SEARNN: Training RNNs with Global-Local Losses

Rémi Leblond*, Jean-Baptiste Alayrac*, Anton Osokin Simon Lacoste Julien

INRIA ENS Paris France

MILA DIRO UdeM

* equal contribution

Learning to Search

Structured prediction
Learn a mapping \(f \) between inputs \(X \) and structured outputs \(Y \) made of interrelated parts often subject to constraints

Learning To Search (L2S)
Reduces the structured problem down to cost sensitive classification with theoretical guarantees

How does it work?
A unique shared classifier makes predictions on one by one conditioned on the input and the previous tokens. This classifier is trained on an intermediate dataset

Links between Learning to Search and RNNs
- Decomposition of structured tasks in sequential predictions on the past conditional
- Unique shared classifier for all decisions using predecessors

SEARNN [3]

Overview:
Integrate roll-outs in the decoder to compute the cost of ever possible action at each step

Leverage these costs to enable better training losses

\[
\begin{align*}
& h_t = f(h_{t-1}, y_{t-1}) \\
& s_t = \text{proj}(h_t) \\
& o_t = \text{softmax}(s_t)
\end{align*}
\]

Probabilistic interpretation:

\[
\begin{align*}
& o_t = P(Y_t | X, Y_1, \ldots, Y_{t-1}) \\
& \prod_{t=1}^{T} o_t = P(Y_1, \ldots, Y_T | X)
\end{align*}
\]

MLE:

\[
\begin{align*}
& \text{max}_y \sum_{t=1}^{T} \log(P_y(Y | Y_X | X))
\end{align*}
\]

Known problems:
- **test loss**
 - edit distance (bleu score)
- **0/1 flavour**
 - Probability mass aggregated on one sample bad for structured prediction
- **exposure bias**
 - Training scenario is different from what happens at test time

Experiments

Full algorithm:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>(A)</th>
<th>(T)</th>
<th>Cost</th>
<th>MLE</th>
<th>\text{mix}</th>
<th>Learned</th>
<th>\text{ref}</th>
<th>Learned</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCR</td>
<td>26</td>
<td>15</td>
<td></td>
<td></td>
<td>2.8</td>
<td>1.9</td>
<td>2.4</td>
<td>1.9</td>
</tr>
<tr>
<td>CoNLL</td>
<td>22</td>
<td>70</td>
<td>4.2</td>
<td>2.7</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Under</td>
<td>0.5</td>
<td>43</td>
<td></td>
<td></td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Spelling</td>
<td>0.5</td>
<td>43</td>
<td></td>
<td></td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Scaling approach:

- Significant improvements over MLE on all 4 tasks
- The harder the task the bigger the improvement
- Learned/mixed is the best strategy for roll in out
- The best performing losses for most are those structurally close to MLE
- SEARNN does not require warm start
- The proposed sampling strategy works maintaining improvements at a fraction of the cost

Machine Translation (in progress): ISWT 14 Ger/Eng

<table>
<thead>
<tr>
<th>Depth</th>
<th>MLE</th>
<th>MIXER</th>
<th>SEA-RNN ref mix</th>
<th>SEA-RNN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References