPEGs

We construct them directly from the syntactic tree
Polynomial size
Covers all the equivalent expressions
Does NOT cover non-equivalent expressions

The expression equivalency relation is defined by the usual rules :
Associativity
Commutativity
Distributivity
Factorization

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 8 / 17

Abstraction Box

An abstraction box is defined by its parameters and an operator
Whole sub-space covering of possible expressions
Recursive structure
Easy to infer the worst rounding error of the set

+, (a,b,c)

a

+

b c

+

+

+

a b c

a

+

b c

+

+

+

a bc

a

+

bc

+

a

+

bc

+

a

+

b c

+

a

+

bc

+

+

+

ab c

+

+

ab c

+

+

a bc

+

+

abc

Figure: An abstract box containing 3 leaves

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 9 / 17

Abstractions (Work in progress)

Main goal of the abstractions
Enhance the structure with abstraction boxes in order to cover all
equivalent expressions.

3 abstractions are developed today
Left-Right Abstraction
Transverse Abstraction
Box Expansion

All are integrated in our tool despite the non-completness
Non-trivial results could already been reached, helping us moving forward
and find the other abstractions we need to cover the remaining expressions.

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 10 / 17

Left-Right Abstraction is heading down

Each node try to use the homogeneous structure of it’s left sub-tree and
right sub-tree.

a x

+ + +

y z

+

b c

+

+

a x

+

y z

+

b c

+

+

Figure: Illustration of the Left-Right Abstraction

The Abstraction Box at the right is called a Global Box, it stands for the
less accurate abstraction.

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 11 / 17

Transverse Abstraction is heading up

In an homogeneous structure, we iteratively abstract the higher part.

a b

+

+

c d e

+

+

a b

+

+

c d e

+

+

Figure: Illustration of the Transverse Abstraction

We also add boxes to link the leaves : a, b, c and d.

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 12 / 17

Box Expansion

This abstraction fuses abstract boxes when possible
When one of the parameters of a box is itself a box, and there is the same
operator in both

+, a, b, +, x , y +, a, b, x, y

Figure: Illustration of the Box Expansion

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 13 / 17

What are the expressions we miss ?

Partial distributivity
Distribute all partial factors creates an exponential number of expressions.
Ex : a ∗ b ∗ c ∗ (x + y) =

a ∗ b ∗ (c ∗ x + c ∗ y)

a ∗ c ∗ (b ∗ x + b ∗ y)

. . .

a ∗ (b ∗ c ∗ x + b ∗ c ∗ y)

b ∗ (a ∗ c ∗ x + a ∗ c ∗ y)

. . .
Currently we always distribute all the factors ⇒ structure becomes
homogeneous.

Symmetrically we have the same problem for partial factorization
Currently we always factorize by all the factors ⇒ structure becomes
homogeneous.

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 14 / 17

The extraction of a more precise program

We use a local heuristic
In each equivalence class we select the best candidate using the error
rounding semantic

Currently we use the Max partial order over the stream of intervals
Other partial orders are going to be implemented like : Strict inclusion, or
value of the integral.

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 15 / 17

Conclusion & Perspectives

Several achievement have been reached so far :
Polynomial structure
Complete loop of optimization from source to code to source code
Graphical interface embedding completely the analyzer

Problems we are going to solve
Analysis is not yet complete
Analysis works on each variable separately
Analysis doesn’t take into account the recursive definition of variable
Analysis has to work also onto any kind operators
Tradeoff between time consumption and accuracy

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 16 / 17

The end

Thank you for your attention
Questions ?

Arnault Ioualalen, Matthieu Martel () SARDANA TAPAS’10 - 17 september 17 / 17

