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Abstract

Image classification is the problem of assigning a label that best describes the content of
unknown images, given a set of training images with known labels. This thesis introduces
image classification algorithms based on the scattering transform, studies their properties
and describes extensive classification experiments on challenging texture and object image
datasets.

Images are high dimensional signals for which generic machine learning algorithms fail
when applied directly on the raw pixel space. Therefore, most successful approaches involve
building a specific low dimensional representation on which the classification is performed.
Traditionally, the representation was engineered to reduce the dimensionality of images by
building invariance to geometric transformations while retaining discriminative features.
More recently, deep convolutional networks have achieved state-of-the-art results on most
image classification tasks. Such networks progressively build more invariant representations
through a hierarchy of convolutional layers where all the weights are learned.

This thesis proposes several scattering representations. Those scattering representa-
tions have a structure similar to convolutional networks, but the weights of scattering are
designed to provide mathematical guaranty of invariance to geometric transformations, sta-
bility to deformations and energy preservation. In this thesis, we focus on affine and more
specifically on rigid-motion transformations, which consist in translations and rotations,
and which are common in real world images.

Translation scattering is a cascade of two dimensional wavelet modulus operators which
builds translation invariance. We propose a first separable rigid-motion separable scatter-
ing, which applies a first scattering along the position variable to build translation in-
variance, followed by a second scattering transform along the rotational orbits of the first
scattering, to build invariance to rotations.

As any separable representation, separable scattering has the advantage of simplicity
but also loses some information about the joint distribution of positions and orientations
in the intermediate layers of the representation. We define a joint rigid-motion scattering
which does retain this information. The joint scattering consists in a cascade of wavelet
modulus applied directly on the joint rigid-motion group. We introduce convolutions,
wavelets, a wavelet transform and scattering on the rigid-motion group and propose fast
implementations. Both separable and joint scattering are applied to texture image classi-
fication with state-of-the-art results on most available texture datasets.

Finally, we demonstrate the applicability of joint scattering and group convolutions
on generic object image datasets. It is shown that convolutional networks performances
are enhanced through the use of separable convolutions, similar to the rigid-motion con-
volutions. Also, a non-invariant version of the rigid-motion scattering is demonstrated to
achieve results similar to those obtained by the first layers of convolutional networks.
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Résumé

La classification d’image consiste à assigner un label à une image inconnue, étant donné
un ensemble d’images d’entrâınement avec des labels connus. Cette thèse introduit des
algorithmes de classification basés sur la transformée en scattering, étudie leurs propriétés
et décrit des expériences de classification sur des bases de données de texture de d’images.

Les images sont des signaux de haute dimension pour lesquels les algorithmes d’appren-
tissage échouent lorsque appliqué directement sur l’espace des pixels. La plupart des ap-
proches qui fonctionnent construisent une représentation de basse dimension sur laquelle la
classification est effectuée. Traditionnellement, cette représentation est conçue pour con-
struire de l’invariance aux transformations géométriques tout en retenant le plus d’infor-
mation discriminante. Plus récemment, les réseaux convolutionnels ont supplantés ces
représentations sur la plupart des taches de classification d’image. Les réseaux convo-
lutionnels construisent des représentations progressivement de plus en plus invariantes à
travers une hiérarchie de couches où les poids sont appris.

Cette thèse propose plusieurs transformées en scattering. Ces représentations ont une
structure similaire à celles des réseaux convolutionnels, mais les poids sont conçus pour
fournir une garantie mathématique d’invariance aux transformations géométriques, une
stabilité aux déformations, et une conservation d’énergie. Cette thèse se concentre sur
les transformations affines et plus particulièrement sur les transformations rigides, très
courantes dans les images.

Le scattering en translation est une cascade de transformée en ondelette et module, qui
construit de l’invariance par translation. Nous proposons un premier scattering séparable,
qui applique un premier scattering en translation suivi d’un second scattering le long des
orbites de rotation du premier scattering, pour construire l’invariance par rotation.

Comme toute représentation séparable, le scattering séparable a l’avantage de la sim-
plicité mais perd aussi l’information de la distribution jointe de positions et d’orientations
dans les couches intermédiaires de la représentation. Nous proposons donc un scattering
joint qui consiste en une cascade de transformées en ondelettes module appliquées directe-
ment sur le groupe joint des transformations rigides. Nous présentons les convolutions,
ondelettes, transformées en ondelettes et scattering sur ce groupe joint de transformations
rigides. Les deux scattering, séparable et joint, sont appliqués à la reconnaissance de tex-
tures et fournissent des résultats comparables voire supérieurs à ceux de l’état de l’art sur
la plupart des bases de données de textures disponibles.

Enfin, nous démontrons l’applicabilité du scattering joint et des convolutions de groupes
aux problèmes de classification d’objet génériques. Il est montré que les performances
des réseaux convolutionnels sont améliorées par l’utilisation de convolutions séparables,
similaires à celles que nous utilisons dans le scattering joint. Par ailleurs, une version non-
invariante du scattering joint permet d’attendre des résultats comparables à ceux obtenus
avec les premières couches de réseaux convolutionnels.
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aux membres du CMAP et aux autres doctorants et post-docs. Je remercie aussi Bertrand
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Chapter 1

Introduction

1.1 Image Classification

Image classification requires to build representations that discard irrelevant information
and retain discriminative properties. Irrelevant information correspond to image variabil-
ity that commonly occurs in all classes of images and therefore do not constitute a clue
in the task of determining the image content. Due to the physics of the imaging process,
geometric transformations is a good example of such irrelevant variability. Geometric trans-
formations include translations, rotations, dilations, shears and more complex phenomena
such as elastic deformations or occlusions. Geometric transformations are often present
in comparable range in all classes of images and thus only distracts the classifier. Provid-
ing a representation that is invariant to some of these transformations therefore generally
increases the classifier performance especially for small number of training examples.

This thesis focuses on building image representations that are invariant to translation,
rotation and dilations, while being stable to elastic deformations, and retaining sufficient
information to be discriminative. Taken independently, those three problems are easy
and can be solved by common tools such as registration, averaging, modulus of Fourier
transform. Considered together, they constitute a hard and not very well posed problem.

Scattering operators, introduced by Mallat in [Mal12] tackle this problem by cascading
wavelet modulus operators. Each wavelet transform extracts invariant coefficients through
averaging and covariant coefficients through convolutions with wavelets followed by non-
linearities. All the operations involved in the scattering are stable to deformation and
covariant to translation, which makes the whole cascade also stable to deformation and
covariant to translation. The averaging component of the wavelet modulus builds the actual
invariance to translation. The high-pass components of the wavelet modulus systematically
recover the information that is lost through averaging. The recovery provides mathematical
guaranties that the energy of the input signal is preserved. Translation scattering of two
dimensional images is reviewed in Chapter 2. It has been previously applied to digits and
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CHAPTER 1. INTRODUCTION 8

texture recognition in [BM13].
While the original scattering transform mainly builds invariance to translation, this

thesis focuses on extending its architecture to more complex geometric transformation
groups, with an emphasis on the rigid-motion group that consists of translations and ro-
tations. Invariance to more general transformations is an important issue and can dra-
matically improves classification performances on datasets of images containing complex
geometric variability. This thesis introduces two possible strategies, the separable and the
joint scattering. We discusse their advantages and limitations, study their properties and
demonstrate their effectiveness on a wide range of texture and generic object classification
datasets.

Chapter 3 introduces a separable scattering, that sequentially builds the translation and
rotation invariance. A two dimensional scattering with oriented filters is applied, which is
invariant to translation and covariant to rotation. Covariance means that the scattering
of a rotated image is equal to the scattering of the original image up to a permutation
of scattering coefficients. Separable scattering then builds rotation invariance by applying
a second scattering along the rotation variable, which is efficient due to the covariance
property.

By building the translation and rotation invariance sequentially, the separable scat-
tering loses information about the joint distribution of positions and orientations within
its internal layers. This problem is addressed in Chapter 4 by the joint scattering where
the internal layers are considered as multidimensional functions of the joint translation
and orientation variable. To build this representation, Section 4.3 reviews multiresolution
analysis of the rigid-motion group, and introduces an efficient wavelet transform on this
group. Section 4.4 presents the joint rigid-motion scattering, which cascades rigid-motion
wavelet modulus operators. The joint scattering is invariant to translation and rotation
while retaining the joint information contained in its internal layers.

Texture classification is a fundamental but relatively well posed problem of computer
vision for which geometric variability plays a significant role. There have been a large body
of work focusing on the design of invariant but informative texture image representations.
Chapter 5 presents texture classification results obtained with the separable and joint
scattering which are compared with other state-of-the-art methods.

Chapter 6 shows that joint scattering can also be used to tackle more complex and less
well-posed problems such as generic object recognition. Section 6.2 adapts the efficient
rigid-motion convolution of section 4.3 to the context of deep learning for large scale image
classification. We show that a deep network with such separable convolution is faster to
process data and requires less data to achieve similar to slightly better final accuracy.
Section 6.3 shows that a non-invariant version of the joint scattering performs similarly to
the first layers of deep network.

The rest of this introduction briefly reviews the literature on image classification of
images of texture or objects, and the construction of geometric invariants. The principal
contributions of this thesis are outlined.
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1.2 Filters Response Representations

This section briefly reviews filter-based image representations and their invariance and
stability properties.

1.2.1 Fourier and Registration Invariants

Building translation invariant representations can be done with common tools such as
registration or modulus of Fourier transform or averaging. For a given image x(u), let us
denote Lvx(u) = x(u−v) a translation of x by a vector v. A representation Φx is invariant
to translations if a translated image has the same representation as the original

Φx = ΦLvx (1.1)

This property of global translation invariance can be achieved with simple techniques. For
example, one can compute an anchor point a(x) as the location of the maximum of x
convolved with some filters h

a(x) = argmax
u

x ⋆ h(u) (1.2)

where ⋆ denote the spatial convolution

x ⋆ h(u) = ∫ x(v)h(u − v)dv. (1.3)

A registration invariant consist in translating the signal with this anchor point

Φax = La(x)x. (1.4)

Since the convolution is covariant, the anchor point is covariant to translation

a(Lvx) = a(x) + v (1.5)

so that the registration is invariant to translation

ΦaLvx(u) = x(u − a(Lvx) − v) (1.6)

= x(u − a(x)) (1.7)

= Φax(u). (1.8)

Yet, registration invariants are unstable, which is not ideal for image classification. Indeed,
depending on the image content, x ⋆ h may have several close maxima, which would make
the anchor point detection very unstable. In addition, registration invariants essentially
use the image itself as a representation, which is unstable to small deformations, as we
shall later see.
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Another possibility to build global translation invariance is to use complex modulus of
Fourier transform. The Fourier transform is defined as

Fx(ω) = ∫ x(u)e−iω.udu. (1.9)

If an image is translated, its Fourier transform is multiplied by a complex phase

FLvx(ω) = e−iω.vFx(ω) (1.10)

so that its amplitude is translation invariant

∣Fxv ∣ = ∣Fx∣. (1.11)

Yet, small deformations induce non-negligible distortions of high frequencies. If the Fourier
transform is well localized, this may cause the Euclidian distance between the Fourier
modulus of an image and its deformed version to be large, even for a small deformation.
This is illustrated in Figure 2.1, where a flat texture exhibits periodic patterns which
corresponds to very localized bump in the Fourier plane. When the texture is deformed,
the bumps spread on the entire Fourier plane which makes the two modulus of Fourier
transform difficult to match.

1.2.2 Averaged Filter Responses for Global Translation Invariance

Inspired by Julesz textons [Jul81], many texture representations [FS89, LM01, VZ05] build
local and stable non-linear descriptors of image patches, and aggregate those descriptors
into a global histogram. The local description of a patch often consists in a vector of non
linear filter responses

yλ(u) = f(x ⋆ψλ)(u) (1.12)

where ψλ is a local filter and f is a non linearity. For a given patch position u, {yλ(u)}λ
is a vector indexed by λ which describes the content of the image in the neighborhood of
u. The filters ψλ are typically smooth oriented filters. Figure 2.3 shows the Morlet filters
that will be used throughout this thesis. There are many experiments that suggest that
the first visual area V1 of the brain performs similar computations. The smoothness and
localization of the filters guaranties that the responses yλ is stable to small deformations
and translation covariant. Covariance means that if the image is translated by v, the filter
response will also be translated by the same v

f(Lvx ⋆ψλ)(u) = f(x ⋆ψλ)(u − v). (1.13)

To actually make the responses invariant to translation, a first strategy would be to average
them on all patch positions

Φλ(x) = ∑
u

yλ(u). (1.14)



CHAPTER 1. INTRODUCTION 11

This has been used [LW03] for texture classification but the averaging tends to lose too
much information. Therefore, more sophisticated methods [BRB+11, ZYZH10] approaches
intertwine a coding step between the patch description and the spatial averaging. There
are often called bag-of-word methods. The coding step is interpreted as a decomposition of
the local descriptor in a dictionary of visual words, and the averaging steps is interpreted
as an histogram of the occurrences of the visual word. The coding step lifts the local
descriptor into a higher dimensional space, with the aim of limiting the information loss
during the averaging step.

1.2.3 Local Descriptors and Transformation Invariance

Describing the patch with the filter responses at only one position is limited and does
not capture higher order statistics of the texture. Therefore, researchers sometime use
descriptors that consist in the concatenation of the responses at difference offsets v around
the patch center u. The concatenated descriptor

yλ,v(u) = f(x ⋆ψλ)(u + v) (1.15)

is then encoded and spatially averaged. This augmentation helps to capture more infor-
mation but also introduces instability to deformation. For example, if the image is slightly
dilated with τ(u) = (1 + ǫ)(u), the components of yλ,v that correspond to the patch center
v = 0 will be translated by (1 + ǫ)u but remain roughly the same

f(Lτx ⋆ψλ(u)) ≈ f(x ⋆ ψλ((1 + ǫ)u)). (1.16)

The components that corresponds to large offset v will be translated as well by τ(u) but
will also moves within the patch at offset (1 + ǫ)v

f(Lτx ⋆ ψλ(u + v)) ≈ f(x ⋆ ψλ((1 + ǫ)u + (1 + ǫ)v))) = yλ,(1+ǫ)v(u). (1.17)

For this reason, more recent descriptors such a Scale Invariant Feature Transform (SIFT)
[Low04] or Histogram of Oriented Gradients (HOG) [DT05] therefore incorporates a local
averaging of the response. This local averaging can be implemented as a convolution of
responses with low pass filter φ

yλ,v(u) = f(x ⋆ ψλ) ⋆ φ(u + v). (1.18)

Locally averaged filter responses are stable to the translations within the patch that are
induced by small deformations. This explains the success SIFT and its wide use in hand-
crafted image recognition architectures.

The offsetted deformed position of the center of the patch is u − τ(u) + v while the
deformed offsetted position is u+ v − τ(u+ v). The displacement within the patch at offset
v is thus

(u − τ(u) + v) − (u + v − τ(u + v)) = τ(u + v) − τ(u) (1.19)
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which is bounded by ∥∇τ∥∞∣v∣. Thus, patch offset with larger eccentricity are more sensi-
tive to deformation. Therefore, several descriptors average response proportionally to the
patch eccentricity ∣v∣. DAISY [TLF10], Gradient Location-Orientation Histogram (GLOH)
[MS05] and Rotation Invariant Feature Transform (RIFT) [LSP05] both use a log-polar
grid to average orientations on subregions within a patch. Shape context [BMP02] and spin
images [LSP05] also use a log-polar grid but average pixel intensities instead of orientations.

All theses local descriptors share the same architecture of convolutions, non-linearity
a averaging. While the averaging provides stability to local deformation, it also loses
information.

1.3 Hierarchical Invariant Representations

The bag-of-word model has several limitations. First, it builds full translation invariance,
which is not always desirable. Secondly, it completely discard the statistics of co-occurence
of different words. To be stable to deformation, the descriptor have to be either very local
(as in concatenation of point-wise filter response), in which case the final averaging will
lose too much information, or the descriptor need to incorporate averaging (as in SIFT)
in which case they themselves lose some information. This section reviews the different
strategies that have been proposed to overcome those limitations.

1.3.1 Spatial Pyramid

For generic image recognition, full translation invariance is often not a desirable property
since the position of sub-objects within an image may not be uniform. For example, the
sky usually appears the upper regions while the ground appear in the bottom regions.
Spatial pyramid matching [LSP06] therefore uses a hierarchy of dyadic spatial subregions
of different size 2J of the local descriptors. This can be seen as a convolution with several
windows φJ of different dyadic width 2J

ΦJ,λ,ux = yλ ⋆ φJ(u) (1.20)

Spatial pyramid improves performance for scene or generic object recognition but is of little
use for texture recognition where full translation invariance is a desirable property. Yet,
global pooling loses lot of co-occurence information. Several methods have been proposed
to replace histogram with higher order statistical quantities that involve multiple layers of
operations.

1.3.2 Higher Order Statistics

Fractals are known to accurately describes some classes of natural texture images with
repeating structure at different scales such as tree leaves or branchs. Multifractal spectrum
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[XJF09] first calculates averaged local filter responses at different scales 2j

yj(u) = f(x ⋆ ψj) ⋆ φj(u) (1.21)

and then computes a density α(u) by linearly fitting the slope log(yj)(u) versus j at each
position u. For each quantized value, the density αi(u) is a binary image of which the fractal
dimension is computed. The multi fractal spectrum representation is the concatenation
of the fractal dimension corresponding to all the quantized values. If we interpret the
quantized density α as a code, this is similar to bag-of-word model for which the global
averaging of each map αi(u) would be replaced by the estimation of the fractal dimension,
which is sensitive to the relative activation of the code at different positions. Wavelet
Multifractal spectrum [XYLJ10] is similar but uses several oriented filters instead of one.

Log gaussian COX processes [HGFB11] begins with the computation of encoded de-
scriptors αi(u) but replaces the spatial histogram of αi with an estimation of the multi-
variate covariance of the underlying process. Similarly, Basic Image Feature (BIF) [CG10]
estimate the covariance of αi along scales. They use a small sized dictionary with 6 words
and computes the encoded response αi at four different scales 2j . Instead of computing
one histogram per scale, [CG10] compute a joint histogram of occurrences of sequences of
4 words along scale at the same position, which is of dimension 64.

If those strategies can achieve state-of-the-art results on texture datasets [XJF09,
HGFB11], they make assumptions on the underlying processes which may not general-
ize to other classification tasks.

1.3.3 Deep Convolutional Networks

Deep networks [LKF10, HS06, KSH12, DCM+12] are generic hierachical representations
with little a priori information. A deep network consists in a cascade of linear operators
W1, . . .WM intertwined with non-linearities f . It typically computes successive layers Φmx
with

Φmx = f(Wmf(Wm−1 . . . f(W1x))). (1.22)

The last layer ΦMx should produce the desired output. A cost function E(W1, . . .WM),
quantifies how much the network fits to the desired output. In the context of classification,
the desired output is the image label and the cost function is often implemented as a
soft-max function. The weights of the linear operators W1, . . . ,WM are usually learned
by minimizing the cost function E with a stochastic gradient descent. The derivatives
∂E/∂Wm of the cost function with respect to the weights are obtained by back propagating
[LLB+98] the error from the last layer ΦMx all the way down to the input.

When the input vector becomes large (e.g. of dimension 100,000, which is common for
images), a vanilla deep network requires to learn a huge number of weights and becomes
impractical. Convolutional networks [LBD+89, LKF10, KSH12, DCM+12] limit the number
of weights by restricting the operators to local connectivity and by sharing the weights
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across different spatial positions. Their internal layers Φmx(u, pm) are indexed by the
spatial position u and some other variable p sometime called the depth of the layer. The
next linear operator computes

(Wm+1Φmx)(u, q) = ∑
v∈Ω
p

wv,p,q Φmx(u + v, p). (1.23)

Local connectivity means that the sum is limited to small offsets v ∈ Ω. Such layers are also
called convolutional because their weights wv,p,q do not depend upon the position u in the
convolution. These two constraints dramatically reduce the number of weights, make the
computations faster and parrallelizable, require less data to learn and prevent the network
from overfitting.

Deep networks arguably do not have to be intrinsically invariant since they can learn
invariance from data. In practice they often use a number of tricks that do enforce in-
variance. In particular, most successful networks for image classification [LKF10, HS06,
KSH12, DCM+12] make intensive use of pooling non-linearity that explicitly build trans-
lation invariance and have practical advantages of limiting the number of nodes by down-
sampling spatial position.

Chapter 4 introduces convolutions and multiresolution analysis on larger groups than
translation, in particular on the rigid-motion group consisting of translations and rotations.
Inspired by those rigid-motion convolution, Section 6.2 introduces generic separable convo-
lutional layers, which further reduce the number of parameters in a convolutional network.
It is shown that a deep network with separable convolutions processes data faster and
requires less data to achieve similar to slightly better accuracy on large scale object clas-
sification tasks, compared to the same network were convolutional layers are implemented
as dense convolutions (1.23).

1.3.4 Translation Scattering

A translation scattering network is a particular instance of deep networks where the weights
and the structure of the network are designed in such a way as to provide mathematical
guaranties of translation invariance, energy conservation and stability to deformation. Scat-
tering networks were introduced [Mal12] and first applied to image classification in [BM13].
They are reviewed in Chapter 2. A scattering network recursively separates a signal into its
translation invariant part, which is output, and its covariant part, which is propagated to
deeper layers. The input layer U0x = x consists in the image itself. Its translation invariant
part is obtained through convolution with a window

S0x(u) = x ⋆ φ(u). (1.24)

S0x is called scattering of order 0. It is invariant to translation up to the width of the
window φ. The window can be arbitrary large, it can even be a fully delocalized constant
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in which case the representation will be fully translation invariant. The covariant part of
x is obtained through convolutions with complementary multi-scale and multi orientation
complex high pass filters ψλ, also called wavelets, followed by a complex-modulus non-
linearity

U1x(u,λ) = ∣x ⋆ψλ∣(u). (1.25)

Since U1x is not translation invariant but covariant, its invariant part is obtained with a
convolution with the window φ

S1x(u,λ) = ∣x ⋆ ψλ∣ ⋆ φ(u). (1.26)

Again, the covariant part of U1x is captured by convolutions with wavelet-modulus

U2x(u,λ1, λ2) = ∣∣x ⋆ ψλ1 ∣ ⋆ψλ2 ∣. (1.27)

Those definitions are extended by induction to any scattering order m

Smx(u,λ1, . . . , λm) = ∣ . . . ∣x ⋆ψλ1 ∣ . . . ⋆ ψλm ∣ ⋆ φ(u) (1.28)

= Umx(., λ1, . . . , λm) ⋆ φ(u) (1.29)

Um+1x(u,λ1, . . . , λm+1) = ∣ . . . ∣x ⋆ψλ1 ∣ . . . ⋆ ψλm+1(u)∣ (1.30)

= ∣Umx(u,λ1, . . . , λm) ⋆ψλm+1(u)∣. (1.31)

The m − th covariant layer Umx is decomposed into its invariant part Smx through av-
eraging with window φ, and its covariant part Um+1x through modulus of convolutions
with wavelets {ψλm+1}λm+1 . Covariant layers Umx are indexed with the spatial position u
and a sequence p = λ1, . . . , λm of wavelet indices which the signal x has been successively
filtered with. The sequence p is called a scattering path. Invariant layers Smx are called
scattering of order m, m being the number of wavelets the signal has been successively
filtered with. The scattering representation consists in the concatenation of all invariant
layers from order 0 to some maximum order M

Sx = {S0x, . . . , SMx} (1.32)

All layers Smx of the translation scattering end with an windowing ⋆φ, which makes the
representation invariant to translations up to the window size. Each layer is decomposed
into an invariant and covariant part so that there is no loss of energy. Unlike Fourier or
registration invariant, the translation scattering only involves operations which are stable
to deformation. As a result, translation scattering is stable to deformation.

Translation scattering has been previously applied classification problem to image clas-
sification problems where slight or total translation invariance with stability to deformation
are important properties [BM13]. Yet, it is much less general than deep networks which
can potentially learn arbitrary geometric invariants. This thesis focuses on extending the
scattering representation to more complex geometric groups such as the rigid-motion group
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consisting of translations and rotations. As it is the case for translation, those groups of
transformations are common in natural images and some of them are simple enough so
that it is possible to design an invariant representation with the same stability and energy
preservation than translation scattering.

1.4 Invariance to Geometric Transformation

1.4.1 Elastic Deformation and the Affine Group

A deformation which maps u to u − τ(u) can be locally approximated by a translation of
τ(u) and a linear transformation 1 − ∇τ(u). Indeed, if τ is sufficiently smooth, a Taylor
extensions of τ shows that

u + v − τ(u + v) ≈ u − τ(u) + (1 −∇τ(u))v. (1.33)

When the linear part ∇τ of the deformation is small, translation invariance and stability to
deformation are sufficient properties. When this is not the case, the representation should
explicitly build invariance to the linear transformation 1 −∇τ(u) ∈ GL(R2).

Any linear transformation can be uniquely decomposed [MY09] into a rotation rθ, a
dilation and a shear. Rotations and dilations constitutes groups, which means that the
successive application of two rotations is equivalent to the application of a single rotation
of angle the sum of the angle. The same result holds with the product of factor of dila-
tions. Therefore, similar strategies as the one used to build translation invariance can be
considered. Shear however do not constitute a group. To build invariance to shear, one
should either consider the linear group GL(R2) as a whole, which raises many complexity
and parameterization issues, or use a more ad hoc strategy for shear such as registration
[MY09, LSP05]. Therefore, this thesis focuses on rotation and dilation, with an emphasis
on rotation which also has the advantage of being periodic.

1.4.2 Separable Invariants

The rigid motion group contains all possible pairs of translation and rotations g = (v, rθ). A
possible strategy to build invariances to this group is to build a first representation that is
invariant to translations and covariant to rotations, and to append a second representation
on the rotations orbit to build invariance to rotation. Such a strategy is called separable,
in the sense that it processes variables v and θ separately. Separable invariants have the
advantage of simplicity and have been very popular in the texture classification literature.
A typical example is the Local Binary Pattern Histogram Fourier (LBP-HF) [ZAMP12]
representation, which computes a first translation invariant histogram of binary patterns
over the whole image. Each image patch is associated with the closest binary pattern in a
dictionary. The dictionnary is covariant to rotations, which means that for every pattern
in the dictionary, all its rotated versions are also in the dictionary. The rotation invariance
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is build separately through a modulus of Fourier transforms performed over the angular
difference that relates two rotated patterns. Other strategies involve registration, which
can be done by detecting local dominant orientation as in SIFT [Low04], or averaging along
the orientation as in WMFS [XYLJ10]. As translation invariants, rotational invariants in
image representation often suffer from either instabilities or too large information loss.

1.4.3 Separable Rigid-Motion Scattering

There is a wide variety of possible choices for the first and second invariants when construct-
ing separable invariants. We argue that the desired properties for the rotation invariant
are the same as for translation invariant, i.e. information preservation and stability. We
therefore propose a separable rigid-motion scattering S̊ that will apply a first translation
scattering followed by a scattering along the orientation variable. The first and the second
scattering operators are both stable and preserve marginal information so that the resulting
separable operator S̊ is also stable and captures important features of the image.

For texture images, a translation scattering with fully delocalized window φ is already
invariant to translations. If it is constructed with dilated and oriented wavelets

ψθ,j(u) = 2−2jψ(2−jr−θu) (1.34)

then the scattering of a rotated image Lθx(u) = x(r−θu) is
SLθx(θ1, j1, . . . , θm, jm) = Sx(θ1 − θ, j1, . . . , θm − θ, jm) (1.35)

A rotation of θ of the original image x corresponds to a translation of vector θ(1,0, . . . ,1,0)T
of the scattering Sx. The rotation invariance can thus be cast as a translation invariance
problem along the direction (1,0, . . . ,1,0)T . Therefore, the scattering path p is factorized
into disjoints orbits indexed by p̄ = (0, j1, θ̄2, j2, . . . , θ̄m, jm) and position θ1 within an orbit
such that

p = θ1.p̄ = (θ1, j1, θ̄2 + θ1, j2, . . . , θ̄m + θ1, jm) (1.36)

When the image is rotated by θ, the path θ1.p̄ is moved to (θ1 − θ).p̄
SLθx(θ1.p̄) = Sx((θ1 − θ).p̄) (1.37)

but the index p̄ is not changed, and is therefore called an orbit. We denote θ1.p̄ rather than
θ1, p̄ because . denotes the action of the group variable θ1 on the path p̄, not to be confused
with , which denotes the concatenation of variables. The convolution of a function h of the
path variable p = θ1.p̄ with a filter ψ̊k(θ) is defined as the regular periodic convolution ⍟
along the variable θ1 with fixed orbit p̄:

h⍟ ψ̊k(θ1.p̄) = ∫
[0,2π)

h((θ1 − θ).p̄)ψ̊k(θ)dθ (1.38)
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Separable rigid-motion scattering applies a second scattering to Smx(θ1.p̄) to build
invariance to rotation. This yields another cascade of modulus wavelets ψ̊k1 , . . . ψ̊km̊ con-

volutions that ends with low pass φ̊ along the rotation parameter

Ům,0x(θ1.p̄) = Smx(θ1.p̄) (1.39)

S̊m,m̊x(θ1.p̄, k1, . . . , km̊) = ∣ . . . ∣Smx⍟ ψ̊k1 ∣ . . . ⍟ ψ̊km̊ ∣⍟ φ̊(θ1.p̄) (1.40)

= Ům,m̊x(., k1, . . . , km̊) ⋆ φ̊(θ1.p̄) (1.41)

Ům,m̊+1x(θ1.p̄, k1, . . . , km̊+1) = ∣ . . . ∣Smx⍟ ψ̊k1 ∣ . . . ⍟ ψ̊km̊(θ1.p̄)∣ (1.42)

= ∣Ům,m̊x(., k1, . . . , km̊)⍟ ψ̊km̊+1(θ1.p̄)∣. (1.43)

As the translation scattering (1.28-1.31), the separable rigid-motion scattering recursively
separate covariant signal Ům,m̊x into a rotation invariant part S̊m,m̊x through averaging

with window φ̊ and a rotation covariant part Ům,m̊+1x through modulus of convolution

with wavelets {ψ̊km̊+1}km̊+1 . Both Ům,m̊x and S̊m,m̊x are indexed by (θ1.p̄, p̊) where θ1 is
the rotation variable, p̄ is the rotational orbit index of the translation scattering, and p̊

is the scattering path along the rotation, i.e. the sequence of wavelet indices k1, . . . , km̊
the signal has been filtered with along the rotation. Separable scattering ends with a low
pass filtering with window φ̊ which actually builds the rotation invariance, up to the width
of the window. If the window is a fully delocalized constant, the separable rigid-motion
scattering is fully rotation invariant and hence does not depends upon θ1. Separable rigid-
motion scattering has the same properties with respect to rotation as the scattering had
with respect to translation. It is therefore invariant to rotation, stable to deformation
and preserves the marginal distribution of all rotation orbits of the translation scattering.
It does not suffer from the instabilities or the information loss of other invariants such
as registration or averaging. Also, separable scattering is relatively simple to implement
since we essentially apply twice the same operator in different directions and with different
wavelets. This can be sufficient to obtain good results on relatively simple classification
problems such as the Outex texture dataset [OMP+02]. Yet, we shall see in section 1.5
that separable scattering, as any separable operator, is in certain situations a too strong
invariant that is not able to discriminate simple textures.

We introduced the separable scattering, originally denoted as ”combined” scattering, in
the paper [SM12] with state-of-the-art results on the Outex10 texture dataset [OMP+02].
Chapter 3 introduces it in more details and texture classification experiments are reviewed
in Chapter 5.

1.5 Joint Invariants and Joint Rigid-Motion Scattering

Separable invariants have the advantage of simplicity since one can think of them as a
cascade of independent black boxes, each of which builds invariance in different direction.
Yet, separating variables produces too strong invariance and yields representations that are
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not sufficiently discriminative. Section 4.2 gives an intuition of what kind of information
is lost by separable invariants. Section 4.3 introduces multiresolution analysis on trans-
formations, to be used in Section 4.4 in the construction the joint rigid-motion scattering
S̃. Joint scattering is a joint operator that process the different parameters of a group to-
gether rather than separately. Therefore, it is a tighter invariant that captures information
to which separable invariants are blind.

1.5.1 Joint versus Separable Invariants

To understand the information that is lost by processing different variables separately,
Section 4.2.1 first consider the group of two dimensional translations. Two-dimensional
translation invariance can be build by a separable operators that consists in first a transla-
tion invariant operator Φ1 which transforms x(u1, u2) along u1 for u2 fixed. Then a second
translation invariant operator Φ2 is applied along u2. The product Φ2Φ1 is thus a separable
invariant to any two-dimensional translation. However, if Lvx(u1, u2) = x(u1 − v(u2), u2)
then Φ1xv = Φ1x for all v(u2), although Lv is not a translation because v(u2) is not con-
stant. It results that Φx = ΦLvx. This separable operator is invariant to a much larger
set of operators than two-dimensional translations and can thus confuse two images which
are not translations of one-another, as in Figure 4.1. To avoid this information loss, it is
necessary to build a translation invariant operator which takes into account the structure
of the two-dimensional group. This is why translation scattering in R

2 is not computed
as a product of scattering operators along horizontal and vertical variables, but rather as
a joint invariant that processes both variables (u1, u2) together, through two-dimensional
wavelet modulus operators.

Section 4.2.2 explains that the same phenomena appears with translation and rotation
variables, also it is more subtle because the rotation variable does not parameterize images
but is created in the first layer of deep networks. Consider a first image, which is the sum of
arrays of oscillatory patterns along two orthogonal directions, with same locations. If the
two arrays of oriented patterns are shifted as in Figure 4.3 we get a very different textures,
which are not globally translated or rotated one relatively to the other. However, an oper-
ator Φ1 which first separates different orientation components and computes a translation
invariant representation independently for each component will output the same values
for both images because it does not take into account the joint location and orientation
structure of the image. This is the case of separable scattering transforms or any of the
separable translation and rotation invariant in use in [OMP+02, XYLJ10, LSP05].

Several researchers [CS06, BDGR12, DB07] have proposed to take into account the
joint structure of the rigid-motion group of translations and rotations in applications such
as noise removal or image enhancement with directional diffusion operators [DF11]. In ad-
dition, convolutions in recent deep convolutional networks [KSH12, DCM+12] now consider
internal layers as multidimensional functions, as indicated by the sum over the input depth
p in convolution (1.23). Similarly, a joint rigid-motion scattering S̃ is constructed directly
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on the rigid-motion group in order to take into account the joint information between
positions and orientations. This joint rigid-motion scattering will iterate on rigid-motion
wavelet modulus operator. Section 1.5.2 introduces rigid-motion convolution and wavelet
transform operators, which are detailed in Section 4.3. Section 1.5.3 describes the joint
rigid-motion scattering which is detailed in Section 4.4. Joint rigid-motion scattering is
invariant to rigid-motion and provides state-of-the-art results on texture classification with
datasets containing significant affine transformations, as demonstrated in Section 5.5. It
can also be adapted in context where the rigid-motion invariance is not a desirable property,
such as generic object classification. For this kind of applications, Section 6.3.1 introduces
a non-invariant version of the joint-scattering. Promising results on object classification
datasets Caltech101, 256 are demonstrated in Section 6.3.2.

1.5.2 Rigid-Motion Wavelet Transform

The orientation variable is not intrinsic to the parameterization of images and thus needs
to be created by a first layer. For this purpose, we use the same oriented and dilated
wavelet transform as for translation or separable scattering, to obtain a first invariant part

S0x = x ⋆ φ (1.44)

and covariant part
U1x(u, θ, j) = ∣x ⋆ ψθ,j ∣(u) (1.45)

The translation invariant S0x happens to be also rotation invariant if we use a rotation
invariant window φ such as the Gaussian window. We can see U1x as a function of g = (u, θ)
and an orbit variable j. The rigid-motion scattering processes independently each orbit and
apply to them a wavelet transform W̃ on the group of rigid-motion consisting of rotation
and translation. For a signal x̃(g) parameterized by a rigid-motion, this wavelet transform
consists in convolutions with multidimensional wavelets

W̃x̃ = {x̃⋆̃φ̃, x̃⋆̃ψ̃λ}λ (1.46)

Section 4.3 introduces the necessary tools to builds this wavelet transform. Section 4.3.1
defines a rigid-motion convolution ⋆̃ and describes a fast implementation for separable
filters. Section 4.3.2 shows how to define a separable wavelet frame {φ̃, ψ̃λ}λ on the rigid-
motion group and Section 4.3.3 describes a fast implementation of the associated rigid-
motion wavelet transform W̃.

A rigid-motion g = (v, θ) can be applied to an image x

Lgx(u) = x(g−1u) (1.47)

= x(r−θ(u − v)) (1.48)

Given two rigid-motions g = (v, θ) and g′ = (v′, θ′) their group product is

g′.g = (v′ + rθ′v, θ + θ′) (1.49)
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It is defined in such a way that successive applications of two rigid-motions corresponds to
the application of a the product rigid-motion.

Lg′Lg = Lg′.g (1.50)

Due to the non-symmetric term rθ′v in (1.49), the rigid-motion group SE(R2) is non-
commutative. One can observe that U1x is covariant to the rigid-motion group in the sense
that the first layer of Lg′x is equal to the first layer of x up to a displacement of g′ within
the rigid motion group

U1Lg′x(g, j) = U1x(g′−1g, j). (1.51)

Invariance to rigid-motion is thus essentially a translation problem on the rigid-motion
group. The construction of stable invariant can be achieved through scattering, which
thus naturally requires the construction of convolutions, and wavelets on the rigid-motion
group.

The group convolution ⋆̃ of two functions x̃(g) and ỹ(g) of the rigid-motion group is
defined in Section 4.3.1 as

x̃⋆̃ỹ(g) = ∫
SE(2)

x̃(g′)ỹ(g′−1g)dg′ (1.52)

For separable filters ỹ(g) = y(v)ẙ(θ) we observe that (1.52) can be factorized as

x̃⋆̃ỹ(g) = ∫
θ′∈[0,2π)

(∫
v′∈R2

x̃(v′, θ′)y(r−θ′(v − v′))dv′) ẙ(θ − θ′)dθ′ (1.53)

The inner integral of (1.53) is a two dimensional convolution of x̃(., θ′) with rotated filter
yθ′(v) = y(r−θ′v) along v while the outer integral is a one dimensional periodic convolution
of the inner integral with filter ẙ along θ. This factorization yields a fast semi-separable
implementation of the rigid-motion convolution which is detailed in Section 4.3.1.

Defining a wavelet transform operator W̃ requires to build a wavelet frame {φ̃, ψ̃λ}λ
on the rigid-motion group. We propose a construction of such a wavelet frame in section
4.3.2. It is similar to the construction of separable two dimensional wavelets. Indeed, one
can build two dimensional wavelets {φ(u1, u2), ψl(u1, u2)}l from one dimensional wavelets
{φ(u1), ψ(u2)} as a separable product of the two wavelets applied to both variables

φ(u1, u2) = φ(u1)φ(u2) (1.54)

ψ1(u1, u2) = ψ(u1)ψ(u2) (1.55)

ψ2(u1, u2) = ψ(u1)φ(u2) (1.56)

ψ3(u1, u2) = φ(u1)ψ(u2). (1.57)

Similarly, we build a separable wavelet frame φ̃, ψ̃l,j,k on the rigid-motion group as a sep-
arable product of a two dimensional wavelet frame {φJ , ψl,j}l,j<J applied to the spatial
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parameter v and a one dimensional wavelet frame {φ̊K , ψ̊k}k<K
φ̃J,K(v, θ) = φJ(v)φ̊(θ) (1.58)

ψ̃l,j,k(v, θ) = ψl,j(v)ψ̊k(θ) (1.59)

ψ̃l,j,K(v, θ) = ψl,j(v)φ̊K(θ) (1.60)

ψ̃0,J,k(v, θ) = φJ(v)ψ̊k(θ). (1.61)

The corresponding rigid-motion wavelet transform operator W̃ maps a signal x̃(v, θ) to the
set of signals

W̃ x̃ = {x̃⋆̃φ̃J,K , x̃⋆̃ψ̃l,j,k}l,j,k (1.62)

A family of function {φ,ψλ}λ is an ǫ frame if the corresponding wavelet operator W pre-
serves the norm up to ǫ, that is for all x

(1 − ǫ)∥x∥ ≤ ∥Wx∥ ≤ ∥x∥ (1.63)

Theorem 2 claims that if both {φJ , ψl,j}l,j<J is an ǫ frame and if {φ̊K , ψ̊k}k<K is an ǫ̊ frame
then {φ̃J,K , ψ̃l,j,k}l,j,k is an 1− (1− ǫ)(1− ǫ̊) frame so that the associated wavelet transform
W̃ almost preserves the norm of all functions x̃(v, θ) of the rigid-motion group

(1 − ǫ)(1 − ǫ̊)∥x̃∥ ≤ ∥W̃ x̃∥ ≤ ∥x̃∥. (1.64)

Fast algorithms to compute this rigid-motion wavelet transform W̃ are presented in sec-
tion 4.3.3. These algorithms take advantage of the semi-separability of the rigid-motion
convolution (1.53) and the multi-scale nature of wavelets (1.58-1.61).

1.5.3 Joint Rigid-Motion Scattering

Having defined a wavelet transform operator W̃ on functions of the rigid-motion group,
we can successively apply it with intertwined modulus non-linearity to build a scattering
network on the rigid-motion group.

As previously mentioned, the image is naturally parameterized by the translation group,
not by the rigid-motion group. We therefore use a first oriented and dilated wavelet mod-
ulus operator to create the rotation variable. S0x = x⋆φ is our first rigid-motion invariant.
Since φ is chosen to be a rotation invariant window, S0x is fully rotation invariant, and
invariant to translation up to the width of the window φ. Our first covariant layer is thus

U1x(g, p̄) = ∣x ⋆ ψθ,j(v)∣ where g = (v, θ) and p̄ = j (1.65)

It is a function of the rigid-motion group g and some orbit path p̄ which is here limited to
the scale index j.
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As opposed to the separable scattering, the joint scattering cascades a rigid-motion
wavelet modulus operator to U1x which therefore processes together the translation and
rotation variables v and θ

S̃mx(g, j1, λ2, . . . , λm) = ∣ . . . ∣U1x(., j1)⋆̃ψ̃λ2 ∣ . . . ⋆̃ψ̃λm ∣⋆̃φ̃(g) (1.66)

= Umx(., λ2, . . . , λm)⋆̃φ̃(g) (1.67)

Ũm+1x(g, j1, λ2, . . . , λm+1) = ∣ . . . ∣U1x(., j1)⋆̃ψ̃λ2 ∣ . . . ⋆̃ψ̃λm+1(g)∣ (1.68)

= ∣Ũmx(., λ2, . . . , λm)⋆̃ψ̃λm+1(g)∣. (1.69)

The joint scattering vector consists in the concatenation of all invariant coefficients of all
orders:

S̃x = {S0x, S̃1x, S̃2x, . . . , S̃Mx} (1.70)

Since it involves only stable operators ∣W ∣ and ∣W̃ ∣, S̃ is also stable. It is invariant to
translation, up to the width of the translation window φ used in W and W̃. It is also
invariant to rotation up to the width of the rotation window φ̊ used in W̃ to construct
φ̃. Finally, it preserves the joint information of U1x along translations and rotations. In
particular, Joint scattering is able to discriminate the two images in Figure 4.3, because
it is sensitive to the fact that the rotation distribution of U1x has respectively one or two
peaks for the bottom and top image. The joint rigid-motion scattering was introduced
in our papers [SM13, SM14] where it was also called roto-translation scattering. In those
papers we have applied it to a wide range of texture datasets with state-of-the art results
on most available datasets. A non-invariant simplified version has also been applied to
generic object recognition in [OMS14]. Those results are briefly summarized in section 1.6
and detailed in Sections 5.5 and 6.3.

1.6 Classification experiments

We have evaluated the effectiveness of both the separable and the joint rigid-motion scat-
tering on image classification datasets. Chapter 5 presents texture classification experi-
ments and analyses the impact of the different invariants. Joint scattering is demonstrated
to achieve state-of-the-art performance on most available texture classification datasets.
Chapter 6 applies joint convolution to generic object recognition.

1.6.1 Texture Classification

Texture images have some specificities that requires to adapt representations and classi-
fiers. Chapter 5 introduce representations and classifiers specific to texture classification
problem. Section 5.2 presents rigid motion separable and joint scattering representations of
stationary processes. Separable rigid-motion scattering is applied on the Outex10 datasets
in Section 5.3. For datasets with important intraclass and scale variability, Section 5.4
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reviews a PCA generative classifier and a data augmentation algorithm which provides
additional scale invariance. This PCA classifier is used with joint scattering to classify
images from harder texture datasets such as UIUCTex in Section 5.5.

A texture can be modeled as a stationary, ergodic process X over R
2. Scattering

representations of stationary process is presented in Section 5.2. Section 5.2.1 reviews
translation expected scattering S̄X, which is a deterministic quantity which does not de-
pend upon a particular realization of the process. Since expected scattering definition
involves an expected value, expected scattering cannot be computed from a single finite
realization, but it can be estimated by windowed scattering representation SX where the
convolution with the spatial low pass filter φ is replaced with a spatial averaging over the
whole image. Expected scattering is not invariant to geometric transformations of the pro-
cess, such as rotations or dilations. Section 5.2.2 and 5.2.3 introduce rigid-motion separable
and joint expected scattering, which adapt the separable and joint scattering of Chapters
3 and 4 to stationary processes. These representations are invariant to rigid-motions and
can be estimated from the rigid-motion separable and joint windowed scattering of finite
realizations.

In our paper [SM12], he have experimented the separable scattering on the Outex 10
[OMP+02] texture dataset. The training images of this datasets do not contains rotations,
while the testing images contains uniform rotations. Therefore, it is a good test case for
rotation invariant representations, since the classifier can not learn the invariance from
data. Separable scattering obtains slightly better results than other state-of-the-art repre-
sentations. To emphasize the stability to deformation of the separable scattering, we have
done another experiment where we have modified the dataset by applying a slight shear
in all the test images. This largely degrades the performance of other descriptors such as
LBP-HF [ZAMP12], but has little effect on the separable scattering. The results of these
experiments are presented in Section 5.3.

In our papers [SM13, SM14], we have experimented with more challenging texture
datasets, in particular with the UIUCTex [LSP05] texture datasets which contains a wide
range of uncontrolled full affine transformations and elastic deformations. To achieve good
results on this datasets, we have had to extend the invariance to dilation. The group of
dilations bring additional difficulties because a very limited range of dilation is available
and because it is not periodic. Also texture images tends to have a power-law behavior with
respect to scale, which limits the effectiveness of local averaging invariant. To overcome
those difficulties, Section 5.4 introduces a specific augmented log PCA classifier. For each
image, we compute the log scattering of several dilated version the image. The logarithm
linearizes the power-law behavior with respect to scale. For each class, we estimate the
affine space µc+Vc on which lies the log scattering of all dilated training images in a class.
The log scattering of all dilated test images is then averaged, which provides an additional
scale invariance, projected into the affine space of each class, and classified according to
the minimum projection distance.

Papers [SM13, SM14] applies the rigid-motion scattering of Chapter 4, Section 5.2.3
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and the augmented log-PCA classifier of Section 5.4 to several challenging texture datasets.
Section 5.5 reports those results and shows that each invariants included in the scattering
and in the classifier significantly improve results, which eventually match or improve upon
state-of-the-art representations on all studied datasets.

1.6.2 Object Classification

Because of the large variability contained in real world images, generic object classification
is a much harder problem than texture and requires much more flexible architecture to
achieve good results. Deep convolutional networks [LBD+89, LKF10, KSH12, DCM+12,
ZF13] have demonstrated state-of-the-art results on these kind of problems. They consists
in a cascade of linear, convolutional layers followed by non-linearties. During an internship
at Google, we have had the opportunity to experiment with top-performing large scale
implementations of the architecture described in[KSH12, DCM+12, ZF13]. As explained
in Section 1.3.3, these networks contains dense convolutional layers (1.23). Section 6.2.1
reviews these dense convolutional layers in greater details, and shows that some of them
learn highly redundant weights. In Section 6.2.2, we propose separable convolutional layers
whose implementation has striking similarities with the fast implementation of rigid-motion
convolution for separable filters described in Section 4.3.1. Section 6.2.3 presents early
experiments that demonstrate the effectiveness of such separable convolutional layers. The
same neural network, adapted from [ZF13], processes data faster and requires less data to
reach similar to slightly better final accuracy when its first layers are implemented with
separable convolutions, compared to dense convolutions.

This suggests that the first layers of neural networks captures basic geometric properties
that do not necessarily have to be learned. A joint scattering network as a similar architec-
ture and could therefore be a good candidate, but it imposes rotation invariance. Objects
in real world human environment tend to appear in specific orientations, therefore rotation
invariance may not be a desirable property for object classification. Therefore, Section 6.3.1

presents a non-invariant version
×
S of the rigid-motion scattering which was introduced by

Oyallon in [OMS14]. Experiments described in Section 6.3.2, show that non-invariant joint

scattering network
×
S of two layers can achieve results competitive with the first two layers

of fully trained convolutional network similar to the one presented in [KSH12]. This is a
promising results for better understanding convolutional neural networks.



Chapter 2

Translation Scattering and

Convolutional networks

2.1 Introduction

In this chapter we review the properties of currently used image representations for classifi-
cation, and present the translation scattering representation. A common property of most
image representations is some form of invariance to geometric transformations, in particular
to translations. Achieving translation invariance is fairly easy but doing so while enforcing
stability to deformation and retaining sufficient information is a hard, not very well posed
problem.

Section 2.2 introduces the properties of translation invariance and stability to defor-
mations. It is shown that some image representations such as the modulus of Fourier
transform, can build full translation invariance but are unstable to deformations. Section
2.3 reviews the wavelet transform, which builds slight local invariance to translations, pre-
serves information but which is also stable to deformations. Oriented Morlet wavelets,
which will be particularly adequate for building rotation invariance in Chapters 3 and 4,
are introduced. Fast algorithms that implement the wavelet transform are presented.

Wavelet transform only build slight local translation invariance. To achieve broader
translation invariance, while retaining information and maintaining stability to deforma-
tion, scattering cascades several wavelet modulus operators. Scattering was initially in-
troduced in [Mal12] and is reviewed in Section 2.4. Scattering provides larger translation
invariance than the wavelet transform, while preserving the norm of the input signal, and
being stable to deformations.

Deep neural networks [HS06, LLB+98, LBD+89, LKF10, DCM+12, KSH12, ZF13] are
data-driven generic representations for complex task which also cascade linear and non-
linear operators. In convolutional neural networks (ConvNets) [LBD+89, DCM+12, KSH12,
ZF13], the linear operators are restricted to local, convolutional operators which makes

26
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their architecture very similar to scattering networks. These techniques are quickly re-
viewed in Section 2.5 which highlights the similarities and the differences with scattering.

2.2 Stability to Deformation

A representation Φx of an image x is said to be globally translation invariant if it is equal
for all translated versions Lvx(u) = x(u − v) of x

∀v ∈ R2, ΦLvx = Φx (2.1)

Full translation invariance is relatively easy to achieve while maintaining most of the image
information. The two dimensional Fourier transform is an operator F that maps a square
integrable two dimensional function x ∈ L2(R2) to another square integrable function Fx

F ∶ L2(R2) → L2(R2) (2.2)

x ↦ Fx (2.3)

with
Fx(ω) = ∫

R2
x(u)e−iω.udu. (2.4)

The Plancherel theorem states that the Fourier transform is an operator that preserves the
norm in the sense that

∫
R2
∣x(u)∣2du = (2π)−2 ∫

R2
∣Fx(ω)∣2dω. (2.5)

The Fourier transform is invertible and its inverse can be obtained as

x(u) = ∫
R2
Fx(ω)eiω.udω. (2.6)

Formally, the translation by v ∈ R2 is also an operator

Lv ∶ L2(R2) → L2(R2) (2.7)

x ↦ Lvx (2.8)

with
Lvx(u) = x(u − v). (2.9)

The Fourier transform of a translated image is equal to the original Fourier transform, up
to a phase multiplication

F(Lvx)(ω) = e−iω.vFx(ω). (2.10)

Applying a complex modulus to the Fourier transform removes the phase and thus yields
a global translation invariant

∀v ∈ R2, ∣Fx∣ = ∣FLvx∣. (2.11)



CHAPTER 2. TRANSLATION SCATTERING AND CONVNETS 28

It has been proved [BN84] that, under some conditions, the values of ∣Fx∣ everywhere on
R
2 and its phase on a small subset of R2 uniquely determines the values of x, which means

that the modulus of the Fourier transform essentially loses no information other than a
global translation.

Natural images rarely differ only with a global translation, they also contain elastic
deformations due to the physics of imaging, which maps three dimensional surfaces to the
two dimensional plane. A representation Φx used to define a metric of similarity between
images should be stable to those deformations, which means that a slightly deformed image
Lτx(u) = x(u−τ(u)) should have a representation ΦLτx that is close to the representation
of the original image Φx, if the deformation τ is small. The amount of deformation can be
quantified as the largest possible displacement induced by the deformation

∥τ∥∞ = sup
u∈R2

∣τ(u)∣. (2.12)

A deformation also changes the local behavior of x. Indeed, a Taylor extension of τ in the
neighborhood of u shows that

u + v − τ(u + v) ≈ u + v − τ(u) −∇τ(u)v (2.13)

= u − τ(u) + (1 −∇τ(u))v. (2.14)

In the neighborhood of u, the deformation τ induces a uniform translation of τ(u) and a
linear warping by 1 −∇τ(u) which differs from 1 by ∇τ(u). This amount of warping can
be quantified as

∥∇τ∥∞ = sup
u∈R2

∥∇τ(u)∥. (2.15)

A representation is stable to deformation when the difference induced on the represen-
tation by a deformation can be bounded by a weighted sum of the two above-mentioned
metrics, that is there exist two reasonably small positive constants C1 and C2 such that
for all x ∈ L2(R2)

∥ΦLτx −Φx∥ ≤ (C1∥τ∥∞ +C2∥∇τ∥∞) ∥x∥. (2.16)

If C1 = 0 and some arbitrary C2 verifies (2.16), the representation Φ is fully translation
invariant. Indeed, for a pure translation ∥τ∥∞ = ∥v∥, and the linear transformation penal-
ization vanishes ∥∇τ∥∞ = 0. Yet, the fact that a representation is fully translation invariant
does not imply that it is stable to deformations i.e. that there exists a pair C1,C2 that
verifies (2.16) and for which C2 is small. Fourier modulus is an example of representation
that is unstable to deformation while being fully translation invariant. Indeed, the Fourier
transform of a complex sine wave of frequency ω is a dirac located at ω. A small dilation
u − τ(u) = u − ǫu maps a sine wave to another sine wave whose Fourier transform is a
dirac located at (1 − ǫ)−1ω. Thus the difference ΦLτx −Φx has a constant L1 norm of 2,
even when the linear transformation penilazition term ∥∇τ∥∞ = ǫ is made arbitrarily small.
The counter example is arguable since since waves or diracs do not belong to L2 and since
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Figure 2.1: Left : two images of the same texture from the UIUCTex dataset [LSP05],
multiplied by a radial plateau function to avoid discontinuities. The top left image is a a
texture of fabric that lies on a flat surface. The bottom image is the same texture, but the
surface is deformed. Right : the log of their modulus of Fourier transform. The periodic
patterns of the texture corresponds to fine grained dots on the Fourier plane. When the
texture is deformed, the dots spread on the Fourier plane, which illustrates the fact that
modulus of Fourier transform is unstable to elastic deformations.
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∥τ∥∞ = ∞ for a dilation, but a similar example with functions belonging to L2(R2) can be
obtained by localizing the sine wave and the dilation [Mal12]. A more concrete example
is illustrated in Figure 2.1 which shows to images of the same texture, where one image is
flat and the other is deformed. On the flat image, one can see that the periodic patterns of
the texture correspond to very localized bumps in the Fourier domain. When the texture
is deformed, the bumps spread over the entire Fourier plane, which makes it difficult to
relate the Fourier transform of the original and deformed image.

2.3 Wavelet Transform

2.3.1 Wavelets, Window and the Wavelet Transform Operator

Stability to deformations can be obtained by grouping together close sine waves, which is
equivalent to localizing them. This leads naturally to the wavelet representation.

A family of wavelets is obtained from a set of mother wavelets {ψl} by dilating each
mother wavelet with dyadic scales 1 ≤ 2j < 2J

ψl,j(u) = 2−2jψl(2−ju). (2.17)

The multiplicative constant 2−2j is chosen so that the dilated wavelet verifies

Fψl,j(ω) = Fψl(2jω) (2.18)

For compactness of notations, we will use λ = (l, j) and denote the wavelets {ψλ}λ. The
wavelet coefficients of an image consist in all convolutions {x ⋆ψλ}λ of the image with the
wavelets ψλ where the convolution is defined as

x ⋆ψλ(u) = ∫
v∈R2

x(v)ψλ(u − v)dv. (2.19)

We usually assume that the wavelets have a zero average ∫ ψl = 0 and some regularity.
Therefore, if the image also has some regularity, most of the wavelet coefficients are nearly
zero, in which case the representation is said to be sparse. Sparsity is useful for compressing
signals (one only needs to store the non-zero values, of which there are few), but also
for classification. Indeed, sparsity allows to aggregate coefficients into invariant features,
without losing too much of the distribution of coefficients.

The wavelet coefficients {x ⋆ ψλ}λ retain the variations of the signal x at all scales
smaller than 2J . Complementary to these variations, a coarse approximation of the signal
is captured through convolution with a single lowpass window, φJ . The window φJ is
obtained by dilating a window φ at scale 2J

φJ(u) = 2−2Jφ(2−Ju) (2.20)
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where φ is typically a Gaussian window φ(u) = exp(−∣u∣2/(2σ2)). In this case, φJ is a
Gaussian window of width 2Jσ.

The wavelet transform Wx of a signal x consists in both the local average and the
wavelet coefficients

Wx = {x ⋆ φJ , x ⋆ ψλ}λ. (2.21)

The norm of the wavelet transform is defined as

∥Wx∥2 = ∥x ⋆ φJ∥2 +∑
λ

∥x ⋆ ψλ∥2. (2.22)

For appropriate wavelets and window, the wavelet transform is a complete representation,
in the sense that it almost preserves the norm of signal. To quantify this, one can define the
Littlewood-Paley function associated to the family {φJ , ψλ}λ which is the sum of squared
of modulus of Fourier transform of all the functions of the family

A(ω) = ∣FφJ(ω)∣2 +∑
λ

∣Fψλ(ω)∣2. (2.23)

The Littlewood-Paley function quantifies how tightly the family tiles the Fourier plane. If
this tiling is α tight, i.e.

∀ω ∈ R2, 1 −α ≤ A(ω) ≤ 1, (2.24)

then the wavelet transform operator almost preserves the norm of the signal

(1 −α)∥x∥2 ≤ ∥Wx∥2 ≤ ∥x∥2 (2.25)

in which case we the family {φJ , ψλ}λ is said to be an α frame.
If this is the case, the wavelet transform is contractive, that is for two signals x, y ∈

L2(R2)
∥Wx −Wy∥ ≤ ∥x − y∥. (2.26)

Also, if α = 0, then the wavelet transform is a unitary operator

∥Wx∥ = ∥x∥. (2.27)

If 0 ≤ α < 1, then W is invertible and its inverse is obtained by filtering all its components

with a dual family {φ(−1)J , ψ
(−1)
λ
}λ and summing the filtered components

x = (x ⋆ φJ) ⋆ φ(−1)J +∑
λ

(x ⋆ψλ) ⋆ψ(−1)λ
. (2.28)

The dual wavelet family {φ(−1)
J

, ψ
(−1)
λ
}λ is defined by its Fourier transform as

FφJ (−1)(ω) = A(ω)−1FφJ(ω) (2.29)

Fψ(−1)
λ
(ω) = A(ω)−1Fψλ(ω). (2.30)

One can see that α controls the stability of the inverse wavelet transform. Indeed, if A(ω)
is close to zero for some ω, then the dual wavelets corresponding to λ for which Fψλ(ω) is
non-negligible will become very sensitive to the frequency ω.
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2.3.2 Oriented Gabor and Morlet Wavelets

Among all possible sets of mother wavelets {ψl}l those that are oriented will be of particular
interest for building rotation invariants. Such mother wavelets are indexed by an angular
variable θ instead of the generic variable l. They are constructed as rotated versions of a
single mother wavelet ψ.

ψθ(u) = ψ(r−θu) (2.31)

so that the family of multiscale wavelets {ψλ}λ is indexed by λ = (θ, j) its elements are
defined as rotated and dilated versions of a single mother wavelet ψ

ψθ,j(u) = 2−2jψ(2−jr−θu). (2.32)

A two dimensional wavelet is said to be analytic if its Fourier transform has a support
which is contained in a half space of R2. Analytic wavelets have their complex modulus
which tends to be much more regular than their real or imaginary part. A typical example
of such wavelet is the Gabor wavelet

ψGabor(u1, u2) = (2πσ2)−1 exp(−∣u∣2/(2σ2) + iξu1). (2.33)

A Gabor wavelet consists in a Gaussian envelope of width σ modulated by an horizontal
complex sine wave of frequency ξ. Its Fourier transform is

FψGabor(ω) = exp(−2σ2∣ω − ξ(1,0)T ∣2). (2.34)

It is a Gaussian of width (2σ)−1 centered around ξ(1,0)T . Therefore a Gabor wavelet is
not exactly analytic because the support of a Gaussian is infinite but if σ/ξ is sufficiently
small, then it is a good approximation to say that FψGabor(ω) = 0 for ω ≤ 0.

Gabor wavelets have been widely used in signal processing and neuroscience because
they have many useful properties both theoretically and practically. They are the best
theoretical trade off between spatial and frequency localization. Indeed, the Heisenberg
inequality claims that for normalized wavelets ∥ψ∥1 = ∫ ∣ψ∣ = 1, the product of the spatial
spread σψ defined by

σ2ψ = ∫ ∣ψ(u)∣ ∣u − ∫ ∣ψ(u)∣udu∣
2

du (2.35)

and its Fourier spread σFψ cannot be lower than 1/2
σψσFψ ≥ 1/2 (2.36)

and the only functions for which the bound 1/2 is reached are Gabor wavelets. Also, Gabor
wavelets have an hermitian symmetry

ψGabor(−u) = ψGabor(u)∗ (2.37)
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where ∗ denote the complex conjugate. Therefore, when computing convolutions of a real
signal x with rotated Gabor wavelets, one can deduce the wavelet coefficients for θ ∈ [π,2π)
from those for which θ ∈ [0, π) since

x ⋆ψθ(u) = (x ⋆ψθ+π(u))∗ (2.38)

which will save roughly a factor of two of computational time. In addition, if we are only
interested in the complex modulus, as it will be the case for scattering networks, we can
discard all the orientations θ ∈ [π,2π) since

∣x ⋆ψθ(u)∣ = ∣x ⋆ψθ+π(u)∣ (2.39)

which will save a factor of two of memory.
In all classification experiments, we use a slight variation of Gabor wavelets, namely

elongated Morlet wavelet. One of the main disadvantages of Gabor wavelets is that they
have a non-zero average which makes their responses non-sparse as shown in Figure 2.2.
One way to fix this while preserving the smoothness and spatial localization of a Gabor
wavelet is to subtract a Gaussian envelope multiplied by an appropriate constant K. The
resulting wavelet is called a Morlet wavelet and is defined as

ψMorlet(u) = (2πσ2)−1 exp(−∣u∣2/(2σ2)) (exp(iξu1) −K) (2.40)

The constant K is computed numerically so that ∫ ψMorlet = 0. Because of this subtraction
of a low pass envelope, Morlet wavelets are slightly less analytic and less localized in
frequency than Gabor wavelets, but they have an exact zero-mean.

Computing the wavelet transform with Morlet wavelets requires to discretize θ in 2C of
orientations between [0,2π). When choosing a larger C, we want to modify the wavelets
so as to increase their angular sensitivity, otherwise the extra orientations do not bring
additional information. For this reason, we replace the circular envelope of the Gaussian
envelope with an elliptical one whose horizontal and vertical semi axes are respectively σ
and σ/s
ψElongated Morlet(u1, u2) = (2πσ2/s)−1 exp(−(2σ2)−1(u21 + u22s2)) (exp(iξu1) −K) (2.41)

We typically chose s ∝ C−1 where C is the number of orientations, so that the horizontal
wavelet θ = 0 has a growing vertical semi axes proportional to C and thus becomes more
sensitive to the horizontal orientation when the number of orientations C increases. One can
also compute several scales per octave Q instead of just one. In this case we will typically
chose σ/ξ ∝ 2Q so as to increase the scale sensitivity of wavelets when the number of scales
per octave grows. Figure 2.3 shows two families of elongated Morlet wavelets with different
number of scales J , orientations C and scales per octave Q, along with their associated
Littlewood Paley function. One can see that in all configurations, the Littlewood Paley
has reasonable bounds with α ≈ 0.7. Increasing the number of orientations and scales per
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ψGabor
θ=π/8, j=0

ψMorlet
θ=π/8, j=0

ψGabor
θ=5π/8, j=2

ψMorlet
θ=5π/8, j=2

x ⋆ ψ ∣x ⋆ψ∣
Figure 2.2: Comparison of elongated Gabor and Morlet two dimensional wavelets. The left
image is filtered with Gabor and Morlet wavelets obtained with constant window spread
σ = 0.8, a top frequency ξ = 3π/4 and a slant s = 0.5, at two pairs of orientation and scale.
The image is filtered and which result in a complex signal x ⋆ ψ of which we compute
the modulus ∣x ⋆ ψ∣. The Gabor wavelets have a non-zero DC component, which tends to
dominate over the high frequencies.
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Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.
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octave of wavelets increases their localization in the Fourier plane, so that a particular
wavelet ψθ,j is always slightly redundant with its immediate neighbors ψθ±π/C, j±1/Q and
almost orthogonal to all other wavelets.

When increasing the number of orientations and scales per octave, elongated Morlet
wavelets have better angular and scale sensitivity and therefore better separate the different
frequency components of an image. This can positively impact classification, but it also has
a number of disadvantages. The most obvious one is the increased number of convolutions
to compute a wavelet transform. Since the wavelets are better localized in Fourier, they are
also less well localized spatially. This will grow their spatial support and therefore increase
the time to perform a single convolution, if computed in the spatial domain. As explained
in section 2.2, better Fourier localization also means less stability to deformation, which
can adversely affect classification at a certain point. Therefore, the choice of the number of
orientations and scales per octave is a trade off between the better separability and worsen
instability to deformations of the wavelet transform, and the resources we are willing to
dedicate to its computation.

2.3.3 Fast Implementations

This section discusses different implementations of the wavelet transform. The Fourier
implementation is more flexible. Its complexity does not depends upon the support of
wavelets and it allows arbitrary downsampling. The filter bank implementation is faster
but also more restricting. It supposes that the Fourier transform of the wavelets can be
written as an infinite produce of Fourier transform of some dilated filters. Its running
time is proportional to the support of the filters, and it does not easily allow arbitrary
downsampling.

Fourier Implementation

A first possible strategy to implement the wavelet transform is to compute all the convo-
lutions in Fourier domain. Given two discrete finite periodic images x and ψ we have

F(x ⋆ψ)(ω) = Fx(ω)Fψ(ω) (2.42)

Therefore, to compute the convolutions with all wavelets ψθ,j one can compute the Fourier
transform of x, multiply it with all the Fourier transforms of Fψθ,j , and compute the
inverse Fourier transforms of the resulting signals. A Fourier transform is implemented
with a fast Fourier transform (FFT) algorithm which has a complexity of O(N logN) for
an image of N pixels. If the wavelets are fixed, as it is the case for our applications,
their Fourier transform can be precomputed. Also, x ⋆ ψj,θ has a spatial regularity and
can therefore be subsampled by 2j . Instead of computing the inverse Fourier transform
and then subsampling, it is equivalent, and more efficient, to periodize the product of
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Figure 2.4: Fourier implementation of the wavelet transform W with J = 2 scales and
C = 2. The Fourier transform of x is calculated and multiplied with the Fourier transform
of each function in the wavelet family {φJ , ψθ,j}θ,j . The results are periodized according
to the target resolution, and then an inverse Fourier transform is applied.

the Fourier transforms and then to compute the inverse Fourier transform at the lowered
resolution. The resulting algorithm is summarized in Figure 2.4 and has a complexity of

TFourier(N) = O(N logN)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
FFT of x

+ O(JCN)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fourier multiplication

and periodization

+O(C∑
j

2−jN log 2−jN)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

IFFT of peridiodized

versions of Fx(ω)Fψλ(ω)

. (2.43)

= O(CN logN) +O(JCN) (2.44)

In practice, the term O(JCN) for multiplication and periodization in Fourier domain
is negligible and most of the time is spent on the initial FFT at the initial resolution, and
on the IFFT at lower resolution. Another issue is that the equation (2.42) is valid for
periodic convolution. Natural images are not periodic and therefore computing a periodic
wavelet transform generates large amplitude coefficients at the boundaries of the image.
Those large coefficients are artifacts that do not relate to the image content and should
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preferably be discarded. One solution is to simply discard all wavelet coefficients within
an inner margin but this can lead to too much information loss for small images. A better
solution is to pad the image symmetrically within a certain outer margin proportional to
the maximum scale 2J of the wavelet family, perform the convolution, and then discard
the coefficients inside the outer margin. This strategy seems inefficient because for small
scales, the margin is much larger than the size of the region that is actually affected by
boundary effects. Adapting the outer margin to the scale 2j might seem more efficient, but
it would also require to compute one additional Fourier transform of x per scale, at the
maximum resolution and those extra Fourier transforms can actually be more expensive
than what could have been gained by having a tighter margin when computing the inverse
Fourier transform at the lower resolution. Therefore, we use the same padding scheme for
all scales and targeted resolution. The Fourier implementation of the wavelet transform is
summarized in Figure 2.4.

Since convolutions are implemented by multiplication of Fourier transforms at the initial
resolution, the Fourier-based wavelet transform also offers the flexibility of choosing a less
aggressive downsampling scheme. We typically downsample x ⋆ψθ,j by

downsampling = 2max(0, j−oversampling) (2.45)

instead of 2j . The oversampling is a parameter typically set to 1 in our experiments but
that can be set to ∞ in which case all the output signals have the same resolution, equals
to the resolution of the input signal x. This increases the running time to O(JCN logN)
which remains acceptable for visualization and debugging purposes.

Filter Bank Implementation

The Fourier implementation of the wavelet transform has some practical advantages, but
it does not leverage the fact the the different wavelets of the family {ψθ,j} are dilated
versions of one another. A fast wavelet transform [Mal08], also called “algorithme a trou”,
takes advantage of this by computing approximations Ajx of the input signal at different
resolutions and computing x ⋆ψθ,j by filtering Ajx at the output resolution 2j .

This assumes that the Fourier transform of the window φ0 at scale 1 and each mother
wavelet ψθ can be written as a product of Fourier transform of discrete dilated filters h
and gθ

Fφ0(ω) = ∏
j<0

Fh(2jω) (2.46)

Fψθ(ω) = Fgθ(ω)Fφ(ω). (2.47)

Let us initialize the approximation A0x = x ⋆ φ0 and denote

Ajx(n) = x ⋆ φj(2jn) (2.48)

Bθ,jx(n) = x ⋆ ψθ,j(2jn) (2.49)
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for n ∈ Z2. In practice we do not have access to either the true continuous image x nor can
we compute Fφ0 as an infinite product. Thus we do not actually compute A0x, but rather
assume that it is the input image itself. It results from the definitions (2.46-2.49) that

Aj+1x(n) = ∑
p

Ajx(2p)h(n − 2p) (2.50)

Bθ,jx(n) = ∑
p

Ajx(p)g(n − p). (2.51)

Thus the subsampled wavelet transform {x ⋆ φJ(2Jn), x ⋆ ψθ,j(2jn)}n,θ,j is implemented
as a cascade of convolutions and downsampling. Those convolutions are done with filters
h and gθ whose support do not change with the scale 2j of the wavelet ψθ,j. Therefore, we
implement these convolutions in the spatial domain, in the small filter support regime where
they are faster than FFT-based convolutions. Equations (2.50-2.51) are more compactly
expressed as

Aj+1x = (Ajx ⋆ h) ↓ 2 (2.52)

Bθ,jx = Ajx ⋆ gθ. (2.53)

Let N be the size of image and P be the size of filters. A convolution at the finest
resolution is implemented as a weighted sum over P elements for each position n

x ⋆ h(n) = ∑
p

x(n − p)h(n) (2.54)

and therefore requires NP operations. The cascade requires 1+C such convolution at each
resolution 2j . The “a trou” algorithm thus has a complexity of

TA-trou(N) = (1 +C)∑
j

2−2jNP (2.55)

= O(CNP ) (2.56)

and requires a memory of O(CNP ) where C is the number of orientations, N is the size
of the input image and P is the size of the filters h and gθ. In practice, we typically use
filters of size P = (2q + 1) × (2q + 1) where q = 3, in which case our implementation of the
“a trou” algorithm is faster than our implementation of the FFT-based algorithm.

As for the FFT-based algorithm, it is preferable to pad and unpad the signal symet-
rically with an outer margin to avoid large coefficients, or having to discard coefficients
within an inner margin. Instead of padding the signal with a margin proportionally to 2J ,
we rather pad and unpad the signal before and after each convolution in the cascade, with a
margin exactly equal to the half width q of the support of filters. This intertwined padding
scheme is not strictly equivalent to the global padding scheme of the Fourier implementa-
tion of wavelet transform, but it serves the same purpose of avoiding large coefficients at
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x h ↓ 2h ↓ 2h ↓ 2

g0g0g0

g1g1g1

A1x A2x
A3x

B0,0x

B1,0x

B0,1x

B1,1x

B0,2x

B1,2x

Figure 2.5: Filter bank implementation of the wavelet transform W with J = 3 scales
and C = 2 orientations. A cascade of low pass filter h and downsampling computes low
frequencies Ajx = x ⋆ φj and filters gθ compute high frequencies Bθ,jx = x ⋆ ψθ,j. This
cascade results in a tree whose internal nodes are intermediate computations and whose
leaves are the output of the downsampled wavelet transform.

the boundary and it does so significantly faster. The “a trou” algorithm is summarized in
figure 2.5.

The “a trou” algorithm is slightly less flexible than the FFT-based algorithm since it
heavily relies on downsampling. To implement oversampling as in (2.45), we would need
to compute convolutions with dilated filters h and gθ, which then would have larger size.
This would prohibitively increase the complexity of the algorithm, which would eventually
becomes quadratic with respect to N if no downsampling were to be done, while the FFT-
based algorithm remains linearithmic.

2.4 Translation Scattering

2.4.1 Wavelet Modulus Operator

The averaging builds stability to deformation and translation invariance up to 2J . Indeed,
it is proved in the early version of [Mal12] that there exist a constant K > 0 such that for
any deformed image Lτx(u) = x(u − τ(u)),

∥Lτx ⋆ φJ − x ⋆ φJ∥ ≤K∥x∥(2−J∥τ∥∞ + ∥∇τ∥∞). (2.57)

Yet, averaging only captures a very coarse approximation of x and loses all its high fre-
quency components. A wavelet transform recovers the high frequencies through convo-
lutions with high pass wavelets x ⋆ ψθ,j but these high frequencies only have translation
invariance up to 2j , not to the maximum scale 2J . Indeed, one can similarly prove that

∥Lτx ⋆ ψθ,j − x ⋆ψθ,j ∥ ≤K∥x∥(2−j∥τ∥∞ + ∥∇τ∥∞). (2.58)
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To enforce invariance to 2J translations while maintaining stability to deformations of
wavelet coefficients x⋆ψθ,j , the most obvious thing to do is to average them into x⋆ψθ,j⋆φJ
but this yields almost zero coefficients since ψθ,j and φJ are specifically designed to be
almost orthogonal to each other. Therefore, to build non-trivial translation invariant, a
possible strategy is to intertwine a non-linearity between the wavelet convolution ⋆ψθ,j and
the averaging ⋆φJ .

The convolutions of an input signal x with an analytical oriented wavelet such as
Gabor or Morlet wavelet, is a complex signal x ⋆ ψθ,j(u). The amplitude of this signal
is a regular envelope that quantifies how the signal is correlated to the orientation θ and
scale 2j in the neighborhood of u, while its phase varies almost linearly and is sensitive to
local displacements. Figure 2.2 shows the result of such convolutions. Applying a complex
modulus to such a response discards local displacements which are irrelevant to describe
the image content. It is thus a good candidate of non-linearity to apply before averaging,
because the averaging will capture more information as its input becomes more regular.
Complex modulus also has the advantages of being contractive, preserving the norm and
the stability to deformation.

The wavelet modulus operator ∣Wx∣ consists in the approximation x ⋆ φJ coefficients
and the modulus of the wavelet coefficients ∣x ⋆ψλ∣,

∣Wx∣ = {x ⋆ φJ , ∣x ⋆ ψλ∣}λ. (2.59)

It decomposes the signal into a first linear invariant S0x, called scattering of order 0, defined
by

S0x(u) = x ⋆ φJ(u) (2.60)

which is invariant to translation up to 2J and stable to deformation, and a first non-linear
covariant part

U1x(u, θ, j) = ∣x ⋆ ψθ,j(u)∣ (2.61)

which is invariant to small translation up to 2j and stable to deformation.

2.4.2 Cascading Wavelet Transform

To build homogeneous wavelet up to 2J , U1x is also averaged which yields a second invariant
S1x, called scattering of order 1

S1x(u, θ, j) = ∣x ⋆ψθ,j ∣ ⋆ φJ(u). (2.62)

As it was the case for S0x, the averaging in S1x also loses information, namely the high
frequencies of U1x. These are recovered through wavelet modulus coefficients

U2x(u, θ1, j1, θ2, j2) = ∣∣x ⋆ψθ1,j1 ∣ ⋆ψθ2,j2(u)∣. (2.63)
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x ∣W ∣ ∣W ∣ ∣W ∣ ∣W ∣U1x U2x

S0x S1x S2x

. . .
Umx Um+1x

Smx

Figure 2.6: Translation scattering can be seen as a neural network which iterates over
wavelet modulus operators ∣W ∣. Each layer m outputs averaged invariant Smx and covari-
ant coefficients Um+1x.

Because U1x(., θ1, j1) is invariant to translations up to 2j1 , its fine scale coefficients U1x(., θ1, j1)⋆
ψθ2,j2 are almost zero for fine scale j2 ≤ j1. Therefore, we usually only compute those co-
efficient for increasing scale j2 > j1.

U2x is invariant to translations up to 2j2 , but not to 2J . Therefore U2x is averaged into
the second order scattering coefficients

S2x(u, θ1, j1, θ2, j2) = ∣∣x ⋆ψθ1,j1 ∣ ⋆ψθ2,j2 ∣ ⋆ φJ(u). (2.64)

This non-linear decomposition is generalized to any order m by

Smx(u, θ1, j1, . . . θm, jm) = Um(., θ1, j1, . . . θm, jm) ⋆ φJ(u) (2.65)

= ∣ . . . ∣x ⋆ψθ1,j1 ∣ . . . ⋆ ψθm,jm ∣ ⋆ φJ(u) (2.66)

Um+1x(u, θ1, j1, . . . , θm+1, jm+1) = ∣Umx(., θ1, j1, . . . θm, jm)∣ ⋆ ψθm+1,jm+1(u)∣ (2.67)
= ∣ . . . ∣x ⋆ψθ1,j1 ∣ . . . ⋆ ψθm+1,jm+1(u)∣. (2.68)

For compactness we denote the scattering path pm = (θ1, j1, . . . , θm, jm) and thus have

Smx(u, pm) = Umx(., pm) ⋆ φJ(u) (2.69)

Um+1x(u, pm+1) = ∣Um(., pm) ⋆ ψθm+1,jm+1(u)∣. (2.70)

One can therefore compactly write that

{Smx,Um+1x} = ∣W ∣Umx. (2.71)

The scattering thus successively applies the wavelet modulus operator ∣W ∣ to decompose
the residual layer Umx into a translation invariant layer Smx and a non-linear covariant
deeper layer Um+1x which will be either retransformed or simply discarded when it becomes
negligeable. The scattering structure is illustrated in Figure 2.6.

The scattering invariant vector consists of scattering vector of all orders up to a maxi-
mum order M

Sx = {S0x, . . . , SMx}. (2.72)

Figure 2.7 shows an input texture image x and its scattering coefficients of order m = 0,1,2.
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x

S0x = {x ⋆ φ}

S1x = {∣x ⋆ ψθ,j ∣ ⋆ φ}

S2x = {∣∣x ⋆ψθ1,j1 ∣ ⋆ψθ2,j2 ∣ ⋆ φ}

θ

j

j1

j2

θ1
θ2

Figure 2.7: An input texture image x and its scattering coefficients of order m = 0,1,2,
computed with J = 4 scales and C = 4 orientations. The paths of second order scattering
S2 are laid out with rows corresponding to lexicographic order on (j1, j2) and columns
corresponding to lexicographic order on (θ1, θ2). For second order coefficients S2x, only
paths with increasing scale j2 > j1 are computed which is why there are three rows on the
first block of rows, two for the second block and one for the last.
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2.4.3 Scattering Properties

The L2 norm of the scattering covariant coefficients Umx is defined as

∥Umx∥2 = ∑
pm

∥Umx(., pm)∥2 (2.73)

= ∑
pm
∫
R2
∣Umx(u, pm)∣2du (2.74)

and similarly

∥Smx∥2 = ∑
pm

∥Smx(., pm)∥2 (2.75)

= ∑
pm
∫
R2
∣Smx(u, pm)∣2du. (2.76)

Finally, the norm of the scattering vector is

∥Sx∥2 = ∑
0≤m≤M

∥Smx∥2. (2.77)

If the wavelet family {φJ , ψλ}λ is an α frame (2.24) then the wavelet transform operator
almost preserves the norm (2.25). Since the modulus preserves the norm, the wavelet
modulus operator also almost preservers the norm,

(1 − α)∥x∥ ≤ ∥∣W ∣x∥ ≤ ∥x∥. (2.78)

For α = 0 the wavelet modulus operator is unitary ∥∣W ∣x∥ = ∥x∥. Applying this equality to
signals Umx(., pm) for every pm yields

∥Smx∥2 + ∥Um+1x∥2 = ∥Umx∥2. (2.79)

Cascading (2.79) shows that

∥Sx∥2 + ∥UM+1x∥2 = ∥x∥2. (2.80)

It is proved in [Mal12] that under reasonable assumptions on the wavelets {φj , ψθ,j},
∥Umx∥2 ÐÐÐ→

m→∞
0 (2.81)

and more specifically that Umx has an exponential decay, so that scattering almost pre-
serves the norm when M is sufficiently large.

∑
0≤m≤M

∥Smx∥2 ≈ ∥x∥2 (2.82)
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In practice, with the Morlet wavelets the decay is very fast so that only scattering of order
0,1 and 2 are computed and higher order paths are discarded.

If α > 0 then a weaker version of (2.80) holds
(1 −α)M+1∥x∥2 ≤ ∥Sx∥2 + ∥UM+1x∥2 ≤ ∥x∥2. (2.83)

The lower bound is actually pessimistic. A tighter inequality is

∥x∥2 ≤ ∥S0x∥2
1 − α +

∥S1x∥2(1 − α)2 + . . . +
∥SMx∥2(1 − α)M+1 +

∥UM+1x∥2(1 − α)M+1 (2.84)

but does not relate the norm of the scattering vector to the norm of x.
Since the wavelet transform is contractive (2.26) and that the complex modulus is

contractive ∀a, b ∈ C∣∣a∣ − ∣b∣∣ ≤ ∣a − b∣, the wavelet modulus operator is also contractive

∀x, y ∈ L2(R2), ∥∣W ∣x − ∣W ∣y∥ ≤ ∥x − y∥. (2.85)

Cascading this inequality yields

∥Sx − Sy∥2 + ∥UM+1x −UM+1y∥2 ≤ ∥x − y∥2 (2.86)

and in particular, this proves that the scattering vector is contractive

∥Sx − Sy∥2 ≤ ∥x − y∥2. (2.87)

Contractivness is an important property since it proves that the representation is robust
to additive noise h. Indeed, the scattering of the noised version x + h of x is not too far
from the scattering of the original signal x

∥S(x + h) − Sx∥ ≤ ∥h∥. (2.88)

Finally, the scattering vector is obtained with a cascade of operators that are stable to
deformations, and ends with an averaging that builds a translation invariance up to 2J .
Therefore, it is proved in [Mal12] that the scattering vector also has translation invariance
up to 2J and stability to deformation in the sense that there exists a constant C > 0 such
that for any x ∈ L2(R2) and any twice differentiable deformation τ for which ∥∇τ∥∞ ≤ 1/2,

∥SLτx − Sx∥ ≤ CMK(τ)∥x∥ (2.89)

with

K(τ) = 2−J∥τ∥∞ + ∥∇τ∥∞max(log ∥∆τ∥∞∥∇τ∥∞ ,1) + ∥Hτ∥∞ (2.90)

The deformation operator Lτ can also be applied to multivariate signals Lτy(u, p) = y(u−
τ(u), p). The proof essentially decomposes the difference SLτx − Sx into two terms

SLτx − Sx = (LτSx − Sx) + (SLτx − LτSx) (2.91)
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The first term is bounded by the term 2−J∥τ∥∞ because Sx ends with an averaging which
builds a spatial regularity of 2J . A change of variable shows that an upper bound on the
second term can be obtained as an upper bound on a deformation of ψ. Since ψ is localized,
this deformation can be bounded which results in the remaining term of K(τ).

Scattering vector only achieves local translation invariance, up to the size 2J of the low-
pass window. As shown in [Mal12], one can replace the windowing with a global averaging
normalized by an appropriate constants µp that depends upon the path p.

S̄x(p) = µ−1p ∫ Ux(u, p)du with µp = ∫ Uδ(u, p)du. (2.92)

where δ is a centered dirac. As J grows, the set of computed paths also increases, so that
defining a norm of S̄x over all paths is technical [Mal12]. The resulting fully delocalized
scattering transform is strictly invariant to any translation S̄Lvx = S̄x. In practice, images
contains a finite number of samples and measurable scales. When 2J becomes of the same
order as the size of the image, it is reasonable to replace it with an averaging over the
whole image, and the resulting scattering operators becomes fully translation invariant.

2.4.4 Scattering Implementation

The scattering vectors are computed by cascading several wavelet transform operators. The
wavelet transform implementation can be chosen to be either the Fourier or the filter bank
of Section 2.3.3. A first wavelet modulus transform computes S0x, subsampled at resolution
2J , and U1x(., θ1, j1), subsampled at resolution 2j1 . A second wavelet modulus operator is
applied to every U1x(., θ1, j1) at input resolution j1. This results in C wavelets modulus
at each resolution 2j1 , all of which costs O(CNP ) if the filter bank algorithm is used to
implement the wavelet transform. Cascading this process results in a time complexity
of O(CMNP ) and a memory cost of O(CMN) where C is the number of orientations,
M is the scattering order, N is the size of the input and P is the size of the filters. For
classification purposes, we are often mostly interested in the invariant scattering coefficients
Sx and the intermediate computations Ux can be discarded. Because all its components
are downsampled by a factor 2J , storing Sx requires O(2−2J(JC)MN) coefficients, which
in practice, is much smaller than the size N of the original image. For the fully translation
invariant scattering 22J = N so that the representation has O((C/2 logN)M ) coefficients.

2.5 Deep Convolutional Neural Networks

Deep neural networks are flexible architecture to learn signal representations. They have
recently obtained state-of-the-art results in various applications including generic object
classification [DCM+12, KSH12, ZF13]. A deep network usually consists in a cascade of
linear operators, intertwined with a non-linearity f which computes a sequence of layers
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Φmx,
Φmx = f(Wm . . . f(W2f(W1x))). (2.93)

These layers are computed one after another with a forward propagation

Φmx = f(WmΦm−1x). (2.94)

The last layer ΦMx should compute a desired function y(x). For a classification task, the
target function y(x) is the label of the input image. The discrepancy between ΦM and the
target function is quantified by an error E(Φx). The derivative of this errors with respect
to the values of the output of each layer is computed by back propagation [LLB+98]. The
top error ∂E

∂ΦM
is initialized by simply computing the derivative of E in the point ΦMx,

then the other derivatives are obtained recursively by applying the chain rule

∂E

∂Φm−1x
= ∂E

∂Φmx

∂f(WmΦm−1x)
∂Φm−1x

. (2.95)

Once those errors derivatives are computed, the derivatives of the error with respect to the
weights are deducted by applying the chain rule

∂E

∂Wm

= ∂E

∂Φm

∂f(WmΦm−1x)
∂Wm

. (2.96)

The learning is done typically with a gradient descent algorithm which updates the weights
with

Wm ← (1 − η)Wm + η ∂E

∂Wm

(2.97)

where η is called the learning rate.
When the input signal has a large dimension (e.g. typically 100.000 for images), the

number of weights becomes impractical. Convolutional neural networks [LKF10, KSH12,
DCM+12, ZF13] limit the number of weights by localizing the operators Wm and sharing
their weights across different positions. Their layers Φmx(u, pm) are indexed by a spatial
variable and a depth variable pm. The computation of the weights becomes

Φmx(u, pm) = f
⎛⎜⎜⎝ ∑v∈Ωpm−1

Φm−1(u, pm−1)wv,pm,pm−1
⎞⎟⎟⎠
. (2.98)

The localization corresponds to the fact that the sum is limited to a compact support Ω,
while the convolution corresponds to the fact that wv,pm,pm−1 does not depend upon the
position u but only upon the offset v and the input and output path pm−1 and pm.

In most deep network architecture for images, the spatial resolution of signals (i.e.
the number of samples for u) decreases from one layer to the next, while the depth (i.e.
the number of samples for pm) grows, which yields a progressively more rich and more
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invariant representation. This is similar to translation scattering. A major difference
between the translation scattering and convolutional neural network as defined in (2.98)
is that in (2.98), every output depth pm is connected to every input depth pm−1. On
the contrary, a scattering path pm = (θ1, j1, . . . θm−1, jm−1, θm, jm) is connected to only one
previous path, its ancestor pm−1 = (θ1, j1, . . . θm−1, jm−1). This implies that the translation
invariance is built independently for different path, which can lead to information loss, as
we shall explain in Section 4.2.



Chapter 3

Separable Scattering

3.1 Introduction

The translation scattering introduced in Chapter 2 builds a translation invariant repre-
sentation by iterating wavelet modulus operators. Scattering inherits from the wavelet
modulus operator the property of preserving the L2 norm of the signal, and the stability
to deformations. Translation scattering provides a stable, informative, translation invari-
ant representation suitable for some image recognition tasks such as digits recognition or
texture classification [BM13] in situations where images undergo little geometric transfor-
mations.

Yet, due to the nature of the imaging process, which consists in a projection of three
dimensional objects onto a two dimensional image plane, natural images undergo a wide
range of geometric transformations. If the object is a smooth surface, as it is often the
case for texture images, the three dimensional projection can be locally approximated by
an affine transform. Therefore the construction of affine invariants has been a fundamental
issue for texture recognition.

An affine transform consists in a translation and a linear transformation. Section 3.2
reviews the properties of affine transforms. A reasonable strategy to build affine invariant
representations is to cascade a first translation invariant representation and second rep-
resentation that builds invariance on linear transform, or the other way around. Such a
strategies have been extensively developed for computer vision and in particular for texture
recognition [LM01, OMP+02, LW03, LSP05]. Section 3.3 exhibits the similarities of such
representations.

As it is the case for translations, a representation that is invariant to affine transforma-
tions while retaining sufficient information will require less examples to learn a model of
classes or discriminative frontiers between distinct classes. Stability to deformations and
retaining information are as important while building affine invariants as they were while
building translation invariants.

49
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Section 3.4 introduces a separable scattering representation that builds invariance to
translations and rotations by applying successively two scatterings, the first one on the
position variable, and the second one on the orientation variable. Both scattering are
stable to deformations, preserve the norm of the signal and build invariance respectively
to translations and rotations. Therefore, the resulting separable scattering is also stable,
preserves the norm and is invariant to both translations and rotations.

3.2 Transformation Groups

The imaging process maps three dimensional surfaces onto the image plane. Projections
of smooth surfaces can be locally approximated by affine transforms. This section reviews
the properties of the affine group and some of its subgroups.

3.2.1 The Affine Group

An affine transform g = (v,A) consists in an inversible linear mapping A ∈ GL(R2) followed
by a translation v ∈ R2. Affine transforms act upon image position u ∈ R2 through the group
action

gu = v +Au. (3.1)

The successive application of two affine transforms g = (v,A) and g′ = (v′,A′) corresponds
to the application of a single affine transform, denoted g′g

(g′g)u = g′(gu). (3.2)

Equation (3.2) is called the compatibility of the group action with the group product. For
the compatibility equation to hold, the group product must be defined as

g′g = (v′ +A′v, A′A). (3.3)

Unlike the translation addition, the affine group product (3.3) is not commutative for two
reasons. First, the term v′ +A′v is not symmetric, secondly the matrix multiplication A′A
in GL(R2) is not commutative. Because of the non-symmetric term v′ + A′v, the affine
group is not the product group R

2 ×GL(R2) of the translation group R
2 and the linear

group GL(R2), but rather their semi-direct product, denoted R
2 ⋊GL(R2).

A smooth three dimensional surface can be locally parameterized by a two dimensional
position u ∈ R2. When an image x is lying on such a surface, which is projected onto the
image plane, the parameterization u is mapped to a point d(u) on the image plane. If
the local flat image lying on the physical surface is x(u), the observed projected image
lying on the image plan is x(d(−1)(u)). In the pinhole camera model, when the surface
is smooth and the normal to the surface is not orthogonal to the ray from the surface
point to the cameral pinhole, the projection d is a smooth deformation. A first order
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Taylor approximation shows that any smooth deformation can be locally approximated by
a two-dimensional affine transform

d(u0 + u) = d(u0) +∇d(u0)u +O(∣u∣2∥Hd∥∞). (3.4)

This shows that around u0, the deformation d behaves almost like an affine transform g =(d(u0), ∇d(u0)). Therefore, local affine invariants can be used to build more sophisticated
invariant such as deformation invariants.

An affine transform acts on images by reverse action on the position

Lgx(u) = x(g−1u). (3.5)

As translation operators Lv, an affine transform Lg is an operator from L2(R2) to L2(R2).
For translation, the action of Lv corresponds to the intuitive definition of x translated by
a constant vector v, which is Lvx(u) = xv(u) = x(u − v). The rotation by angle θ is the
action Lθx(u) = x(r−θu). For a general affine transform g = (v,A), one can verify that the
group inverse is

g−1 = (−A−1v, A−1) (3.6)

so that
g−1u = A−1(u − v). (3.7)

3.2.2 Subgroups of the Affine Group

It can be shown [MY09] that any element A of the linear group GL(R2) can be decomposed
into a rotation rθ, a dilation s and a shear Tt,β

gu = v + rθsTt,β. (3.8)

The shear Tt,β consists in a dilation of t in the direction β, which can be expressed as

Tt,β = r−β ( t 0
0 1

) r−β. (3.9)

By restricting A to subgroups of the linear group, one can define interesting subgroups
of the affine group, for which the construction of invariant can be easier. For example,
the rigid motion group, also called special euclidean group is the semi direct product of
translations and rotations

SE(2) = R2 ⋊ SO(2) (3.10)

It is of particular interest because the rotation groups has some convenient properties
that the linear group does not have. In particular, the group of rotation of SO(2) is
commutative, periodic and is isomorphic to R/Z endowed with the addition, on which
there are already plenty of existing methods to build invariance. Also, in practice, we will
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often consider discrete subgroups of the rotations with 2C elements by restricting A to
rotations of angles that are multiples of π/C.

Another important example is the semi-separable product group of translation and
dilations. The dilation group is isomorphic to R

+∗ endowed with the multiplication, or to
R endowed with the addition if we consider the logarithm of the dilation factor. Unlike
the rotation group, it is not periodic, and when working with images with a finite number
of samples, only a limited range of dilations is available. Therefore, building invariant to
dilation in more difficult than rotation because of these boundary effects. As rotations,
dilations can be discretized for example by restricting dilations of factors 2j/Q where Q is
the number of scales per octave.

Both two dimensional rotations and dilations are isomorphic to a one dimensional
additive group, on which there a plenty of tools to build invariance representations. The
resulting separable representations are reviewed in section 3.3. In particular, one can build
stable invariants through integration, such as separable scattering introduced in Section
3.4.

Combination of translations, rotations and dilations also form a group called the simil-
itude group. On the other hand, shears Tt,β do not constitute a group. Indeed, one can
verify that the product of two shears Tt,0Tt,π/2 = t is a scaling which does not belong to the
set of shears, and hence the set of shears endowed with the matrix multiplication does not
constitute a group. Thus, if the construction of shear invariants is possible [LSP05, MY09],
it can lead to instabilities or impracticalities.

3.3 Separable Representations

This section shows how to build affine invariant image representations by successively
applying invariants to different subgroups of the affine group. Those strategies are called
separable, in the sense that the different invariants involved act on different variables.

One family of separable strategy to build affine invariance starts with a first translation
invariant operator

Φ1 ∶ L2(R2)→ L2(Λ) (3.11)

which is invariant to translation but covariant to the linear group GL(R2). Covariance to
A means that there exist an action on the path variable such that ΦLAx(p) = Φx(A−1p)
or more compactly

∀A ∈ GL(R2), ΦLA = LAΦ. (3.12)

The two symbols LA in (3.12) refer to two different mathematical objects. The first
one refers to the affine transform of an image into another image, while the second one is
an action that maps a function of L2(Λ) to another function of L2(Λ). For this to be of
practical interest, if we already have computed the representation of the original Φx, the
action on the representation LAΦx should be faster to compute than the representation
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of the transformed image ΦLAx. Ideally, LAΦx should be obtained by reindexing the
coefficients of Φx.

The covariance property can be restricted to a subgroup G ⊂ GL(R2) of the linear
group, such as rotations or dilations. If (3.12) holds, ΦLAx can be obtained from Φx by
reindexing the path variable p through the group action Ap. The group action defines an
equivalence relationship

p ∼ p′ ⇐⇒ ∃A ∈ G/p = Ap′. (3.13)

The class of equivalence for this relationship are the orbits Gp defined as

Gp = {Ap}A∈G (3.14)

The set of all orbits defines a partition over the set of all paths Λ. The set of orbits is

Λ̄ = Λ/G. (3.15)

For each orbit, a particular element p̄ that belongs to the orbit is chosen arbitrarly and
will uniquely identify the orbit. Any given path p can then be factorized into its unique
orbit index p̄, and a position A within this orbit

p = Ap̄ (3.16)

This corresponds to a factorization of the transformed space Λ into

Λ = G × Λ̄ (3.17)

Let us suppose that we know how to build an operator Φ2 ∶ L2(G) → L2(Λ2) on
functions of G (not of Λ) such that

∀A ∈ G, Φ2LA = Φ2 (3.18)

where LAy(B) = y(A−1B). Equation (3.18) means that the operator Φ2 is fully invariant
to the action of A. Given such Φ1 and Φ2, we can now see Φ1x as a set of functions on G
indexed by p̄, and apply Φ2 to each of these functions. This yields a separable invariant

Φx(p̄, p2) = Φ2(A ↦ Φ1x(Ap̄))(p2) (3.19)

For compactness of notation, given any operator Φ2 ∶ L2(G) → L2(Λ2) we also denote Φ
(Λ)
2

the operator that applies Φ2 along A for fixed values of p̄, defined by

Φ
(Λ)
2 ∶ L2(G × Λ̄) → L2(Λ2 × Λ̄) (3.20)

((A, p̄)↦ y(Ap̄)) ↦ ((p̄, p2)↦ Φ2(A ↦ y(Ap̄))(p2)) (3.21)

With this notation, we simply have

Φ = Φ(Λ)2 Φ1 (3.22)

Such a Φ is called a separable invariant because a first operator Φ1 builds invariance to
translation Lv, v ∈ R2 and then a second invariant Φ2 build invariance to linear transforms
LA,A ∈ G. The following theorem states the invariance property of Φ.
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Theorem 1. The operator Φ = Φ
(Λ)
2 Φ1 is invariant to the action Lg for any g in the

semi-direct product group R
2 ⋊G.

Proof. For g = (v,A) ∈ R2 ⋊G, the action of the affine transform Lg can be factorized into

Lgx(u) = x(A−1(u − v)) = LvLAx(u) (3.23)

then

ΦLg = Φ
(Λ)
2 Φ1LvLA (3.24)

= Φ
(Λ)
2 Φ1LA since Φ1 is translation invariant (3.25)

= Φ
(Λ)
2 LAΦ1 since Φ1 is G covariant (3.26)

= Φ
(Λ)
2 Φ1 since Φ

(Λ)
2 is G invariant. (3.27)

= Φ (3.28)

which proves that Φ is invariant to the action of Lg for any g ∈ R2 ⋊G.
Theorem 1 states that the cascade of a translation invariant and a linear transform

invariant yields an affine invariant which is called separable. We will further refer to these
type of invariant as separable type I. There is another possible construction of separable
invariant, which is to start the cascade with a local invariant to linear transform and then
to build a translation invariant on top. A similar theorem can be derived for these other
invariants, which will be referred to as separable type II.

Separable invariants have the advantage of simplicity. Each operator builds invariance
to a single variable, which is conceptually straightforward. Separable invariants have been
widely used in texture recognition. A typical example of type I separable invariant is
the Local Binary Pattern Histogram Fourier (LBP-HF) [ZAMP12]. First, local binary
pattern (LBP) are computed. They consist in local descriptors of the image , obtained
by thresholding the image pixel values, or differences of values, on several circular grids
around the patch center. This results in a binary vector p(u) that is different for each
position u of the patch center. The number of different possible binary vectors is 2d where
d is the dimension of the vector p(u). Typically 2d = 256 is relatively small, so that one
can compute an histogram over all the patches of the image

ΦLBP-H
1 (p) = ∑

u

1p(u)=p. (3.29)

Due to the global spatial averaging, the histogram ΦLBP
1 is fully translation invariant.

Since the patterns p are computed from samplings on circular grids, they are covariant to
rotations and can therefore be expressed as a rotation rθ of a normalized pattern p̄

ΦLBP-H
1 (p) = ΦLBP-H

1 (Lθp̄). (3.30)
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To achieve rotation invariant, a first possible strategy presented in [ZAMP12] is to aver-
age together all the pattern that are equals up to a rotation. They denote the resulting
descriptor LBPriu2

ΦLBPriu2(p̄) = ∑
θ

ΦLBP-H
1 (Lθp̄). (3.31)

The authors of [ZAMP12] observes that the averaging along θ loses too much information
along the orbit compared to what is necessary to build invariance. Therefore, they also
build another descriptor that they call LBP-HF (Histogram Fourier), by replacing the
averaging of (3.31) with a Fourier modulus operator along each rotation orbit

ΦLBP-HF(ω, p̄) = ∣F ∣ (θ ↦ ΦLBP-H
1 (Lθp̄)) (ω). (3.32)

The Fourier modulus only discards a global phase, which relates to the global orientation
of the image, but preserves the relative angular distribution of patterns. It is reported in
[ZAMP12] that LBP-HF provides a significant improvement of classification accuracy over
LBPriu2.

LBPriu2 and LBP-HF are separable type I in the sense that they start with a translation
invariant operator, followed by an invariant operator over a subgroup of linear transforms,
in this case, the rotation group. There are also many instances of separable type II invari-
ants in the texture classification literature. A typical example is the Rotation Invariant
Feature Transform (RIFT) or Spin Image introduced in [LSP05]. This approach starts by
computing patch descriptors that are invariant to any linear transform centered on the
patch. Local invariance to scaling and shear is obtained by detection of an Harris or Lapla-
cian region and normalization with respect to these regions. On the normalized patch, an
histogram of gradient orientation, where the orientation is measured with respect to the
eccentricity vector, and is therefore invariant to patch-centered rotations. The resulting

Φ
(RIFT )
1 description is translation covariant, but invariant to local linear transform. Is is

then vector quantized and spatially averaged into a global histogram to build translation
invariance.

3.4 Separable Rigid-Motion Scattering

We argue that affine invariant representations have the same desirable properties than
translation invariant representations. They should also be stable to deformation and retain
as much information as possible. Therefore, when building separable invariance, all the
operators involved should have those properties, and therefore, a good candidate for Φ2 is
a scattering invariant. Separable rigid-motion scattering S̊ is a separable invariant where
both operators are scattering operators that act respectively on the translation and rotation
variable.
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3.4.1 Covariance Property of the Translation Scattering

The translation scattering reviewed in Chapter 2 consists in a cascade of convolutions
with oriented and dilated wavelets. Let us first focus on rotations and oriented wavelets
ψθ(u) = ψ(r−θu). For any rotation rθ,

(Lθx) ⋆ ψθ1(u) = ∫
R2
x(r−θv)ψ(r−θ1(u − v))dv (3.33)

= ∫ x(w)ψ(r−θ1(u − rθw))dw (3.34)

= ∫ x(w)ψ(r−(θ1−θ)(r−θu −w))dw (3.35)

= Lθ(x ⋆ψθ1−θ)(u). (3.36)

Since the modulus is covariant to rotation we also have

∣(Lθx) ⋆ψθ1 ∣ = Lθ ∣x ⋆ ψθ1−θ ∣. (3.37)

Cascading this equality yields

Um(Lθx)(u, θ1, j1 . . . , θm, jm) = Umx(r−θu, θ1 − θ, j1, . . . , θm − θ, jm). (3.38)

For a fully delocalized scattering J = ∞, the scattering is simply

Smx(p) = ∫
R2
Umx(u, p)du (3.39)

which is fully translation invariant and therefore does not depend upon u. From (3.38) we
thus derive

Sm(Lθx)(θ1, j1 . . . , θm, jm) = Smx(θ1 − θ, j1, . . . , θm − θ, jm). (3.40)

Therefore, if we define the action of the rotation group SO(2) over L2(Pm) as
∀y ∈ L2(Pm), Lθy(θ1, j1, . . . , θm) = y(θ1 − θ, j1, . . . , θm − θ, jm), (3.41)

then the scattering has the covariance property

SmLθ = LθSm. (3.42)

3.4.2 Wavelets on the Rotation Parameter

The group action (3.41) is nothing but a translation of θ in the direction (1,0, . . . ,1,0)T .
Therefore, building an invariant to this action can be done with any translation invariant
operator. As it is the case for spatial translation, a good invariant operator should be stable
and retain as much information as possible. We therefore define a scattering operator on
SO(2) and apply it along the rotation orbit of the translation scattering.
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To define a scattering operator on L2(SO(2)) we need to define a wavelet transform,
and hence convolutions and wavelets on this space. L2(SO(2)) is equivalent to the space
of L2([0,2π)). For x̊ ∈ L2([0,2π)), we abusively denote x̊(θ) = x̊(θ mod 2π) which is valid
for any θ ∈ R not only for θ ∈ [0,2π). With this notation, the convolution of two functions
x̊, ẙ ∈ L2(SO(2)) is simply

x̊⍟ ẙ(θ) = ∫
θ′∈[0,2π)

x̊(θ′)ẙ(θ − θ′)dθ′. (3.43)

The Fourier transform on L2([0,2π)), also called the Fourier series in that case, is
defined as

F ∶ L2([0,2π)) → L2(Z) (3.44)

x̊ ↦ (m↦ ∫ 2π

0
x̊(u)e−imθdθ) . (3.45)

If x ∈ L2(R) we define its periodization

x̊(θ) = ∑
n∈Z

x(θ − 2πn), (3.46)

which belongs to L2([0,2π)). Then,

F x̊(m) = ∑
n∈Z
∫

2π

0
x(θ − 2πn)e−imθdθ (3.47)

= ∑
n∈Z
∫

2(n+1)π

2nπ
x(θ)e−imθdθ (3.48)

= Fx(m). (3.49)

The Fourier transform of the periodized signal x̊ is the same as the Fourier transform of
the original signal x, but restricted to integer frequencies m ∈ Z. With these definitions,
the Fourier transform preserves the norm

∀x̊ ∈ L2([0,2π)), ∫ 2π

0
∣̊x(du)∣2du = (2π)−1 ∑

m∈Z

∣F x̊(m)∣2 (3.50)

and the convolution theorem also holds for any x̊, ẙ ∈ L2([0,2π))
∀m ∈ Z, F (̊x⍟ ẙ)(m) = F x̊(m)F ẙ(m). (3.51)

A periodic wavelet family {φ̊K , ψ̊k} is obtained by periodizing a one-dimensional scaling
function φK(θ) = 2−Kφ(2−Kθ) and a one-dimensional wavelet ψk(θ) = 2−kψ(2−kθ) with

φ̊K(θ) = ∑
n∈Z

φK(θ − 2πn) (3.52)

ψ̊k(θ) = ∑
n∈Z

ψk(θ − 2πn). (3.53)
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Having defined wavelets, we can define the wavelet transform on L2([0,2π)) as
Wx̊ = {x̊⍟ φ̊K , x̊⍟ ψ̊k}k. (3.54)

As the wavelet transform on L2(R2), the wavelet transform on L2([0,2π)) also preserves
the norm, as stated by the following property.

Property 1. If {φK , ψk}−∞<k<K is an α frame of L2(R), then {φ̊K , ψ̊k}−∞<k<K defined by
(3.52-3.53) is also an α frame of L2([0,2π)).
Proof. Indeed, let us suppose that {φK , ψk}−∞<k<K is an α frame. Since the Fourier trans-
form of a periodized signal is the discretized Fourier transform of the original signal (3.47-
3.49), α is also a bound on the discretized Littlewood-Paley sum of {φ̊K , ψ̊k}−∞<k<K

∀m ∈ Z, 1 − α ≤ ∣F φ̊K(m)∣2 + ∑
k<K

∣Fψ̊k(m)∣2 ≤ 1. (3.55)

In the following equations, we apply the Plancherel theorem, the convolution theorem
(3.57), the bound on the Littlewood Paley sum on {φ̊K , ψ̊k}k (3.58) and the Plancherel
theorem back (3.59)

∥Wx̊∥2 = ∥̊x⍟ φ̊K∥2 + ∑
k<K

∥̊x⍟ ψ̊k∥2 (3.56)

= (2π)−1 (∥F (̊x⍟ φ̊K)∥2 + ∑
k<K

∥F (̊x ⍟ ψ̊k)∥2) (3.57)

= (2π)−1 ∑
m∈Z

∣F x̊(m)∣2 (∣F φ̊K(m)∣2 + ∑
k<K

∣Fψ̊k(m)∣2) (3.58)

≤ (2π)−1 ∑
m∈Z

∣F x̊(m)∣2 (3.59)

= ∥̊x∥2. (3.60)

This proves that ∥Wx̊∥2 ≤ ∥̊x∥2. One can prove similarly that (1 − α)∥̊x∥2 ≤ ∥Wx̊∥2 and
thus, {φ̊K , ψ̊k}k is an α frame.

As the wavelet transform over R
2, the periodic wavelet transform separate the signal

x̊ into an invariant x̊ ⍟ φ̊K and a covariant part {x̊ ⍟ ψ̊k}k. The invariant part x̊ ⍟ φ̊K is
invariant up to translation of θ of size 2K . The following property states that full invariance
can be achieved with a finite maximum scale K in the periodic case.

Property 2. If Fφ has a compact support, there exists a finite K ∈ Z such that φ̊K is
constant, in which case x̊⍟ φ̊K is fully invariant by translation of the variable θ.

Proof. Indeed, in this case, there exists a finite K such that if the support of Fφ is included
in ]2K ,2K[. Therefore, all the terms of the Fourier series of F φ̊K are null, except F φ̊K(0).
Thus φ̊K is constant and so is x̊⍟ φ̊K .
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3.4.3 Periodic Scattering on the Rotation Parameter

Having defined the periodic wavelet transform on L2([0,2π)), the periodic scattering of a
function x̊ ∈ L2([0,2π)) is obtained by iterating over a wavelet modulus operator, as the
two dimensional scattering over R2

Ům̊x̊(θ, k1, . . . , km̊) = ∣ . . . ∣̊x⍟ ψ̊k1 ∣ . . . ⋆ ψ̊km̊ ∣(θ) (3.61)

S̊m̊x̊(θ, k1, . . . , km̊) = ∣ . . . ∣̊x⍟ ψ̊k1 ∣ . . . ⋆ ψ̊km̊ ∣⍟ φ̊K(θ). (3.62)

Which can be summarized as

{S̊m̊x̊, Ům̊+1x̊} = ∣W ∣Ům̊x (3.63)

The resulting periodic scattering has the same properties as the translation scattering of
Chapter 2, that is invariance to translations of the variable θ, stability to deformations and
it retains most of the information contained in x̊. Similarly to the translation scattering,
we define the scattering path along the rotation parameter as the sequence of indices of
one dimensional wavelets modulus that Ům̊x̊(θ, p̊) or S̊m̊x̊(θ, p̊) has been through

p̊m̊ = (k1, . . . , km̊) (3.64)

The length m̊ of such a path is the rotation scattering order. As in translation scattering,
we compute all scattering order up to a maximum order M̊ . Choosing M̊ to 0 is equivalent
to averaging along the rotation parameter which provides a limited set of invariants. In-
creasing M̊ provides richer invariant coefficients and potentially better classification results
at a higher computational cost.

The periodic wavelet transform and scattering implementation can be done using either
the Fourier or the filter bank implementation described in Section 2.3.3. Theoretically,
after a wavelet transform, one should be able to downsample the signal along the rotation
parameter proportionaly to the scale of the wavelet ψ̊k. Yet, in practice, we operate with a
small number of angles C = 8 and any intermediate downsampling introduce non-negligible
aliasing that degrades the rotation invariance. We therefore only perform downsampling
after the low-pass along rotation φ̊K . Also, since the number of angles is small, and the
convolutions are periodic, there are no padding issues and the filters support are about
the same size as the signal, therefore Fourier based convolutions are faster in this regime.
A periodic wavelet transform without downsampling actually consists in K Fourier based
convolutions thus has a cost of O(KC logC) where K is the number of scales and C is the
number of angles. The periodic scattering consists in a cascade of M̊ such wavelet modulus

operators and therefore has a cost of O ((KC logC)M̊). The intermediate memory cost

is O(KC). After the low-pass φ̊K , we perform a final downsampling of 2K so that the
storage requirement is O (K2−KC).
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3.4.4 Separable Scattering

Now let us go back to the fully translation invariant scattering. It is a function

Smx(θ1, j1, . . . , θm, jm) = ∫
R2
∣ . . . ∣x ⋆ψθ1,j1 ∣ . . . ⋆ψθm,jm ∣(u)du (3.65)

that does not depend upon the spatial position u and which is therefore invariant to any
translation

∀v ∈ R2, Smx = SmLvx. (3.66)

It has covariance property with respect to rotation

SmLθx = LθSmx. (3.67)

We factorize pm = (θ1, j1, . . . , θm, jm) into
pm = θ1(0, j1, θ2 − θ1, j2, . . . , θm − θ1, jm) (3.68)

= θ1p̄m (3.69)

Now we consider Smx as a set of orbit functions θ ↦ Smx(θp̄m), indexed by p̄m. Each of
these functions belong to L2(SO(2)), we can therefore apply to them the periodic scattering
operator Ům̊ or S̊m̊. This yields a separable scattering operators Ům,m̊ and S̊m,m̊

Ům,m̊x(θ1, p̄m, p̊m̊) = Ům̊(θ ↦ Smx(θp̄))(θ1, p̊) (3.70)

S̊m,m̊x(θ1, p̄m, p̊m̊) = S̊m̊(θ ↦ Smx(θp̄))(θ1, p̊) (3.71)

Separable scattering is indexed by an orbit position θ1, an orbit p̄ that are reminiscent from
the initial translation scattering, and a periodic scattering path p̊ that has been created by
the second scattering along orientation.

The separable scattering vector S̊x is the concatenation of all scattering coefficients at
all orders up to maximal order M and M̊ , at all orbit positions, orbit indices and periodic
scattering paths.

S̊x = {S̊m,m̊x(θ1, p̄m, p̊m̊)}0≤m≤M, 0≤m̊≤M̊, θ1,p̄m,p̊m̊
(3.72)

Since the initial translation scattering is fully translation invariant, the separable scattering
is also fully translation invariant. If the scale 2K of the rotation scattering is sufficiently
large, the separable scattering is also fully invariant to rotations. In these case, it does not
depends on the orbit position θ1 but only on the orbit index p̄m and on the rotation path
p̊m̊.

The computation of the separable scattering is illustrated in figure 3.1. First, a transla-
tion scattering is computed. The rotation orbit are extracted from the translation scatter-
ing. Each of these orbit are one dimensional signals that we apply a periodic scattering to.



CHAPTER 3. SEPARABLE SCATTERING 61

x

∣ . ⋆ψθ1,j1 ∣

∣ . ⋆ψθ2,j2 ∣
⋆φJ

∣ . ⍟ ψ̊k1 ∣
∣ . ⍟ ψ̊k2 ∣
⍟φ̊K

m

m̊

SJ

S̊

1 2

0

1

2

Figure 3.1: Separable scattering architecture. First spatial scattering layers in grey, second
scattering layers in black. Spatial wavelet-modulus operators (grey arrows) are averaged
(doted grey arrows), as in [BM13]. Outputs of the first scattering are reorganized in
different orbits (large black circles) of the action of the rotation on the representation.
A second cascade of wavelet-modulus operators along the orbits (black arrows) splits the
angular information in several paths that are averaged (doted black arrows) along the
rotation to achieve rotation invariance. Output nodes are colored with respect to the order
m,m̊ of their corresponding paths.

Finally, all the output of all periodic scattering are concatenated. The implementation of
the translation an rotation scattering can be chosen depending upon the application. Since
the translation scattering is not periodic, a filter bank implementation is often faster. Since
the rotation scattering is periodic, with wavelet sizes of the same order than the size of
signal, a FFT-based implementation is faster. For these choices the total time complexity

of the separable scattering is O (CMNP +CM−1(logN/2)M(KC logC)M̊) where C is the

number of angles, N the size of the image, P the size of the spatial filters, M is the maxi-
mum spatial scattering order and M̊ is the maximum rotation scattering order. Indeed, the
cost of the translation scattering is O(CMNP ). Then, we apply a one dimensional Fourier
based scattering with no intermediate downsampling, on signals of size C which has a cost
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O(KC logC)M̊). These signal corresponds to rotational orbits. Since the translation scat-
tering representation has a size O(CM(logN/2)M ), there are O(CM−1(logN/2)M ) such
orbits.



Chapter 4

Joint Scattering

4.1 Introduction

The separable scattering introduced in Chapter 3 builds stable invariant to translations
and rotations by cascading a first scattering that builds full translation invariance, and a
second scattering that builds rotational invariance. This approach has the advantage of
simplicity but it also discards important information about the joint distribution of posi-
tion and orientation of intermediate layers. Section 4.2 argues that all separable invariants,
which are common in the texture classification literature, also discard similar information.
Retaining this information requires to adapt signal processing tools to the specificities of
transformation groups, as proposed by several authors [CS06, BDGR12, DB07, DF11].
Another possibility is to learn much more general representations such as deep neural net-
works [LLB+98, HS06, LKF10, DCM+12, KSH12], that have enough expressive power to
capture those specificities. The translation group has a simple structure that allows to
build convolutional operators which dramatically simplify the task of designing or learning
a translation invariant representation. We argue that the same properties hold for slightly
more complex subgroups of the affine group, in particular for the rigid-motion group con-
sisting of translations and rotations. Section 4.3 constructs a multiresolution analysis on
the rigid-motion group, with convolutions, wavelets, wavelet transform operators and fast
implementations. Section 4.4 builds a joint rigid-motion scattering, that iterates over the
rigid-motion wavelet transform. Joint scattering provides a representation that is invari-
ant to translations and rotations, but which provides much tighter invariance compared to
separable scattering or other separable representations.

4.2 Joint versus Separable Invariants

Chapter 3 has reviewed some separable invariants in the texture classification and in-
troduced a stable translation and rotation invariant separable scattering. The separable

63
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Figure 4.1: A texture image x (left) from the UIUCTex dataset [LSP05]. Translating all the
rows independently yields an image Lτx (right) that is perceptually very different from the
original. Yet, separable translation invariants are also invariant to such transformations,
which shows that they potentially discard important information for classification.

scattering is a type 1 separable invariant, in the sense that it builds a first translation
invariant, rotation covariant representation, and applies a second scattering transform on
the rotations orbits of the first scattering transform. We argue that such invariant, by
separating the translation and orientation variables, loses important information that may
be helpful to discriminate different classes.

4.2.1 Separable Translation Invariance

To illustrate the loss of information of separable invariants, let us first consider the two-
dimensional translation group R

2. The two-dimensional translation group can be consid-
ered as the product of two one dimensional translation groups R. A separable invariant
to these groups can be build by applying, at each vertical position u2, a first translation
invariant operator Φ1 ∶ L2(R) → L2(Λ) along the horizontal position u1. Φ1 could be any
one dimensional translation invariant operator, such as Fourier modulus or scattering. This

defines an extended operator Φ
(R2)
1 ∶ L2(R2)→ L2(R ×Λ) as

Φ
(R2)
1 x(u2, p) = Φ1(u1 ↦ x(u1, u2))(p). (4.1)
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The operator Φ
(R2)
1 is invariant to translations of the variable u1, and covariant to trans-

lations of the variable u2,

Φ
(R2)
1 L(v1,v2)x(u2, p) = Φ(R2)

1 x(u2 − v2, p). (4.2)

A second one dimensional translation invariant operator Φ2 ∶ L2(R) → L2(R) can now

be applied to Φ
(R2)
1 x along the vertical variable u2. This yields a separable operator

Φ ∶ L2(R2)→ L2(Λ2) defined by

Φx(p1, p2) = Φ2 (u2 ↦ Φ
(R2)
1 x(u2, p1)) (p2). (4.3)

Applying the translation invariance of Φ2 to (4.2) proves that the resulting separable
operator Φ is invariant to any two dimensional translations Lv. Yet, let τ(u) = (v1(u2), v2)
be independent horizontal translations v1(u2) of each rows, and a global translation v2 of
all columns. Then Φ is also invariant to Lτ . Indeed

Φ
(R2)
1 Lτx(u2, p) = Φ1(u1 ↦ x(u1 − v1(u2), u2 − v2))(p) (4.4)

= Φ1(u1 ↦ x(u1, u2 − v2))(p) (4.5)

= Φ
(R2)
1 x(u2 − v2, p) (4.6)

and since Φ2 is also translation invariant, Φ is invariant to Lτ . Such a τ belongs to the
group R

R × R = {(u1, u2) ↦ (v1(u2), v2)} which is a much larger group than the trans-
lation group R

2. This toy example shows that translation separable invariants are too
loose. Indeed, they are invariant to a much wider set of transformations than what was
originally intended by design, i.e. global two dimensional translations. Figure 4.1 shows an
image obtained by applying such τ to a texture image. The original and the transformed
images are perceptually very different and an operator that maps those two images to the
same representation is not likely to perform well at perception related tasks such as image
classification. Figure 4.2 shows that a separable Fourier modulus transform is invariant to
such Lτ , τ ∈ RR ×R, whereas the usual two dimensional Fourier modulus transform is not,
because it takes into account the joint structure of the translation group. In particular, a
two dimensional Fourier modulus captures oriented periodic patterns that are aligned with
neither the horizontal nor the vertical axis. This is why translation invariant scattering
operators in R

2 described in Chapter 2 are not computed as a separable product of one
dimensional scattering along horizontal and vertical variables. Instead, two dimensional
scattering iterates over a two dimensional wavelet transform that captures covariation of
horizontal and vertical variable throughs oriented wavelets.

4.2.2 Separable Rigid-Motion Invariance

Two dimensional translation separable invariants built in section 4.2.1 are in fact invariant
to a much larger group R

R × R than intended because they treat both variables of the
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Figure 4.2: A separable two-dimensional translation invariant (top) can be obtained by
cascading a one-dimensional translation invariant along rows and along columns. In this
illustration, we have chosen one-dimensional Fourier modulus. Such a separable invariant is
invariant to independent translation of each rows and global translations of columns, that
is to the group R

R × R. On the contrary, a two-dimensional Fourier modulus takes into
account the group structure of the two-dimensional translation groups and is not invariant
to R

R × R but only to R
2. This illustrates the fact that separable invariant may be too

loose invariant in the sense that they are invariant to a much larger group than the one
intended.
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Figure 4.3: Two synthesized texture images of grid of horizontal and vertical Cauchy
wavelets spaced out by 1 (left) , and their Fourier transform (right). In the top image,
both grids are aligned, while in the bottom image, the grid of vertical wavelets is offsetted
by (1/2,1/2)T . The Fourier transform are identical, up to non-global phase. Therefore, a
Fourier modulus will not be able to distinguish these two texture, even though they are
not related to a global translation.
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translation group as if they were independant. The same phenomenon appears for separable
invariants along translations and rotations, although it is more subtle because rotations
affect translations. Indeed, let us consider both synthesized texture images x and y of
figure 4.3. They both consist in a grid of horizontal ψ0 and vertical ψπ/2 wavelets and are
defined as

x = real
⎛
⎝∑v∈Z2

(Lvψ0 +Lvψπ/2)⎞⎠ (4.7)

y = real
⎛
⎝∑v∈Z2

Lvψ0 + ∑
v∈Z2+(1/2,1/2)T

Lvψπ/2
⎞
⎠ . (4.8)

The only difference is that in image y, the grid of vertical wavelets ψπ/2 has an offset of

(1/2,1/2)T with respect to the horizontal wavelets ψ0. Let us suppose that the wavelet ψ
is sufficiently localized in angle so that, among the wavelet family, any wavelet ψθ,j has to
be orthogonal to either both ψ0 and ψπ or both ψπ/2 and ψ3π/2

∀θ, j ∈ [0,2π) × Z ⎛⎜⎝
ψ0 ⋆ ψθ,j = 0

and
ψπ ⋆ ψθ,j = 0

⎞⎟⎠ or
⎛⎜⎝
ψπ/2 ⋆ ψθ,j = 0

and
ψ3π/2 ⋆ψθ,j = 0

⎞⎟⎠ . (4.9)

This can be achieved for example with Cauchy directional wavelets [AMV99]. Let α < β
be two directions and denote ωα = (cosα, sinα)T . A Cauchy directional wavelet is defined
by its Fourier transform as

Fψ(ω) = 1α≤argω≤β(ω.ωα+π/2)l(ω.ωβ+π/2)le−ω.ω(α+β)/2 (4.10)

The first factor 1α≤argω≤β enforces that the support of the Fourier transform of the wavelet
is in the cone of direction α ≤ argω ≤ β. The next two factors (ω.ωα+π/2)l(ω.ωβ+π/2)l
of (4.10) guarantee that the Fourier transform is smooth at the boundaries of that cone,
while the last factor e−ω.ω(α+β)/2 localizes the wavelet in scale. Cauchy wavelets are exactly
analytical as soon as β − α < π. As Morlet or Gabor wavelets, Cauchy wavelets have
an hermitian symmetry and therefore we can limit the analysis of real signal to wavelets
whose angle is between [0, π). To construct a frame with C orientations between [0, π),
we use a wavelet ψ with α = −π/C and β = π/C. Therefore, the support of two wavelets
of successive orientations will overlap, which will provides a reasonable Littlewood-Paley
sum (2.23). Nevertheless, one wavelet of such a frame is strictly orthogonal to all other
wavelets excepts those whore are in its immediate angular neighborhodd. In particular,

Property 3. Cauchy wavelets defined as (4.10) with α = −π/C and β = π/C exactly verifies
(4.9) as soon as C ≥ 6.
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Figure 4.4: An oriented Cauchy wavelet (left), and its Fourier transform (right), whose
support is included in the cone of direction θ ∈ [−π/8, π/8].

Proof. Indeed, for C ≥ 6, ψπ/2 is at least the fourth angular wavelet, ψ0 being the first.
Thus, at least two orientations separate ψ0 and ψπ from ψπ/2 and ψ3π/2. Therefore, since
Cauchy wavelets defined with α = −π/C and β = π/C are orthogonal to all other Cauchy
wavelets but their immediate angular neighbors, they must be orthogonal to either both
ψ0 and ψπ or both ψπ/2 and ψ3π/2.

Figure 4.5 shows all the wavelets of such a frame with C = 8, along with their Fourier
transform and their Littlewood Paley sum (2.23).

Let us suppose that (4.9) is verified for some family of wavelet and that the two grids
(4.7-4.8) are defined with theses wavelets, as in Figure 4.3. Now let us apply a wavelet
transform operator defined with the same wavelets. The following property relates the
wavelet transforms of such images x and y.

Property 4. If wavelets {ψθ,j}j,θ have Hermitian symmetry ψ(−u) = ψ∗(u) and verifies
(4.9). Let x and y be defined as (4.7-4.8), then each signal of the wavelet transforms of x
and y are either equal or translated:

∀θ, j ∈ [0,2π) × Z, x ⋆ψθ,j = y ⋆ψθ,j or x ⋆ ψθ,j = L−(1/2,1/2)T y ⋆ψθ,j . (4.11)

This property is illustrated with Cauchy wavelets in Figure 4.3.

Proof. Indeed, since the Cauchy wavelets have Hermitian symmetry we have

realψ0 = 1/2(ψ0 +ψπ) (4.12)

realψπ/2 = 1/2(ψπ/2 + ψ3π/2). (4.13)
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1.2

0

Figure 4.5: A family of oriented Cauchy wavelets, and their associated Littlewood Paley
function.

Therefore, if, for example, ψ0 ⋆ψθ,j = ψπ ⋆ ψθ,j = 0, then
x ⋆ψθ,j = 1/2 ∑

v∈Z2

(Lvψπ/2 + Lvψ3π/2) ⋆ ψθj (4.14)

= L−(1/2,1/2)T 1/2 ∑
v∈Z2+(1/2,1/2)T

(Lvψπ/2 + Lvψ3π/2) ⋆ψθj (4.15)

= L−(1/2,1/2)T y ⋆ψθ,j. (4.16)

and if ψπ/2 ⋆ψθ,j = ψ3π/2 ⋆ ψθ,j = 0 then x ⋆ ψθ,j = y ⋆ψθ,j .
Property 4 shows that it is possible to construct two signals that are not related by a

translation but whose wavelet transform are related to different translations for different
wavelet indices. Iterating over two dimensional wavelet modulus operators will propagate
property 4 to Umx and Umy for all m ≥ 1. Their translation scattering vector Sx and Sy,
obtained by averaging Ux and Uy along spatial position, will thus be equal. Therefore, their
rigid-motion separable scattering transform, which is obtained by applying a scattering
transform on the rotation orbit of the translation scattering will also be equal. This toy
example shows that separable invariants on the rigid-motion group may be too lose, because
they do not capture the local covariation of different orientations.

4.3 Multiresolution Analysis on the Rigid Motion Group

Section 4.2 has shown that separable invariants build invariance to a large group of trans-
formation by applying successive invariants to different subgroups that generate the large
group. This is a reasonnable and simple approach that breaks the problem of building in-
variance to a large group into smaller problems of building invariance to small groups. Yet,
by considering the subgroups as independent, separable invariants discard the information
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Figure 4.6: Two images of grids of horizontal and vertical Cauchy wavelets (left), and their
wavelet modulus coefficients (right). In the top image, both grids are aligned, while in the
bottom image, the grid corresponding to the vertical wavelet is offsetted by (1/2,1/2)T .
Cauchy wavelets separate the horizontal and vertical grids into independent channels. The
wavelet coefficients ∣x ⋆ ψθ,j ∣ of both images are strictly equal, but they are translated by(0,0)T for θ ∈ [0, π/4) ∪ [3π/4, π), and by (1/2,1/2)T for θ ∈ [π/4,3π/4). The translation
scattering builds translation invariance by processing all these channels independently and
therefore will be equal for both images. The separable rigid-motion scattering, which is
build by appending a scattering along the orientation on top of the translation scattering,
will thus also be equal for both images.



CHAPTER 4. JOINT SCATTERING 72

contained in the covariations of different variables of the larger group. Therefore, separable
operators are invariant to a wider class of transformation than what was originally intended
and may not be able to distinguish two classes of signals that are perceptually distinct.

Instead of breaking the large group invariance problem into smaller group invariance
subproblems, a joint invariant takes into account the group law of the larger group and
adapts signal processing tools to the group law. Most two dimensional image processing
tools, such as Fourier or wavelet transforms, are generalization of one dimensional signal
processing tools and take into account the two dimensional translation group structure.

In the same spirit, several authors [CS06, DB07, DF11, BDGR12] have proposed to
generalize some signal processing tools to the rigid-motion group consisting of two dimen-
sional translations and rotations. Indeed a large body of works including [RP99] suggest
that in the human visual brain, the first area called V1 is responsible for extracting ori-
entation information at each position in the visual field. Therefore V1 would lift the two
dimensional retina image into a three dimensional signal indexed by position and orienta-
tion, i.e. an element of the rigid-motion group. [CS06] transforms two dimensional curves
into three dimensional curves augmented by the orientation of their tangent vector and
proposes to process the lifted curves according to the group law of rigid-motions to per-
form completion of occluded curves. [DB07, DF11] generalizes the approach to images
by considering a single-scale wavelet transform of an image as a three dimensional signal
indexed by position and orientation, i.e. and element of the rigid-motion group. Given
an image x, [DB07, DF11] computes its single-scale wavelet transform Wx, performs a
diffusion according to the rigid-motion group on the wavelet transform DWx, and inverses
it which results in a new image W−1DWx where the contours have been enhanced. This
has medical applications such as vessel or fiber tissue imaging [DF11].

Similarly, but in the different context of building invariant representations, this section
introduces a joint scattering operators. Joint scattering applies a first wavelet modulus
operators that plays a role similar to the lifting in [CS06, DB07, DF11, BDGR12, RP99]
of transforming a two dimensional image into higher dimensional signals of a larger group.
Then, a wavelet transform is applied to the higher dimensional signals according to the
group law of the larger group. The rest of this section introduces the necessary tools
to build that wavelet transform. Section 4.3.1 introduces rigid-motion convolutions and
fast implementations for separable wavelets. Section 4.3.2 builds a separable rigid-motion
wavelet basis, the corresponding wavelet transform operator and section 4.3.3 discusses
fast implementations.
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4.3.1 Rigid-Motion Convolutions

Group Convolutions

For any group G endowed with a measure µ̃, one can define the set of squared integrable
functions relatively to the measure µ̃ as

L2(G) = {x̃ ∶ G→ C s.t∫
g∈G
∣x̃(g)∣2dµ̃(g)}. (4.17)

The left translation of a function x ∈ L2(G) by h ∈ G is

Lhx̃(g) = x̃(h−1g). (4.18)

Lh is an operator from L2(G) → L2(G). Given two functions x̃, ỹ ∈ L2(G) their convolution
is

x̃⋆̃ỹ(g) = ∫
h∈G

x̃(h)ỹ(h−1g)dµ̃(h). (4.19)

Let us make the assumption that µ̃ is a left invariant haar measure that is µ̃(h−1S) = µ̃(S)
for all h ∈ G,S ⊂ G. Then, the definition (4.19) of convolutions is invariant to left translation
of any h ∈ G (Lhx̃) ⋆ ỹ = Lh(x̃ ⋆ ỹ). (4.20)

Indeed,

(Lhx̃)⋆̃ỹ(g) = ∫
h′∈G
Lhx̃(h′)ỹ(h′−1g)dµ̃(h′) (4.21)

= ∫
h′∈G

x̃(h−1h′)ỹ(h′−1g)dµ̃(h′) (4.22)

= ∫
h′′∈G

x̃(h′′)ỹ(h′′−1h−1g)dµ̃(hh′′) (4.23)

= ∫
h′′∈G

x̃(h′′)ỹ(h′′−1h−1g)dµ̃(h) (4.24)

= x̃⋆̃ỹ(h−1g) (4.25)

= Lh(x̃⋆̃ỹ)(g). (4.26)

In particular, let us consider an affine subgroup of the form R
2 ⋊G where G is a subgroup

of GL(R2) as introduced in Section 3.2.2. Inserting the affine law defined in equation (3.3)
as g′g = (v′ +A′v, A′A) into the group convolution (4.19) yields, for any x̃, ỹ ∈ L2(R2 ⋊G)

x̃⋆̃ỹ(v,A) = ∫
v′,A′∈R2⋊G

x̃(v′,A′) ỹ(A′−1(v − v′),A′−1A) dµ̃(v′,A′). (4.27)
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Fast Separable Group Convolutions

If there are N samples for R2 and C samples for G, computing a naive discretized version
of (4.27) would involve, for each discretized position (v,A) ∈ R2 ⋊G, a sum over (v′,A′) ∈
R
2 ⋊G. The total cost of a group convolutions would therefore be O(N2C2) operations

which may be prohibitive. This paragraph shows how to lower this cost for separable
wavelets.

Let us assume that the measure µ̃ and the wavelet ỹ are separable,

µ̃(v,A) = µ(v)µ̊(A) (4.28)

and
ỹ(v,A) = y(v)ẙ(A). (4.29)

Then, the group convolution can be factorized into

x̃⋆̃ỹ(v,A) = ∫
A′∈G
(∫

v′∈R2
x̃(v′,A′)y(A′−1(v − v′))dµ(v′)) ẙ(A′−1A)dµ̊(A′). (4.30)

Assuming that the measure µ on v ∈ R2 is the usual Lebesgue measure dµ(v) = dv, the
inner term (∫v′∈R2 x̃(v′,A′)y(A′−1(v − v′))dv′) is a spatial convolution of v ↦ x̃(v,A′) with
the two dimensional warped wavelet v ↦ y(A′−1v). This spatial convolution can be imple-
mented either in Fourier domain with a cost O(N logN) or in spatial domain with a cost
O(NP ) where P is an upper bound on the support of the warped wavelets v ↦ y(A′−1v)
for all A′ ∈ G. The spatial convolution has to be computed for all A′ ∈ G a thus requires
either O(N logNC) for a Fourier implementation or O(NPC) for a spatial implementa-
tion. Then, a convolution along A must be applied at all spatial location v ∈ R2. A naive
implementation for this final convolution thus requires O(NC2) operations. The total cost
of computing a discretized version of (4.30) is thus O(N logNC +NC2) for a Fourier im-
plementation of the spatial convolution or O(NPC +NC2) for a spatial implementation
of the spatial convolution, instead of O(N2C2) for the naive implementation.

An even more advantageous situation is when the linear subgroup G ⊂ GL(R2) has a
particular structure for which there exists a fast convolution algorithm. That is the case
for the rotation group G = SO(2) which consists in rotation matrices rθ for θ ∈ [0,2π).
The corresponding affine subgroup R

2 ⋊ G is the rigid motion group, which is denoted
SE(2) = R

2 ⋊ SO(2) and consists in all compositions of translations an rotations. The
separable group convolution (4.30) becomes

x̃⋆̃ỹ(v, θ) = ∫
θ∈[0,2π)

(∫
v′∈R2

x̃(v′, θ′)y(r−θ′(v − v′))dv′) ẙ(θ − θ′)dθ′. (4.31)

The inner term is a two dimensional convolution of v ↦ x̃(v, θ′) with the rotated wavelet
v ↦ y(r−θ′v). The outer term is a periodic one dimensional convolution on SO(2) of
the inner term with the one dimensional 2π periodic wavelet ẙ, as reviewed in Section
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v1
v2

θ

x̃(v1, v2, θ) ⋆y(r−θ.) ⍟ẙ x̃⋆̃ỹ

Figure 4.7: A rigid-motion convolution (4.31) with a separable wavelet ỹ(v, θ) = y(v)ẙ(θ)
in SE(2) = R2 ⋊ SO(2) can be factorized into two dimensional convolutions with rotated
wavelets y(r−θv) followed by one dimensional convolutions with y(θ). The wavelets dis-
played are two dimensional complex elongated Morlet wavelet (2.41) for y and one dimen-
sional complex Morlet wavelet for ẙ.

3.4.2. Figure 4.7 illustrates this separable implementation of such rigid-motion convo-
lutions. For periodic one dimensional convolutions, a Fourier domain implementation re-
quires O(C logC) operations and a spatial domain implementation requires O(CP ′) where
P ′ would be the support of the wavelet ẙ. Computing the outer term of (4.31) involves N
such convolutions. Thus, the cost of all the convolutions along G becomes O(NC logC)
or O(NCP ′) for Fourier or spatial implementation of convolution along θ.

More generally, the separable convolution (4.30) is a succession of convolutions along R
2

followed by convolutions along G. Therefore, one can independently choose an implemen-
tation of the convolutions along R

2 and another implementation of the convolutions along
G. Table 4.1 summarizes the total cost of computing an affine convolution, depending on
the choice of both implementations.

The group of dilation G = R+∗ also has a simple one dimensional structure. Yet, the
dilation group is not periodic. Thus, one must take extra care at the boundaries when
computing convolutions along dilations. Real world images are finite and therefore have
a limited range of dilations available. This makes convolutions along dilation difficult to
compute because boundary effects tends to affect a large part if not all of the support
of the signal. Therefore, in most applications we do not compute convolutions along the
dilation group.

4.3.2 Rigid-Motion Wavelet Transform

Section 4.3.1 has defined the group convolution on affine subgroups and has introduced
fast implementations for separable wavelets. This section introduces a family of separable
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G-conv VS R
2-conv Naive Fourier Spatial

Naive N2C2 N logNC +NC2 NPC +NC2

Fourier N2C +NC logC N logNC +NC logC NPC +NC logC

Spatial N2C +NCP ′ N logNC +NCP ′ NPC +NCP ′

Table 4.1: Cost of separable implementation of convolution (4.30) on an affine subgroup
R
2 ⋊ G with G ⊂ GL(R2). A separable implementation is implemented by convolutions

along R
2, followed by convolutions along G. The columns of this table corresponds to the

possible choice of implementations of the convolutions along R
2, and the rows corresponds

to the convolutions along G. N is the number of samples for R
2, C is the number of

samples for G, P is an upper bound of the support’s size for warped spatial wavelets
v ↦ y(A−1v), P ′ is the size of the support’s size for wavelet ẙ. For the second convolution,
all implementations may not be available depending on the group structure of the linear
subgroup G. If G is the rotation group G = SO(2), all implementations are available.

wavelets on affine subgroups, with fast implementations of the associated wavelet transform.
A wavelet family on a product space can be obtained as a separable product of wavelet

families on smaller space. This approach can be used for example to compute a two dimen-
sional {φJ , ψl,j}1≤l≤3, j<J wavelet family from a one dimensional wavelet family {φJ , ψj}j<J
with

φJ(u1, u2) = φJ(u1)φJ(u2) (4.32)

ψ1,j(u1, u2) = ψj(u1)ψj(u2) (4.33)

ψ2,j(u1, u2) = ψj(u1)φj(u2) (4.34)

ψ3,j(u1, u2) = φj(u1)ψj(u2). (4.35)

This construction imposes that both factors of the product wavelet have roughly the same
scale 2j . This makes sense for images since both variables u1 and u2 have a similar role.
For other two dimensional signal where u1 and u2 would be physically different quantities,
one could imagine to chose the scales along u1 and u2 independently. Another separable
family would thus be

φJ(u1, u2) = φJ(u1)φJ(u2) (4.36)

ψj1,j2(u1, u2) = ψj1(u1)ψj2(u2) (4.37)

ψJ,j2(u1, u2) = φJ(u1)ψj2(u2) (4.38)

ψj1,J(u1, u2) = ψj1(u1)φJ(u2). (4.39)

This family makes more sense if u1 and u2 are physically different quantities since it does
not assume anything on the joint distribution of scales of both variables. Figure 4.8 shows
the support of both families of wavelets (4.32-4.35) and (4.36-4.39).
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Figure 4.8: Left: the Fourier support of two dimensional separable wavelets with same
scale on both variables defined (4.32-4.35). Right: the Fourier support of wavelets with
independent scales for both variables as defined in (4.36-4.39).
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Similarly, we define a separable wavelet family {φ̃, ψ̃λ}λ on affine subgroups of the form
R
2 ⋊ G where G ⊂ GL(R2) by multiplying a first wavelet family {φJ , ψl,j}0≤l<L, j<J and

a second wavelet family {φ̊, ψ̊k}k<K on G. Since scales on R
2 and on G have a priori no

reason to relate, we chose to define our wavelets with independent scales

φ̃J,K(u,A) = φJ(u1)φ̊K(A) (4.40)

ψ̃l,j,k(u,A) = ψl,j(u)ψ̊k(A) for j < J, k <K (4.41)

ψ̃0,J,k(u,A) = φJ(u)ψ̊k(A) for k <K (4.42)

ψ̃l,j,K(u,A) = ψl,j(u)φ̊K(A) for j < J. (4.43)

In our application we focus on rigid motion group SE(2) = R
2 ⋊ SO(2). For this

group, we can define {φK , ψk}k as any one dimensional periodic wavelet family. Section
3.4.2 builds such a wavelet family and reviews a discrete Fourier transform on SO(2). The
Littlewood Paley function of the wavelet family {φK , ψk}k has been defined as ∣F φ̊K(m)∣2+
∑k<K ∣Fψ̊k(m)∣2. The following theorem shows that if both wavelet families used to build
the separable rigid-motion wavelet family are frame, then the separable family is also a
frame.

Theorem 2. If there exists ǫ and ǫ̊ such that

∀ω ∈ R2, 1 − ǫ ≤ ∣FφJ(ω)∣2 + ∑
0≤l<L, j<J

∣Fψl,j(ω)∣2 ≤ 1 (4.44)

and
∀m ∈ Z, 1 − ǫ̊ ≤ ∣F φ̊K(m)∣2 + ∑

k<K

∣Fψk(m)∣2 ≤ 1 (4.45)

then the wavelet family {φ̃J,K , ψ̃l,j,k}l,j,k defined in (4.40-4.43) is a ǫ̃ frame of SE(2) =
R
2 ⋊ SO(2), i.e. for all x̃ ∈ L2(R2 ⋊G),

(1 − ǫ̃)∥x̃∥2 ≤ ∥x̃⋆̃φ̃J,K∥2 + ∑
l,j,k

∥x̃⋆̃ψ̃l,j,k∥2 ≤ ∥x̃∥2 (4.46)

where
1 − ǫ̃ = (1 − ǫ)(1 − ǫ̊) (4.47)

Proof. The proof factorizes the wavelet operator on SE(2) into a product of operators for
which we have an upper and lower bound. Let us define the set of indices Λ = {J, (l, j)}l, j<J ,
Λ̊ = {K,k}k<K and Λ̃ = {(J,K), (l, j, k)}l,j,k that respectively correspond to the families of

functions {φJ , ψl,j}l,j, {φ̊K , ψ̊k}k and {ψ̃J,K , ψ̃l,j,k}l,j,k. For compactness, we respectively

denote these families {ψλ}λ∈Λ, {ψ̊λ̊}λ̊∈Λ̊ and {ψ̃
λ̃
}
λ̃∈Λ̃

with the abuse of notation ψλ = φJ if
λ = J . By definition of separable wavelets (4.40-4.43) we have

Λ̃ = Λ × Λ̊. (4.48)
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Let use define the following operators:

R1 ∶ L2(SE(2)) → L2(SE(2)) (4.49)

x̃ ↦ ((v, θ)↦ x̃(rθv, θ)) (4.50)

W ∶ L2(SE(2)) → L2(SE(2) ×Λ) (4.51)

x̃ ↦ ((v, θ, λ) ↦ x̃(., θ) ⋆ψλ(v) ) (4.52)

R2 ∶ L2(SE(2) ×Λ) → L2(SE(2) ×Λ) (4.53)

x̃ ↦ ((v, θ, λ) ↦ x̃(rθv, θ, λ)) (4.54)

W̊ ∶ L2(SE(2) ×Λ) → L2(SE(2) ×Λ × Λ̊) (4.55)

x̃ ↦ ((v, θ, λ, λ̊)↦ x̃(v, ., λ) ⍟ψ
λ̊
(θ) ) (4.56)

and

W̃ ∶ L2(SE(2)) → L2(SE(2) ×Λ × Λ̊) (4.57)

x̃ ↦ ((v, θ, λ, λ̊)↦ x̃⋆̃ψ̃
λ,̊λ
(v, θ) ) . (4.58)

We now verify that W̃ = W̊R−12 WR1. (4.59)

Indeed, the separable rigid-motion convolution (4.31) can be rewritten

x̃⋆̃ψ̃
λ,̊λ
(v, θ) = ∫

θ′∈[0,2π)
(∫

v′∈R2
x̃(v′, θ′)ψλ(r−θ′(v − v′))dv′) ψ̊λ̊(θ − θ′)dθ′ (4.60)

= ∫
θ′∈[0,2π)

(∫
w∈R2

x(rθ′w,θ′)ψλ(r−θ′v −w)dw) ψ̊λ̊(θ − θ′)dθ′ (4.61)

= ∫
θ′∈[0,2π)

(∫
w∈R2
(R1x)(w,θ′)ψλ(r−θ′v −w)dw) ψ̊λ̊(θ − θ′)dθ′ (4.62)

= ∫
θ′∈[0,2π)

(WR1x) (r−θ′v, θ′, λ)ψ̊λ̊(θ − θ′)dθ′ (4.63)

= ∫
θ′∈[0,2π)

(R−12 WR1x) (v, θ′, λ)ψ̊λ̊(θ − θ′)dθ′ (4.64)

= W̊R−12 WR1x(v, θ, λ, λ̊). (4.65)

Since rotation preserves the norm,

∀x̃ ∈ L2(SE(2)), ∥R1x̃∥2 = ∥x̃∥2 , (4.66)

∀x̃ ∈ L2(SE(2) ×Λ), ∥R−12 x̃∥2 = ∥x̃∥2. (4.67)
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Figure 4.9: The two dimensional wavelet family {φJ , ψθ,j}θ,j and one dimensional wavelet

family {φ̊K , ψ̊k}k used to build the rigid-motion separable wavelets {φ̃, ψ̃θ,j,k}θ,j,k (4.40-
4.43) in all classification experiments.

and (4.44-4.45) implies that

∀x̃ ∈ L2(SE(2)), (1 − ǫ)∥x̃∥2 ≤ ∥Wx̃∥2 ≤ ∥x̃∥2. (4.68)

∀x̃ ∈ L2(SE(2) ×Λ), (1 − ǫ̊)∥x̃∥2 ≤ ∥W̊ x̃∥2 ≤ ∥x̃∥2, (4.69)

Cascading (4.66-4.69) into (4.59) yields

∀x̃ ∈ L2(SE(2)), (1 − ǫ̃)∥x̃∥2 ≤ ∥W̃x̃∥2 ≤ ∥x̃∥2 (4.70)

which is equivalent to (6.13).

In all classification applications we use two dimensional elongated Morlet wavelets (2.41)
for {φJ , ψl,j}l,j and one dimensional Morlet wavelet for {φ̊K , ψ̊k}k<K . Since two dimensional
Morlet wavelets are oriented, they can be indexed ψθ2,j with their orientation θ2 instead of
the generic index l. The rigid-motion convolutions (4.60) becomes

x̃⋆̃ψ̃θ2,j,l(v, θ) = ∫
θ′∈[0,2π)

(∫
v′∈R2

x̃(v′, θ′)ψθ2+θ′,j(v − v′)dv′) ψ̊λ̊(θ − θ′)dθ′. (4.71)

Thus, there are no additional wavelets to compute, since the warped wavelets v ↦ y(A′−1v)
are actually oriented wavelets ψθ2+θ′,j that already belong to the family {φJ , ψθ,j}θ,j. A
convolution with such a wavelet is illustrated in Figure 4.7. Figure 4.9 illustrates the two
wavelet families used to build the rigid-motion separable Morlet wavelet family.
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4.3.3 Fast Rigid-Motion Wavelet Transform

Section 4.3.1 has introduced rigid-motion convolutions and fast implementations for sep-
arable wavelets. Section 4.3.2 has described the construction of separable rigid-motion
wavelets {φ̃J,K , ψ̃l,j,k}l,j,k and the associated wavelet transform operator W̃. This section
introduces fast algorithms that implement the rigid-motion wavelet transform W̃ lever-
aging the fast implementation of separable rigid-motion convolution and the multi scale
structure of wavelets.

The discrete rigid-motion wavelet transform takes as input a discrete signal x̃(n, θ) for
n ∈ Z2, θ ∈ 2πZ/(2CZ) where C is the number of orientations in [0, π). All the following
definitions and algorithms are also valid for the practical case of finite images where n ∈
Z
2/(N1Z×N2Z) where (N1,N2) are the width and height of the image and N = N1N2 is the

number of pixels of the image. The discrete convolution of x̃ with a separable rigid-motion
wavelet ψ̃l,j,k(n, θ) = ψl,j(n)ψ̊k(θ) is

x̃⋆̃ψ̃l,j,k(n, θ) = ∑
θ∈2πZ/(2CZ)

⎛
⎝ ∑n′∈Z2

x̃(n′, θ′)ψl,j(r−θ′(n − n′))⎞⎠ ψ̊k(θ − θ′). (4.72)

Since ψ̃l,j,k has a scale 2j with respect to n and 2k with respect to θ, we actually want to
compute a downsampled version of the convolutions x̃⋆̃ψ̃l,j,k. More precisely, we want to
compute the following quantities

CJ,K x̃(n, θ) = x̃⋆̃φ̃J,K(2Jn,2Kθ) (4.73)

DJ,kx̃(n, θ) = x̃⋆̃ψ̃0,J,k(2Jn,2kθ) (4.74)

El,j,Kx̃(n, θ) = x̃⋆̃ψ̃l,j,K(2jn,2Kθ) (4.75)

Fl,j,kx̃(n, θ) = x̃⋆̃ψ̃l,j,k(2jn,2kθ). (4.76)

Therefore, to compute the downsampled convolutions of x̃ ∈ L2(SE(2)) with all the func-
tions in the family {φ̃J,K , ψ̃l,j,k}l,j,k, we start be computing all possible downsampled con-
volutions of x̃ with φJ and ψl,j(rθ.) along the variable n.

AJ x̃(n, θ) = x̃(., θ) ⋆ φJ(2Jn) (4.77)

Bl,jx̃(n, θ) = x̃(., θ) ⋆ ψl,j(r−θ.)(2Jn). (4.78)

Then, we compute downsampled convolutions of previous quantities with φ̊K and ψ̊k along
the variable θ.

CJ,K x̃(n, θ) = AJ x̃(n, .)⍟ φ̊K(2Kθ) (4.79)

DJ,kx̃(n, θ) = AJ x̃(n, .)⍟ ψ̊k(2kθ) (4.80)

El,j,Kx̃(n, θ) = Bl,jx̃(n, .)⍟ φ̊K(2Kθ) (4.81)

Fl,j,kx̃(n, θ) = Bl,jx̃(n, .)⍟ ψ̊k(2kθ). (4.82)
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Indeed, from the definition of discrete rigid-motion convolution (4.72), cascading (4.77-
4.78) with (4.79-4.82) is equivalent to definitions (4.73-4.76).

This algorithm cascades two wavelet transforms along two different variables n and θ.
The convolution along θ happens after the downsampling of the variables n has been done,
which dramatically reduces the number of such convolutions. Similarly to the separable
rigid-motion convolution algorithm presented in Section 4.3.1, the two steps (4.77-4.78)
and (4.79-4.82) can be implemented either with naive convolutions, with a Fourier wavelet
transform or with a cascade filter bank wavelet transform. The details of Fourier or filter
bank implementations of the wavelet transform have been presented in Section 2.3.3.

Each choice of implementation for the two steps yields a different implementation of the
rigid-motion wavelet transform. As in 2.3.3, the Fourier implementation is often slower, but
offers the possibility of oversampling the signal for a reasonable extra computational cost,
which can be helpful for debugging or for applications that requires high resolutions. Here,
we describe in details only the fastest implementation, where both wavelet transforms are
implemented with a cascade filter bank algorithm. This cascade filter bank rigid-motion
wavelet transform is illustrated in figure 4.10. To actually compute AJ x̃ and Bl,jx̃ we use a
filter bank similar to the one used in Section 2.3.3. We assume that the Fourier transform
of the window φ and each mother wavelet ψl can be written as a product

Fφ(ω) = ∏
j<0

Fh(2jω) (4.83)

Fψl(ω) = Fgl(ω)Fφ(ω). (4.84)

and that there exists similar filters h̊, g̊ respectively corresponding to φ̊, ψ̊. We define the
rotated filters gl,θ(v) = gl(r−θv). Then, we initialize A0x̃ = x̃ and compute a first cascade
of filtering and downsampling along n

Aj+1x̃(n, θ) = Aj(., θ)x̃ ⋆ h(2n) (4.85)

Bl,jx̃(n, θ) = Aj(., θ)x̃ ⋆ gl,θ(n). (4.86)

From this we initialize CJ,0x̃ = AJ x̃ and El,j,0x̃ = Bl,jx̃ and compute a second cascade of
filtering and downsampling along θ

CJ,k+1x̃(n, θ) = CJ,kx̃(n, .)⍟ h̊(2θ) (4.87)

DJ,kx̃(n, θ) = CJ,kx̃(n, .)⍟ g̊(θ) (4.88)

El,j,k+1x̃(n, θ) = Ej,l,kx̃(n, .)⍟ h̊(2θ) (4.89)

Fl,j,kx̃(n, θ) = Ej,l,kx̃(n, .)⍟ g̊(θ). (4.90)

The first spatial cascade computes CL convolutions at each spatial resolution, which re-
quires O(CLNP ) operations andO(CLN)memory. The first cascade is a tree whose leaves
are CJ,0x̃ and El,j,0x̃. Each leaf is then retransformed by a second cascade where convo-
lutions are applied along the orientation variable θ. Convolutions along the orientations
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Figure 4.10: Filter bank implementation of the rigid-motion wavelet transform W̃ with
J = 2 spatial scales, 2C = 2 orientations, L = 2 spatial wavelets, K = 2 orientation scales . A
first cascade computes spatial downsampling and filtering with h and gl,θ. The first cascade
is a tree whose leaves are AJ x̃ and Bl,jx̃. Each leaf is retransformed with a second cascade

of downsampling and filtering with h̊ and g̊ along the orientation variable. The leaves of
the second cascade are CJ,K x̃, DJ,kx̃ (whose ancestor is AJ x̃) and El,j,Kx̃, Fl,j,kx̃ (whose
ancestors are the Bl,jx̃). These leaves constitute the output of the downsampled rigid-
motion wavelet transform. They correspond to signals x̃⋆̃φ̃J,K x̃, x̃⋆̃ψ̃J,k, x̃⋆̃ψ̃l,j,K, x̃⋆̃ψ̃l,j,k
appropriately downsampled along the spatial and the orientation variable.

are periodic and since the size of the filter h̊, g̊ is of the same order as 2C, we use Fourier
based convolutions. One such convolution requires O(C logC) operations. One cascade
of filtering and downsampling along orientations requires ∑k C2−k log(C2−k) = O(C logC)
time and O(C) memory. There are O(LN) such cascades so that the total cost for pro-
cessing along orientation is O(CLN logC) operations and O(CLN) memory. Thus, the
total cost for the full rigid-motion wavelet transform W̃ is O(CLN(P + logC)) operations
and O(CLN) memory where C is the number of orientations of the input signal, L is the
number of spatial filters {hl}l, N is the size of the input image, P is the size of the spatial
filters.

4.4 Joint Rigid-Motion Scattering

Previous section has defined rigid-motion wavelet transform, which is an operator fromL2(R2 ⋊ SO(2)) → L2(R2 ⋊ SO(2) × Λ̃) which maps a three dimensional signal x̃(u, θ) to{x̃⋆̃φ̃J,L, x̃⋆̃ψ̃l,j,k}l,j,k. Images are not signal from L2(R2⋊SO(2)) but are two dimensional
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functions belonging to L2(R2), thus we cannot apply to them a rigid-motion wavelet trans-
form. This section shows how a first spatial wavelet transform maps an input x to Wx

which is covariant to rigid-motions. The orbits of Wx are functions of L2(R2 ⋊SO(2)), on
which we can apply W̃. Iterating this yields the rigid-motion scattering, a representation
of an image that is invariant to rigid-motions, but preserves joint information along the
rigid-motion group.

4.4.1 Covariance of the Spatial Wavelet Transform

The oriented spatial wavelet transform has been reviewed in Section 2.3. It maps a signal
x to

Wx(u,J) = x ⋆ φJ(u) (4.91)

Wx(u, θ, j) = x ⋆ψθ,j(u). (4.92)

The wavelet transform is covariant to rigid-motion. Let us define the rigid-motion operator
on L2(R2) as

L(v,θ)x(u) = x((v, θ)−1u) (4.93)

= x(r−θ(u − v)) (4.94)

and on L2(R2 ×Λ) as
L(v′,θ′)x(u,J) = x((v′, θ′)−1u,J) (4.95)

L(v′,θ′)x(u, θ, j) = x((v′, θ′)−1(u, θ), j) (4.96)

then the following properties claim that the wavelet transform is covariant with respect to
those actions.

Property 5. The wavelet transform defined with a radial low pass φJ and oriented wavelets
ψθ,j is covariant to the action of the rigid-motion group. For any rigid motion (v, θ) ∈
R
2 ⋊ SO(2) and any image x ∈ L2(R2),

Lv,θWx =WLv,θx (4.97)

where the action Lv,θ on the left and right term of (4.97) are respectively defined as (4.93)
and (4.95-4.96).
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Proof. Indeed, a change of variable w = r−θ′(v − v′) shows that
(WLv′,θ′x)(u, θ, j) = (Lv′,θ′x) ⋆ ψθ,j(u) (4.98)

= ∫
v∈R2
(Lv′,θ′x)(v)ψθ,j(u − v)dv (4.99)

= ∫
v∈R2

x(r−θ′(v − v′))ψθ,j(u − v)dv (4.100)

= ∫
w∈R2

x(w)ψθ,j(u − (rθ′w + v′))dw (4.101)

= ∫
w∈R2

x(w)ψθ,j(rθ′(r−θ′(u − v′) −w))dw (4.102)

= x ⋆ψθ−θ′,j(r−θ′(u − v′)) (4.103)

= (Lv′,θ′Wx)(u, θ, j). (4.104)

Similarly, since the low pass is a radial window,

φJ(rθ′(r−θ′(u − v′) −w)) = φJ(r−θ′(u − v′) −w) (4.105)

and thus (WLv′,θ′)x(u,J) = (Lv′,θ′Wx)(u,J). (4.106)

An immediate corollary is that the complex modulus of wavelet transform is also co-
variant to rigid-motions ∣WLv′,θ′x∣ = Lv′,θ′ ∣Wx∣. (4.107)

The next section iterates over the rigid-motion wavelet modulus operator to define a rigid-
motion scattering operator.

4.4.2 Rigid-Motion Orbit and Rigid-Motion Scattering

Given the covariance property (4.107) of the wavelet modulus transform with respect to
the rigid-motions, we can apply a rigid-motion wavelet transform to their orbits. Section
3.3, factorized the spatial scattering space Pm = {(θ1, j1, . . . , θm, jm)} into rotation orbits

Pm = SO(2) × P̄m (4.108)

and applied one dimensional scattering along SO(2) for each of these orbits. Similarly,
this section factorizes the spatial wavelet space R

2 ×Λ into rigid-motion orbits

R
2 ×Λ = (R2 ⋊ SO(2)) × Λ̄ (4.109)

where Λ̄ = {J, j}j<J . The covariance property states that when x is translated and rotated,
a coefficient ∣x ⋆ ψθ,j ∣(u) that belongs to the orbit j is going the move within this orbit
from point (u, θ) to some other point (rθ′(u − v′), θ − θ′) within the same orbit j.
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x ∣W∣ ∣W̃∣ ∣W̃ ∣ ∣W̃ ∣Ũ1x Ũ2x

S̃0x S̃1x S̃2x

. . .
Ũmx Ũm+1x
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Figure 4.11: Rigid-motion scattering is similar to translation scattering of Figure 2.6,
but deep wavelet modulus operators ∣W∣ are replaced with rigid-motion wavelet modulus
operators ∣W̃∣ where convolutions are applied along the rigid-motion group.

The rigid-motion joint scattering applies a rigid-motion wavelet modulus transform W̃
along R

2 ⋊ SO(2) for each orbit j. The first layer is thus a regular wavelet transform

S̃0x(u,J) = x ⋆ φJ(u) (4.110)

Ũ1x(u, θ, j) = ∣x ⋆ ψθ,j(u)∣. (4.111)

S̃0x is already invariant to rotations and translations up to 2J . Ũ1x is not invariant but
covariant to rigid-motions. It is considered as a set of orbits, an orbit being a function of
the rigid-motion variable g ∈ R2 ⋊ SO(2). The rigid-motion joint scattering iterates over a
rigid-motion wavelet modulus transform along the rigid-motion variable, which decomposes
the previous layer into an invariant and a covariant part,

∣W̃∣Ũmx = (S̃mx, Ũm+1x) (4.112)

with

S̃mx(g, j1, λ̃2, . . . , λ̃m) = Ũmx(., j1, λ̃2, . . . , λ̃m)⋆̃φ̃J,K(g) (4.113)

= ∣ . . . ∣∣x ⋆ ψ.,j1 ∣⋆̃ψ̃λ̃2 ∣ . . . ⋆̃ψ̃λ̃m ∣⋆̃φ̃J,K(g) (4.114)

and

Ũm+1x(g, j1, λ̃2, . . . , λ̃m+1) = ∣Ũmx(., j1, λ̃2, . . . , λ̃m)⋆̃ψ̃λ̃m+1(g)∣ (4.115)

= ∣ . . . ∣∣x ⋆ψ.,j1 ∣⋆̃ψ̃λ̃2 ∣ . . . ⋆̃ψ̃λ̃m ∣⋆̃ψ̃λ̃m+1(g)∣. (4.116)

We more compactly denote

Ũm(g, pm) = Ũmx(g, j1, λ̃2, . . . λ̃m) (4.117)

S̃m(g, pm) = S̃mx(g, j1, λ̃2, . . . λ̃m) (4.118)

and thus interpret joint rigid-motion scattering as a set of functions of L2(R2 ⋊ SO(2))
indexed by the scattering path pm = (j1, λ̃2, . . . , λ̃m).
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This rigid-motion scattering is illustrated in Figure 4.11. The final scattering vector
concatenates all scattering coefficients for all order 0 ≤m ≤M .

S̃x = {S̃mx}0≤m≤M . (4.119)

Figure 4.12 shows a texture image x with its joint rigid-motion scattering coefficients. Com-
pared to the separable scattering of Chapter 3, the joint rigid-motion scattering captures
the joint variability of internal layers along position u and orientation θ, through convolu-
tions with joint wavelet. In particular, joint scattering is able to discriminate both texture
of Figure 4.3. The next section demonstrates the covariance and invariance properties of
rigid-motion scattering.

4.4.3 Covariance and Invariance Properties of Rigid-Motion Scattering

Property 6. The internal and output layers of the rigid-motion scattering are covariant
to any rigid-motion. ∀x ∈ L2(R2), ∀g ∈ R2 ⋊ SO(2),

ŨmLgx = LgŨmx (4.120)

S̃mLgx = LgS̃mx (4.121)

where for the left action Lg on right terms of (4.120-4.121) is defined as ∀y ∈ L2(R2 ⋊
SO(2) × P̄m),∀g, g′ ∈ (R2 ⋊ SO(2)),∀pm ∈ P̄m

Lg′y(g, pm) = y(g′−1g, pm). (4.122)

Proof. Indeed, the rigid-motion scattering iterates over the rigid-motion wavelet modulus
operator ∣W̃ ∣ which is covariant to rigid-motion, and is therefore also covariant to rigid-
motions.

The following theorem quantifies the rigid-motion invariance of the rigid-motion scat-
tering.

Theorem 3. There exists a constant A such that for any J,K, the rigid-motion joint
scattering at spatial scale 2J and at rotational scale 2K verifies

∀x ∈ L2(R2), ∀g = (v, θ) ∈ R2 ⋊ SO(2),∀m ∈ N,
∥S̃mx − S̃mLgx∥ ≤ A⎛⎝2−J sup

u/Ũx(u)≠0

∣(1 − g)u∣ + 2−K ∣θ mod 2π∣⎞⎠ ∥Ũmx∥
(4.123)

The term sup
u/Ũx(u)≠0 ∣(1 − g)u∣ is the largest inverse displacement induced by g on the

spatial support of Ũx. Assuming that all wavelets have a finite support, the spatial support
of Ũx is typically the same as the image x but dilated proportionally to 2J . If the largest
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x

S̃0x = {x ⋆ φ}

S̃1x = {∣x ⋆ ψ.,j ∣⋆̃φ̃J,K}

S̃2x = {∣∣x ⋆ ψ.,j1 ∣⋆̃ψ̃θ2,j2,k2 ∣⋆̃φ̃J,K}

j

j1

j2

θ2
k2

Figure 4.12: An input texture image x and its rigid-motion joint scattering coefficients of
order m = 0,1,2, computed with J = 4 scales, C = 8 orientations and a orientation scale
K = 3. In this setting, 2K = C so that that full rotation invariance is achieved and we
can keep only one sample along the orientation θ. The paths of second order scattering
S2 are laid out with rows corresponding to lexicographic order on (j1, j2) and columns
corresponding to lexicographic order on (θ2, k2). For rows where j2 ≠ J there , there are
8×4 valid columns corresponding to wavelets {ψθ2,j2,k2}θ2,k2 for θ2 ∈ π/8[0,7] and k2 ∈ [0,3].
For rows where j2 = J , there are only 3 valid columns corresponding to wavelets of the
form {ψ0,J,k2}k2 for k2 ∈ {0,1,2}.
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inverse displacement is small compared to 2J , and if the rotation angle θ is small compared
to 2J and 2K , then

S̃mx ≈ S̃mLgx. (4.124)

Proof. The proof is adapted from [Mal12]. One of the claim of Property 6 is that the
internal layers are covariant to rigid-motions

ŨmLgx = LgŨmx. (4.125)

We then prove the following lemma.

Lemma 1. For any function x̃ ∈ L2(R2 ⋊ SO(2)) and any g = (v, θ) ∈ R2 ⋊ SO(2),
∥Lgx̃⋆̃φ̃J,K − x̃⋆̃φ̃J,K∥ ≤ A⎛⎝2−J sup

u/x̃(u,.)≠0

∣(1 − g)u∣ + 2−K ∣θ mod 2π∣⎞⎠ ∥x∥. (4.126)

To prove Lemma 1, let us define g = (v, θ), g′ = (v′, θ′) and decompose

Lg′ x̃(g) − x̃(g) = x̃(r−θ′(v − v′), θ − θ′) − x̃(v, θ) (4.127)

= x̃(r−θ′(v − v′), θ − θ′) − x̃(r−θ′(v − v′), θ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ỹ(g)

(4.128)

+ x̃(r−θ′(v − v′), θ) − x̃(v, θ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=z̃(g)

. (4.129)

Lemma 2.11 of version 3 of [Mal12] claims that there exists A such that for all image
x ∈ L2(R2) and all displacement field τ ∈ C2(R2),

∥Lτx ⋆ φJ − x ⋆ φJ∥ ≤ A2−J∥τ∥∞∥x∥ (4.130)

where Lτx(u) = x(u − τ(u)) (4.131)

and ∥τ∥∞ = sup
u∈R2

∣τ(u)∣ (4.132)

This Lemma can be adapted so that the sup in (4.132) is taken over the support of Lτx
∥Lτx ⋆ φJ − x ⋆ φJ∥ ≤ A2−J sup

u/x(u−τ(u))≠0
∣τ(u)∣∥x∥. (4.133)

Indeed, the value of τ outside the support of Lτx does not affect Lτx. Let us apply (4.133)
to 1 − τ(v) = g−1v so that Lτ = Lg.

∥Lgx ⋆ φJ − x ⋆ φJ∥ ≤ A2−J sup
v/x(g−1v)≠0

∣(1 − g−1)v∣∥x∥. (4.134)
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A change of variable u = g−1v yields (1 − g−1)v = (1 − g−1)gu = (g − 1)u and thus

∥Lgx ⋆ φJ − x ⋆ φJ∥ ≤ A2−J sup
u/x(u)≠0

∣(1 − g)u∣∥x∥. (4.135)

Now we can find upper bound for both ∥ỹ(g)⋆̃φ̃J,K∥ and ∥z̃(g)⋆̃φ̃J,K∥. Indeed since
φJ(r−θv) = φJ(v) we have for any x̃

x̃⋆̃φ̃J,K(g) = ∫
θ′
(∫

v′
x̃(v′, θ′)φJ(v − v′)dv) φ̊K(θ − θ′)dθ′ (4.136)

= (x̃ ⋆ φJ)⍟ φ̊K(g) (4.137)

where the first convolution ⋆ is applied along u and the second convolution ⍟ is applied
along θ. Therefore, since the convolution with φJ is contractive ∥x̃ ⋆ φJ∥ ≤ ∥x̃∥, applying
Lemma 2.11 of [Mal12] along θ yields

∥ỹ ⋆ φ̃J,K∥ ≤ A2−K ∣θ mod 2π∣∥x̃∥. (4.138)

Similarly, since the convolution with φ̊K is contractive, applying (4.135) along u yields

∥z̃ ⋆ φ̃J,K∥ ≤ A2−J sup
u/x̃(u,.)≠0

∣(1 − g)u∣∥x̃∥. (4.139)

which finish to prove Lemma 1. Since S̃mx(g, pm) = Ũmx(., pm)⋆̃φ̃J,K(g), applying Lemma
1 to all scattering path pm proves theorem 3.

When the orientation scale equals the number of orientations 2K = C, then the orienta-
tion window φ̊K becomes constant and S̃mx(u, θ, pm) thus does not depend upon θ. Because
rotation also induces spatial displacement, this does not mean that the rigid-motion scat-
tering of two rotated images will be equal. Indeed, the first term 2−J supu/x̃(u,.)≠0 ∣(1− g)u∣
of theorem 3 does not vanishes when K increases. Nevertheless, the following property
states that the scattering of the original and a rotated and translated image are equal, up
to the global rigid-motion.

Property 7. If 2K = C, then for

S̃mLgx(u, pm) = S̃m(g−1u, pm) (4.140)

This property is not true for the translation scattering Sm, where rotation would induce
an additional displacement along orientations. It is illustrated in figure 4.13. This is
practical in the context of texture analysis where a global averaging will discard the global
rigid-motion.
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x

S̃2x

Lθx
S̃2Lθx

L−θS̃2Lθx
Figure 4.13: A test of rotation invariance of rigid-motion scattering when then orientation
window φ̊K is fully delocalized 2K = C. At the top, a texture image x and its second
order rigid-motion scattering coefficients S̃2x. We also compute the rigid-motion scatter-
ing of a rotated version of the image rθx, and we rotate back the scattering coefficients
into L−θS̃2Lθx. The back rotated coefficients L−θS̃2Lθx are almost equal to the original
coefficients S̃2x.



Chapter 5

Texture Classification

5.1 Introduction

Image texture classification has many applications including satellite, medical and material
imaging. It is also a relatively well-posed problem, compared to other computer vision tasks
such as generic image recognition. A texture image can be modeled as a realization of a
stationary ergodic process X. A texture dataset contains a set of images {Xc,i}c,i, i being
the index of the image within a class c. Ideally, for a given class c, all images in {Xc,i}i
would be independent and identically distributed. The texture classification problem is,
given a training set {Xc,i}, predict the class of all images in a testing set.

The usual way to tackle this problem is to train a classifier ĉ on the training set, and
use this classifier to predict the class of the images in the testing set. Because images
live in a large dimensional space (typically 106), classifiers cannot be used directly on
the raw pixel values. The image dimensionality must be lowered by computing a feature
representation ΦX. The representation should discard enough information so that the
classifier can generalize its training data, but also retain enough discriminative information
to be able to separate different classes.

In the context of texture classification, there are an important part of the content
of the image that is known to be non-discriminative and should therefore be discarded.
Julesz [Jul81] has shown that our ability to distinguish different textures mainly depends
upon the first order statistics of local descriptors that he has called textons, and that we
are not sensitive to higher order statistics of these textons without consciously examining
local differences. Yet, textons themselves depends upon local higher order statistics of
the pixels values, and cannot be limited to local first or second order statistics. The
notion of texton is the foundation of many texture representations including bag-of-words
[LM01, VZ05, LSP05, CG10] that are global average of non-linear local quantity.

The images X are modeled as stationary ergodic process. Therefore, one should focus
on quantities that do not depend on a particular realization but only on the law of the

92
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underlying process. Stationarity means that the law of the process does not depend upon
the position within the image. Ergodicity means that spatial averaging of local quantities
is equivalent to ensemble averaging for sufficiently large images. Therefore, most represen-
tations used in the texture classification litterature discard locality and consist in global
statistics such as histograms or bag of words. Section 5.2.1 reviews the expected scat-
tering, a deterministic quantity that only depends on the law of the underlying process.
Expected scattering cannot be computed given a finite number of finite images, but it can
be estimated from one or a few finite images with a windowed scattering.

Another important source of non-discriminative variability is geometric transforma-
tions. Indeed, due to the nature of the imaging process, texture images may undergo
rotations, scaling, and elastic deformation. Therefore, some texture datasets would be
more adequately described as a set of transformed stationary processes Lc,iXc,i where Lc,i
is unknown transformation. Lc,i induces some additional variance which may not be rel-
evant and should thus be discarded to avoid wasting training examples on learning this
additional source of variability. Chapter 3 and 4 have respectively introduced a separable
and a joint scattering representation, specifically designed to build invariance to translation
and rotations while being stable to dilations, scaling and elastic deformation. Section 5.2.2
and 5.2.3 extend those representations to stationary processes. Section 5.4 shows how a
generative PCA classifier can leverage the stability to deformation of scattering representa-
tions and how to enhance the invariance to dilation of scattering representations with data
augmentation and a logarithmic non-linearity. Finally, section 5.3 and 5.5 will present clas-
sification results where scattering representations are compared with other state-of-the-art
representations.

5.2 Scattering of Stationary Processes

This section briefly reviews the expected and windowed scattering that were initially intro-
duced in [Mal12]. Section 5.2.1 reviews the translation expected scattering S̄X. Expected
scattering S̄X is a deterministic quantity that characterizes the law of the stationary pro-
cess X. Since it involves an expected value, it cannot be computed in practice. Yet, it
can be estimated by a windowed scattering SX computed from a single finite realization.
Expected and windowed scattering are reviewed and generalized to separable and joint
rigid-motion scattering in Sections 5.2.2 and 5.2.3.

5.2.1 Translation Expected and Windowed Scattering

We denote by X(u) a stationary process with finite second-order moments E(∣X(u)∣2). A
multidimensional process Y (u, p) for a spatial variable u ∈ R2 and path variable p ∈ P is
said to be stationary when it is stationary with respect to u. This means that the law
of Y (., .) is the same as the law of the translated process Y (. − v, .) for any v ∈ R2. Of
course, this does not imply that the law of Y is the same as the law of any Y (.,L.) where
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L is a mapping from P to P. Since X is stationary, the moments do not depends upon
the position u and are simply denoted E∣X ∣2. Since X is stationary and since convolutions
and complex modulus preserve stationarity, the multidimensional process UX(u, p) is also
stationary, its law does not depend upon the position u. The expected scattering of X is
defined as, ∀m ∈ N,∀pm = (λ1, . . . , λm) ∈Pm

S̄X(pm) = E(UX(u, pm)) (5.1)

= E (∣∣X ⋆ ψλ1 ∣ . . . ⋆ ψλm ∣) . (5.2)

The expected scattering S̄X(pm) is a deterministic quantity that only depends upon the
law of the random process X, not upon a particular realization nor the spatial position u.
Because it involves an expected value E, it cannot be computed from a finite number of
finite realizations. Yet, it can be approximated by the windowed scattering

SX(u, pm) = UX(., pm) ⋆ φJ(u) (5.3)

= ∣ . . . ∣X ⋆ψλ1 ∣ . . . ⋆ψλm ∣ ⋆ φJ(u) (5.4)

which is exactly the translation scattering described in Chapter 2 but applied to a random
process X. Since X is random, the windowed scattering SX is also a random quantity that
depends upon the particular realization, and upon the position u, but which can be actually
computed from that single, finite realization. Since ∫ φJ = 1, the windowed scattering is
an unbiased estimator of the expected scattering

∀u ∈ R2, ESX(u, pm) = S̄X(pm). (5.5)

The ergodicity of the process means that the averaging on the position converges toward
the expected value. Therefore, Conjecture 4.4 of [Mal12] states that

SX(u, pm)ÐÐÐ→
J→∞

S̄X(pm) (5.6)

in the sense of mean square Xn ÐÐÐ→
n→∞

x ⇔ E∣Xn − x∣2 ÐÐÐ→
n→∞

0. In practice, we can only

compute the windowed scattering SX(u, pm) for a window size 2J up to the size of the
image.

5.2.2 Separable Expected and Windowed Scattering

By definition, the law of a stationary process, and therefore its expected scattering, is
invariant to translations. Yet, the law of a stationary process is a priori not invariant to
other transformations L such as rotations, scaling and shears. Neither is their expected or
windowed translation scattering. Therefore, the scattering of transformed images contain
additional variance which is induced by transformations and does not help to discriminate
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different classes of process. Similarly to Section 5.2.1, this section defines expected sep-
arable scattering which is invariant to rotations, and applies the separable rigid-motion
scattering of Chapters 3 and 4 to estimate theses expected quantities.

For each rotation orbit p̄ defined in (3.68-3.69), the function θ ↦ S̄X(θp̄) is a determin-
istic function on SO(2), of which one can compute a scattering. The expected separable
rigid-motion scattering is built on top of the expected scattering S̄m, with a second periodic
scattering S̊m̊ along the rotation orbit

¯̊
Sm,m̊X(θ1, p̄, p̊) = S̊m̊ (θ ↦ S̄mX(θp̄)) (p̊) (5.7)

= S̊m̊ (θ ↦ EUmX(u, θp̄)) (p̊). (5.8)

As the expected scattering S̄X, the expected separable rigid-motion
¯̊
SX only depends upon

the law of the process X, not on a particular realization. In addition, it is also invariant
to rotation of this law, up to the window width 2K of the second scattering S̊m̊. If 2

K = C
the expected scattering is strictly invariant to any rotation. The expected separable rigid-

motion scattering
¯̊
SX is estimated with the windowed separable rigid-motion scattering,

which is exactly the separable scattering described in chapter 3, but applied to a random
process

S̊m,m̊X(θ1, p̄, p̊) = S̊m̊ (θ ↦ SmX(θp̄)) (p̊). (5.9)

Separable scattering has been introduced in our paper [SM12]. Section 5.3 describes the
texture classification experiments conducted in [SM12] on relatively easy texture datasets
OUTex 10 [OMP+02].

5.2.3 Joint Expected and Windowed Scattering

As explained in Section 4.2, the separable expected scattering considers the different paths
UmX(., p) independently and thus capture quantities that depend only upon their marginal
distributions. It does not capture correlations between different paths of the same order. A
joint rigid-motion expected scattering applies the expected values after group convolutions
and thus has the opportunity to capture quantity that does depend upon the joint law of dif-
ferent paths. It is defined for p̃ = (j1, λ̃2, . . . , λ̃m) as the expected value of the convolution of
the internal layers of joint scattering ŨmX with a separable window δ×φK(g) = δ(v)φK(θ)
where δ is a dirac.

S̃mX(θ, p̃) = E (ŨmX(., p̃)⋆̃(δ × φK)(g)) (5.10)

= E(∫
g′∈R2⋊SO(2)

ŨmX(g′, p̃)δ(r−θ′(v − v′))φK(θ − θ′)dg′) (5.11)

= E(∫
θ′∈SO(2)

ŨmX(v, θ − θ′, p̃)φK(θ − θ′)dθ′) (5.12)

= E (ŨmX(v, ., p̃)⍟ φK(θ)) . (5.13)
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This is a correct definition which does not depend upon the position v but only on θ, p̃.
Indeed, let us suppose that for a fixed m ∈ N, ŨmX(v, θ, p̃) is stationary, then
Ũm+1X(v, θ, p̃, λ̃m+1) = ∣ŨmX(., p̃)⍟ ψ̃λ̃m+1(g)∣

= ∣∫
θ′∈SO(2)

(ŨmX(., θ′, p̃) ⋆ψθm+1+θ′,jm+1(u)) ψ̊k(θ − θ′)dθ∣ (5.14)

which is a complex modulus of a sum of convolutions of stationary processes, and is there-
fore a stationary process. Thus, since Ũ1X is a stationary process, we prove by induction
that ŨmX is a stationary process for every m ∈ N. Therefore, the definition (5.10-5.13)

of the expected joint scattering S̃ is correct and does not depend upon the position v.

Contrary to the expected separable scattering
¯̊
S, the expected joint scattering S̃ does not

process internal layers independently and therefore captures information about the joint
laws of internal processes Ũm(., p̃). As the expected scattering, it is invariant to rotation
of the process X up to rotation angles of the order of the orientation window width 2K .
If 2K = C, the expected scattering is strictly invariant to any rotation. The expected joint
scattering cannot be computed from a single realization but is estimated by a windowed
joint scattering, which is exactly the joint scattering presented in Chapter 4, but applied
to a stationary process X

S̃mX(g, θ, p̃) = ŨmX(., p̃)⋆̃φJ,K(g). (5.15)

The definition of the windowed joint scattering is the same as the expected joint scattering
(5.10-5.13) but the combination of expected value and group convolution with δ × φK
is replaced with a group convolution with φJ,K . Since it is sensitive to the joint law
of internal layers, joint scattering is a tighter invariant and can thus be used on harder
problems than separable scattering. Section 5.5 presents texture classification experiments
with challenging datasets conducted in our papers [SM13, SM14] where joint scattering
obtains comparable or better results than existing state-of-the art methods.

5.3 Classification with Separable Scattering

A first texture classification experiments has been performed with separable scattering in
our paper [SM12] on the OUTex10 database [OMP+02] (rot experiment). The OUTex10
database contains 24 different texture classes. Each class has 20 training samples with a
single orientation which is normalized to 0°. There are 24 × 20 × 8 testing samples corre-
sponding to 20 samples in each class that are rotated by 5°,10°,15°,30°,45°, 60°, 75°, 90°.
Since only one orientation of each texture class is present in the testing sets, the classifier
cannot learn the rotation invariance from the data. The dataset essentially contains the
same images in the training and in the testing sets, but rotated and cropped differently.
Thus, it is a fairly easy dataset, where the class assignment is more a matching task than a
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true classification problem. Simple approaches such as the separable rigid-motion scatter-
ing described in chapter 3 or other separable descriptors based on Locally Binary Pattern
(LBP) [OMP+02] provide very high classification rates. Yet, the latter are not stable to
deformations, and a slight shear can dramatically lower their performances. A separable
rigid-motion scattering is stable to deformation and preserves good results in presence of
such slight deformations.

A second experiment (rot-shear) simulates an horizontal shear. A shear Tt,β corresponds
to a dilation by factor t in the direction β, as defined in 3.9. In experiment (rot-shear),
an horizontal shear T1.3,0 is implemented with a gaussian blur with σ = √1.32 − 1 and a
subsampling at intervals 1.3 in the horizontal direction only, for all images in the testing
set. Images in the training set are cropped to keep the same image size in both sets. This
experiments was designed to compare the robustness to deformations of separable scattering
and other texture descriptors. Figure 5.1 shows some training and testing samples from
both experiments.

Training set Testing for rot Testing for rot-shear

Figure 5.1: A few samples of the databases used for experiments rot and rot-shear. The rot
experiment was conducted with the original OUTex 10 training and testing sets, in which
testing images are rotated but training images are not, and thus the classifier cannot learn
the rotation invariance from the data. In the rot-shear experiments, all the images of
the testing set have undergone an additional horizontal shear of amplitude 1.3 to test the
robustness of descriptors to deformations.

The images of the OUTex texture dataset are 128×128 grey level images. The separable
scattering is computed with a a first spatial scattering SX, with C = 8 orientations and
a maximum scale 2J = 25. This first scattering is then averaged spatially along the whole
image. This would corresponds to a scattering with a scale equal to the image size 2J = 28
where the paths with the largest scale have been discarded. The reason why we discard
paths with large scales is that they contain more variance as an estimator of the expected
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rot rot-shear

LBPriu2/VAR(8,1)+(16,2)+(24,3) (r) 97.7 NC

LBP-HF(8,1)+(16,2)+(24,3) (c ) 96.59 67.50

RI-LPQ (c) 98.26 78.02

{S̊m,m̊X}, m,m̊ ≤ 1,2 96.72 81.61

{S̊m,m̊X}, m,m̊ ≤ 2,0 97.73 89.38

{S̊m,m̊X}, m,m̊ ≤ 2,1 98.62 92.89

{S̊m,m̊X}, m,m̊ ≤ 2,2 98.75 93.07

Table 5.1: Classification results on OUTex 10. (r) is reported from papers, (c) is obtained
with authors’ software [OMP+02]. State-of-the-art approaches are compared with separable
rigid motion scattering. Best results are obtained by concatenating all the paths of order
less than 2,2. As can be seen in the rot-shear experiment, scattering performances degrade
gracefully when images undergo deformations, which is not the case for other methods.

scattering S̄X, since fewer independent samples have contributed to their averaged values.
The spatial scattering contains CJ + C2J(J − 1)/2 = 680 paths of order 1 and 2, which
corresponds to J +CJ(J − 1)/2 = 85 rotational orbits of C = 8 orientations each. A second
scattering operator transforms each orbit into 1+K +K2 = 7 paths corresponding to order
m̊ = 0,1,2, where K = 2 is the maximum scale along the rotation parameter. Unlike the
spatial scattering, the second scattering does not discard non-increasing scales along the
rotation parameters. The reason for that is that the modulus smoothing effect is limited
with so few samples as 8, therefore non-increasing rotational paths are non-negligible. In
those experiments, the second scattering performs a complete averaging along the rotation
parameter, leaving one sample per rotational path. Finally, the largest separable rigid-
motion scattering used in those experiments was a 85 × 7 = 595 dimensional vector for
M,M̊ = 2,2.

A nearest neighbor classifier is applied to the combined scattering {S̊m,m̊X}m,m̊≤M,M̊

representation with several choices of maximum path length M,M̊ ≤ 2, and to other state-
of-the-art descriptors for rotation invariant texture analysis. We have used L2 distance
except for LBP-HF where the authors recommend to use L1[ZAMP12] . Local Binary Pat-
tern (LBP) [OPM02] computes histograms of local binary patterns. Bins that correspond
to rotated versions of the same pattern are merged, which leads to a loss of discriminability.
Local Binary Pattern Histogram Fourier (LBP-HF)[ZAMP12] computes a Fourier trans-
form modulus on the rotation parameter of LBP[OPM02]. It thus maintains variability
information along angles while achieving rotation invariance. Rotation Invariant Local
Phase Quantization (RI-LPQ) [ORH08] computes windowed Fourier coefficients over a
discrete set of frequencies distributed along circles. The phase is quantized to obtain a bi-
nary word on which a histogram is computed. As opposed to LBP and LBP-HF, RI-LPQ
is robust to image blurring [ORH08].
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Classification results obtained with LBP [OMP+02], LBP-HF [ZAMP12], RI-LPQ
[ORH08] and separable rigid-motion scattering S̊X are presented in Table 5.1. The com-
bined scattering achieves the best results with or without shear distortions. The classifica-
tion accuracy is improved when adding second order paths both in space and in rotation,
with M = M̊ = 2. Increasing further the path length has a marginal impact because the
remaining scattering energy is negligible. For the rot-shear experiment which includes tilt
deformations, the scattering brings an important improvement because it is stable to defor-
mation, which is not the case for other state-of-the-art rotation invariant representations
[ORH08, ZAMP12].

5.4 Scale and Deformation Invariance with Augmented log-

PCA Classifier

Rigid-motion scattering performs reasonably well with a nearest-neighbor classifier on rel-
atively easy datasets such as OUTex 10 [OMP+02], where only pure rotations occur in
images, or small shears. Yet, texture images can also undergo other geometric transfor-
mations such as dilations, shears or elastic deformations. Texture datasets KTH-TIPS
[HCFE04], UIUCTex [LSP05] and UMDTex [XJF09] contain instances of such transfor-
mations as can be seen on Figures 5.4, 5.5 and 5.6. Explicitly building invariant to those
transformations can lower the number of training examples that is required to build an
accurate model, thus dramatically improving classification results on small training set.
This section describes an ad hoc classifying scheme for enforcing invariance to scaling and
deformations. The experiments described in Section 5.5 achieve state-of-the-art results on
most texture datasets by applying this scheme to joint rigid-motion scattering.

One can define wavelets [DKSZ11] and a scattering transform on the affine group to
build affine invariance. However the full affine group is much larger than the rigid-motion
group and a scattering on the affine group would involve heavy and unnecessary computa-
tions. A limited range of dilations and shears is available for finite resolution images, which
allows one to linearize these variations. Invariance to dilations, shears and deformations is
obtained with linear projectors implemented at the classifier level, by taking advantage of
the scattering’s stability to small deformations. In texture classification, there is typically
a small number of training examples per class, in which case PCA generative classifiers can
perform better than linear SVM discriminative classifiers [BM13].

Let Xc be a stationary process representing a texture class c. Its rigid-motion scattering
transform S̃Xc typically has a power law behavior as a function of its scale parameters. It
is partially linearized by a logarithm which thus improves linear classifiers. The random
process log S̃Xc has an energy which is essentially concentrated in a low-dimensional affine
space

Ac = E(log S̃Xc) +Vc

where Vc is the principal component linear space, generated by the eigenvalues of the
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covariance of log S̃Xc having non-negligible eigenvalues.
The expected value E(log S̃Xc) is estimated by the empirical average µc of the log S̃Xc,i

for all training examples Xc,i of the class c. To guarantee that the scattering is partially
invariant to scaling, we augment the training set with dilated versions of each Xc,i by
different scaling factors 2j for 0 ≤ j < H. The value H quantifies the range of scale
invariance. It is limited by the size of the image. Increasing H theoretically increases
invariance to scaling, but also lowers the number of independent samples when computing
spatial averaging which increases the variance, thus adversely affecting classification results.
We typically chose H = 2 and sample j at half integer which results in 4 scaling factors{1, √2, 2, 2

√
2}. We compute the log scattering of the dilated examples LjXc,i(u) =

Xc,i(2ju) and their averaged values

µc =
⎛⎜⎝ ∑0≤j<H

i

1
⎞⎟⎠
−1

∑
0≤j<H
i

log S̃LjXc,i. (5.16)

Internal layers of scattering have covariance properties with respect to scale which makes
it possible to accelerate the computation of S̃LjX by reusing some paths of internal layers
ŨX.

The principal components space Vc is estimated from the singular value decomposition
(SVD) of the matrix of centered training example log S̃LjXi,c − µc with all possible
examples i and dilation 2j for a given class c. The number of non-zero eigenvectors which
can be computed is equal to the number of training examples per class, typically 20, times
the number of dilations per examples, typically 4, minus one, that is consumed by the
estimation of the mean µc. The space generated by all eigenvectors is denoted Vc, is
thus typically of dimension 79. Therefore, it is not necessary to regularize it, since this
dimension is relatively small compared to the dimensionality of scattering, which is of the
order of 1000.

Given a test image X, we denote by A log S̃X the average of the log scattering transform
of X and its dilated versions LjX

A log S̃X = ⎛⎝ ∑0≤j<H 1
⎞
⎠
−1

∑
0≤j<H

log S̃LjX. (5.17)

The representation A log S̃X used at test time is therefore a scale-averaged log scatter-
ing transform, which provides an additional partial scaling invariance. We denote by
PVcA log S̃X the orthogonal projection of A log S̃X in the scattering space Vc of a given
class c. The PCA classification computes the class ĉ(X) which minimizes the distance∥(Id − PVc)(A log S̃X − µc)∥ between A log S̃X and the affine space µc +Vc

ĉ(X) = argmin
c
∥(Id −PVc)(A log S̃X − µc)∥2. (5.18)
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This minimum projection error classifier is illustrated in Figure 5.2. The complete classi-
fication algorithm is illustrated in Figure 5.3.

V1

V2

V3

A log S̃X

∥(Id − PVc)(A log S̃X − µc)∥

µ2

µ1
µ3

Figure 5.2: A PCA-classifier which classifies a test image X according to the minimum
distance of the log scattering A log S̃X to the class affine subspace µc +Vc. The affine
subspaces are obtained with the log scattering of training examples of a class, at all scale{1,√2,2,2

√
2}. For 20 training examples per class, each space Vc is thus of dimension

4 × 20 − 1 = 79.

5.5 Classification with Joint Scattering and PCA

This section details classification results on image texture datasets KTH-TIPS [HCFE04],
UIUCTex [LSP05], UMDTex [XJF09] and FMD [SRA09]. Those datasets contain images
with different range of variability for each different geometric transformation type. We give
results for progressively more invariant versions of the scattering and compare with state-of-
the-art approaches for all datasets. Since these datasets are much more challenging than the
OUTex 10 [OMP+02] , we use the joint rigid-motion scattering S̃X described in Chapter
4 instead of the separable rigid-motion scattering S̊X of Chapter 3. The invariance to
scaling, shears and deformations is enforced by the augmented log PCA classifier described
in Section 5.4.

Most state of the art algorithms use separable invariants to define a translation and
rotation invariant algorithms, and thus lose joint information on positions and orientations.
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Train size 5 20 40

COX [HGFB11] 80.2 ± 2.2 92.4 ± 1.1 95.7 ± 0.5
BIF [CG10] - - 98.5
SRP [LFKZ11] - - 99.3

Translation scattering 69.1 ± 3.5 94.8 ± 1.3 98.0 ± 0.8
Rigid-motion scattering 69.5 ± 3.6 94.9 ± 1.4 98.3 ± 0.9
+ log 76.2 ± 3.3 96.0 ± 1.1 98.8 ± 0.7
+ multiscale avg test 77.8 ± 3.6 97.4 ± 1.0 99.2 ± 0.6
+ multiscale svd train 84.3 ± 3.1 98.3 ± 0.9 99.4 ± 0.4

Table 5.2: Classification accuracy with standard deviation on KTH-TIPS [HCFE04]
database. Columns correspond to different numbers of training examples per class. The
first few rows give the best published results. The last rows give results obtained with
progressively refined scattering invariants. Best results are bolded.

Training size 5 10 20

Lazebnik [LSP05] - 92.6 96.0
WMFS [XYLJ10] 93.4 97.0 98.6
BIF [CG10] - - 98.8 ± 0.5
Translation scattering 50.0 ± 2.1 65.2 ± 1.9 79.8 ± 1.8
Rigid-motion scattering 77.1 ± 2.7 90.2 ± 1.4 96.7 ± 0.8
+ log 84.3 ± 2.1 94.5 ± 1.1 98.2 ± 0.6
+ multiscale avg test 86.6 ± 2.0 95.4 ± 1.0 98.6 ± 0.6
+ multiscale svd train 93.3 ± 1.4 97.8± 0.6 99.4± 0.4

Table 5.3: Classification accuracy on UIUCTex [LSP05] database.

Training size 5 10 20

WMFS [XYLJ10] 93.4 97.0 98.7
SRP [LFKZ11] - - 99.3

Translation scattering 80.2 ± 1.9 91.8 ± 1.4 97.4 ± 0.9
Rigid-motion scattering 87.5 ± 2.2 96.5 ± 1.1 99.2 ± 0.5
+ log 91.9 ± 1.7 97.6 ± 0.8 99.3 ± 0.4
+ multiscale avg test 91.6 ± 1.6 97.7 ± 0.9 99.6 ± 0.4
+ multiscale svd train 96.6± 1.0 98.9± 0.6 99.7± 0.3

Table 5.4: Classification accuracy on UMDTex [XJF09] database.
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Figure 5.3: The complete diagram of the classification experiments conducted with KTH-
TIPS, UIUCTex and UMDTex datasets. Training images Xc,i where c is the class and i

is the index within the class are dilated by Lj. The figure only displays two dilations per
image but we have used four dilations {1,√2,2,2

√
2} in the experiments. We compute the

log of the joint rigid motion scattering S̃ of the dilated images. All the vector of a class c
are aggregated into an affine space µc +Vc computed with a singular value decomposition
(SVD). The dimension the space is the total number of dilated training images minus
one. Given a test image, we compute the log joint scattering of its dilated versions, and
we average them which provides an additional invariance to scaling. The testing image
is classified according to the minimum distance of its scale-averaged log scattering to the
affine space µc +Vc.

This is the case of [LSP05] where rotation invariance is obtained through histograms along
concentric circles, as well as Log Gaussian Cox processes (COX) [HGFB11] and Basic Im-
age Features (BIF) [CG10] which use rotation invariant patch descriptors calculated from
small filter responses. Sorted Random Projection (SRP) [LFKZ11] replaces histogram with
a similar sorting algorithm and adds fine scale joint information between orientations and
spatial positions by calculating radial and angular differences before sorting. Wavelet Mul-
tifractal Spectrum (WMFS) [XYLJ10] computes wavelet descriptors which are averaged in
space and rotations, and are similar to first order scattering coefficients S1x.

We compare the best published results [LSP05, HGFB11, CG10, XYLJ10, LFKZ11] and
scattering invariants on KTH-TIPS (table 5.2), UIUCTex (table 5.3) and UMDTex (table
5.4) texture databases. For the KTH-TIPS, UIUCTex and UMDTex database, Tables 1,
2 and 3 give the mean classification accuracy and standard deviation over 200 random
splits between training and testing for different training sizes. Classification accuracy is
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Figure 5.4: Each row shows images from the same texture class in the KTH-TIPS database
[HCFE04]. In this database, each class contains 9 different scales, 3 different view points,
3 different illumination for a total of 81 images per class.

computed with scattering representations implemented with progressively more invariants,
and with the PCA classifier of Section 5.4. As the training sets are small for each class c,
the dimension D of the high variability space Vc is set to the number of dilated training
images. The space Vc is thus generated by the D scattering vectors of the dilated training
set. For larger training databases, it should be adjusted with a cross validation as in
[BM13].

Classification accuracy in Tables 5.2, 5.3 and 5.4 are given for progressively more in-
variant scattering representations and classification scheme. The rows “Translation scat-
tering” correspond to the scattering described in Chapter 2 and initially introduced in
[BM13]. The rows “Rigid-motion scattering” replace the translation invariant scattering
by the joint rigid-motion scattering of Chapter 4, with no dilation of the training or the
testing set. The rows “+ log ” corresponds to the joint rigid-motion scattering, with a log-
arithm non-linearity to linearize scaling. The rows “+ multiscale avg test ” is obtained by
averaging the scattering of dilated versions of a test image. Finally, the rows “+ multiscale
svd train ” is obtained by augmenting the training space µc +Vc with the joint scattering
of all the dilated versions of images in the training set of a class c, as described in Section
5.4, and illustrated in figure 5.3.

KTH-TIPS [HCFE04] dataset contains 10 classes of 81 samples per texture class with
9 different dilations, 3 different shears and 3 different illuminations but no rotation. Figure
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Figure 5.5: Each row shows images from the same texture class in the UIUCTex database
[LSP05] which contains 25 classes of 40 images at resolution 640 × 480 with important
rotation, scaling and deformation variability.

Training size 50

SRP [LFKZ11] 48.2
Best single feature (SIFT) in [SLRA13] 41.2
Feature selection framework [SLRA13] 60.6

Rigid-motion scattering + log on grey images 51.22
Rigid-motion scattering + log on YUV images 53.28

Table 5.5: Classification accuracy on FMD [SRA09] database.
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Figure 5.6: Each row shows images from the same texture class in the UMDTex database
[XJF09]. UMDTex is similar to UIUCTex but has higher resolution 1280 × 960 images
which allows to compute more scattering scale.

Figure 5.7: Each row shows images from the same texture class in the FMD database
[SLRA13]. In addition to objects with non-frontal non-flat surfaces, this dataset contains
much more diverse classes of texture.
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5.4 shows a few sample images of this dataset. Table 5.2 shows that the rigid-motion scat-
tering does not degrade results but the logarithm, the training and testing scale invariants
all provide significant improvements.

UIUCTex [LSP05] and UMDTex [XJF09] datasets both contain 25 classes of 40 samples
with uncontrolled deformations including shears, perspectivity effects and non-rigid defor-
mations. These datasets are illustrated in Figures 5.5 and 5.6. For both these databases,
rigid-motion scattering and the scale invariance provide considerable improvements over
translation scattering. As demonstrated in Tables 5.3 and 5.4, the overall approach achieves
and often exceeds state-of-the-art results on these two databases.

FMD [SRA09] dataset contains 10 classes of 100 samples, some of which are shown
in Figure 5.7. Each class contains images of the same material manually extracted from
Flickr. Unlike the three previous databases, images within a class are not taken from a
single physical sample object but comes with variety of material sub-types which can be
very different. Therefore, the PCA classifier of Section 5.4 can not linearize deformations
and discriminative classifiers tend to give better results. The scattering results reported
in Table 5.5 are obtained with a one versus all linear SVM. Rigid-motion log scattering
applied to each channel of YUV image and concatenated achieves 52.2 % accuracy. To our
knowledge, this is the best result for a single feature. Better results can be obtained using
multiple features and a feature selection framework [SLRA13].



Chapter 6

Generic Object Classification

6.1 Introduction

Chapters 3 and 4 have introduced two representations that have the same invariance to
rigid-motion but with very different discriminative power. As argued in Section 4.2, separa-
ble representations process the different paths of internal layers completely independently,
and by doing so, they lose all the information contained in the local correlation of the
different paths of these layers. On the contrary, joint representations consider an internal
layer as a multidimensional function. In the proposed joint rigid-motion scattering, an
internal layer was described as a set of functions, or orbits, of the rigid-motion group, but
internal layers can also be interpreted as a function of some much larger group, which
eventually is not hardcoded but learned.

Deep networks [HS06, LLB+98] are representation with little a priori information on the
data. They can be trained to discriminate different classes of signal, and by doing so, they
possibly learn some class invariant. Deep networks consist in a cascade of linear operators,
whose weights are learned, and non-linear operators. For large images, deep networks, as is,
would involve too many weights to be learned. Convolutional neural networks (ConvNets)
[LBD+89, LKF10, KSH12, DCM+12, ZF13] take advantage of the image structure to limit
the number of weights while maintaining the ability to learn generic invariance.

During an internship at Google, I have had the opportunity to experiment large scale
generic object recognition with distbelief, Google’s distributed implementation of deep net-
works [DCM+12]. Those networks involve relatively expensive convolutions, some of which
whose trained weights have appeared to be highly redondant. From this finding, we have
adapted the efficient rigid-motion convolution introduced in section 4.3.1 into a generic sep-
arable convolutional layer. This separable convolutional layer factorizes multidimensional
convolutions into purely spatial convolutions followed by pointwise matrix multiplications
along the path variable. Early experiments have shown that such separable convolutional
layers require less data to train, less resources per data and result in identical to slightly

108
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better final accuracy on ImageNet ILSVRC2012 classification dataset. Section 6.2 details
these separable convolutions and briefly describes the classification experiments.

In collaboration with Edouard Oyallon, we have also experimented with pure scattering,
that is without any learning of the weights of internal layers, on generic object classification
datasets such as Caltech 101 and 256. Oyallon [OMS14] has shown that a slightly modified
version of the joint rigid-motion scattering introduced in chapter 4 can achieve similar
performances as the first layers of fully trained deep networks. These experiments are
described in section 6.3. If the performances of scattering are still behind a fully trained
deep network with 7 layers, these experiments open the possibility to simplify deep neural
network learning by initializing the first few layers with wavelets.

6.2 Separable Convolutions for Generic Deep Networks

This sections briefly reviews the convolutional deep network for generic image classification
[KSH12, DCM+12, ZF13]. These networks have obtained state-of-the-art results on most
large scale generic image classification datasets, such as ImageNet ILSVRC2012. Section
6.2.1 reviews the dense convolutions that implement the linear operators of the first layers
of [KSH12, DCM+12, ZF13]. Section 6.2.2 observes that some of the weights in dense
convolutional layers are highly redundant and proposes a separable convolutional layer
inspired by the rigid-motion convolution of Chapter 4. Some preliminary experiments on
ImageNet have shown that such separable convolutions can achieve similar or slightly better
accuracy at a lower computational cost. This is related to recents works [DSD+13, LCY13]
where other forms of factorizations of the first convolutional layers are proposed.

6.2.1 Dense Multidimensional Convolutions

ConvNets, as described in [KSH12, DCM+12, ZF13] consist in a cascade of linear operatorsW1, . . . ,Wm intertwined with non-linearties f . Given an input image x, they compute
successive layers Φmx defined as

Φmx = f(Wmf(Wm−1 . . . f(W1x))) (6.1)

= f(WmΦm−1x). (6.2)

A Layer Φmx is indexed by a spatial position u and a depth d that plays a role similar
to scattering paths pm. Let us call Nm,Dm the size and the depth of a layer Φmx, which are
respectively the number of samples for u,d in this layer . A fully connected linear operator,
that is without any convolutional structure, that connect Φmx to Φm+1x would require
NmDmNm+1Dm weights which is impractical for first layers where both Nm and Dm are
large. Convolutional networks reduce the number of weights by leveraging the structure of
images. They enforce locality by connecting an output position only to the input position
which lies within a window of size Qm centered around the output position. Locality
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Figure 6.1: Dense multidimensional convolutions in deep networks for image classification
[KSH12, DCM+12, ZF13]. A block of Qm ×Dm values in the input layer is considered as
a vector, which is multiplied by a a matrix with Qm ×Dm ×Dm+1 weights to generate a
vector of dimension Dm+1 in the output layer. This linear operator is local in the sense
that the input block is much smaller than the input image, and convolutional in the sense
that the same matrix is applied to every block, independently of their location.
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reduces the number of weights to QmDmNm+1Dm+1, that is by a factor of Nm/Qm. Qm is
typically equal to 11×11 for the first convolutional layers and 3×3 for the last convolutional
layers, whereas Dm typically increases from 3 to 2048. The number of weights is further
reduced by convolution, that is by forcing the weights corresponding to windows centered
around different output position to be equal. Convolution further lowers the number of
weights to QmDmDm+1 which then does not depend upon the size of the image. Locality
and convolutions are essential to the practicability of back-propagation algorithm, which
would otherwise require an enormous amount of processing time and memory to learn the
weights. The dense convolution is computed as

WmΦmx(u,dm+1) = ∑
0≤dm<Dm
v∈Qm

wv,dm,dm+1Φmx(u + v, dm). (6.3)

This dense convolution is illustrated in figure 6.1.

6.2.2 Separable Convolutions

The dense convolutions (6.3) can be interpreted as a sum of two dimensional convolutions
with filters w., dm, dm+1

WmΦmx(u,dm+1) = ∑
0≤dm<Dm

Φmx(., dm) ⋆w.,dm,dm+1(u). (6.4)

Figure 6.2 shows the filters that are learned in the first two layers of a network similar to
[KSH12]. One can denote that for a given output depth, these filters are highly redundant
along the input depth. This suggest to factorize the matrix of weights wv,dm,dm+1 into
purely spatial convolutions with weights w followed by a pointwise matrix multiplication
with weights ẘ along the depth variable. A separable multidimensional convolution, as
opposed to the dense multidimensional convolution (6.3), is defined as

W̃mΦmx(u,dm+1) = ∑
0≤km≤Km

0≤dm

ẘkm,dm,dm+1 (w.,km,dm ⋆Φmx(., dm)(u)) (6.5)

The separable multidimensional convolution (6.5) is very similar to the separable group
convolution (4.30) introduced in Chapter 4. Each two dimensional signal of Φmx(., dm)
is filtered with KM two dimensional filters w.,km,dm which play the role of warped filters
y(A′−1.) in the separable group convolution (4.30). The output of those first convolutions is
an intermediate layer of depth Dm×Km, therefore we call Km the depth-multiplier. In the
affine wavelet transform (4.40-4.43) of Chapter 4, the depth-multiplier was typically LJ ,
which was the cardinality of the first wavelet family {φJ , ψl,j}0≤l<L, j<J . The intermediate
layer is then retransformed by multiplying its pointwise vector of dimension 1 ×Km ×Dm

with a matrix ẘ of size Dm+1 × (Km × Dm), which results in a output layer of depth
Dm+1. This matrix multiplication with ẘ is similar to the filtering with ẙ along A in the
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Figure 6.2: A visualization of the learned weights of the first two layers of deep networks
similar to [KSH12, DCM+12, ZF13]. Rows corresponds to input depth and columns cor-
responds to output depth. Computing one output depth of a dense convolution, 6.3 is
equivalent to compute a two dimensional convolution of each input depth Φm(., dm) with
the two dimensional filter w.,dm,dm+1 located at rows dm and column dm+1 in these arrays
of filters.
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Figure 6.3: The proposed separable multidimensional convolution. First, each input
depth is independantly filtered with Km filters of compact support Qm, which results
in QmDmKm weights. The result is an intermediate layer of depth DmKm. At each po-
sition u, the vector consisting of all the depths of the intermediate layer is retransformed
with a matrix multiplication, which results in DmKmDm+1 weights and an output layer of
depth Dm+1.

separable affine convolution (4.30), except that in the separable convolutional layer, the
underlying group is unknown and therefore may not have a convolutional structure. Figure
6.3 illustrates the architecture of a separable convolutional layer.

A separable convolutional layer can have the same input and output depth and can
therefore act as a replacement of a dense convolutional layer, with less redundancy. The
number of free parameters can be adjusted by the depth multiplierKm, which can be chosen
arbitrarily without changing the input and output depth. A separable convolutional layer
has QmDmKmweights in its first spatial component and KmDmDm+1 weights in its second
depth component and has therefore a total of KmDm(Qm +Dm+1) weights. This has to be
compared to a dense convolutional layer with QmDmDm+1 free parameters. In particular,
one can note that the dependency in Qm,Dm+1 goes from QmDm+1 for a dense layer to
Qm +Dm+1 for a separable layer.
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m Dm Dm+1 Qm Km #dense param #separable param ratio

1 3 96 7 × 7 4 14112 1740 87%
8 3480 75%

2 96 256 5 × 5 4 614k 107k 82%
8 215k 64%

Table 6.1: Comparison of the number of parameters for the first layers in the network of
[ZF13] with dense versus separable convolutions. m is the index of the layer, Dm is the
input depth, Dm+1 is the output depth, Qm is the spatial window sizes, Km is the depth
multiplier for separable layers. A separable architecture has fewer parameters and therefore
requires less computational resources per data. Experiments on ImageNet have shown that
a network with separable layers also requires less data to achieve similar or slightly better
performance than a network with dense layers with the exact same architecture.

6.2.3 ImageNet Classification with Separable Convolutional Layers

Table 6.1 gives the number of parameters for the network used in [ZF13] which has ob-
tained state-of-the-art results on Imagenet, where the first two layers are implemented
with dense or separable convolutional layers. During the second part of my internship at
Google, I have replaced convolutional dense layers with separable layers in the distbelief
[DCM+12] implementation of the deep network described in [ZF13]. We have trained it
on ImageNet ILSVRC2012, which contains 1000 classes, 1.2M training images and 150k
testing images of generic objects with clutter. On this dataset, we have recorded that the
separable versions required 20% fewer steps to converge to an identical or slightly better
final accuracy, compared to the dense version. This suggests that separable convolutions
are an appropriate way to factorize dense convolutions without losing expressive power,
and that the architecture benefits from this factorization since it then needs less data to
achieve the same accuracy. The training and inference time per step was also smaller.

6.3 Object Classification with Joint Scattering

Convolutional networks (ConvNets) such as the one described in [KSH12, DCM+12, ZF13]
have obtained state-of-the-art results on all large scale image classification datasets such
as ImageNet. It appears that the first layers of a deep network trained on ImageNet also
perform very well on smaller datasets such as CalTech101 or CalTech256 [GDDM13, ZF13,
DJV+13]. This suggests that these first layers capture some intrinsic properties of real
world images.

Other experiments, mainly conducted by Oyallon [OMS14], have shown that a slightly
modified version of the joint rigid-motion scattering introduced in Chapter 4 can also obtain
results that are competitive with the first layers of a ConvNet trained on ImageNet. This
suggest that the first layers of ConvNets capture some basic geometric properties of the
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image, and do not necessarily have to be trained. Section 6.3.1 introduces a modified,
non-invariant joint scattering and Section 6.3.2 describes the numerical results obtained in
[OMS14].

6.3.1 Non-Invariant Joint Scattering

This section describes the unaveraged joint scattering representations that will be applied
in Section 6.3.2 to CalTech101 and 256 classification, with comparison with ConvNets.

For a generic object recognition task such as CalTech101 or CalTech256, global rotation
or scale invariance are not necessarily desired properties of an image representation. Indeed,
these datasets contain objects in a human environment context, in which some objects
tend to appear in specific orientations. Discarding those hints by building a rotation
invariant is likely to have an adversary effect on performances. Therefore, the joint rigid-
motion scattering, as described in chapter 4 may not be a good representation for object
recognition because it builds invariance to global rotation. Translation scattering do not
build rotational invariance and thus may be a better candidate. Yet, as argued in Section
4.2, translation scattering does not connect the different paths of a layer and therefore
fails to capture the joint variability of different paths within a layer. Thus translation
scattering may not be discriminant enough. This is corroborated by the fact that most
state-of-the-art ConvNets [KSH12, DCM+12, ZF13] contain dense convolutional layers such
as described in Section 6.2.1, that do connect the different paths within a layer.

Similarly, the rigid-motion wavelet transform of Section 4.3.2 also connects different
orientations within the orbit of a layer through convolutions with rigid-motion wavelets
ψ̃θ2,j2,k2(u, θ) = ψθ2,j2(u)ψ̊k2(θ). The implementation of rigid-convolutions with separable
wavelets (4.71) is subtle and necessitates to rotate the spatial part ψθ2+θ,j2 of the wavelet
along the orbit. This was designed to maintain covariance with rigid-motion within an orbit,
a property which is no longer needed when we do not seek to build a rotational invariant.
Therefore, we propose a simplified version of the joint scattering where we replace the group
convolution ⍟ (4.27) on an affine subgroup R

2⋊G with a simple, separable convolution ⋆ on
the product space R

2 ×G. For two functions
×
x,
×
y ∈ L2(R2 ×G), their separable convolution

×⋆ is defined as

×
y
×⋆ ×x(v,A) = ∫ v′∈R2

A′∈G

×
x(v′,A′)×y(v − v′,A′−1A)d×µ(v′,A′). (6.6)

as opposed to (4.27) where the linear group variable A′ also acts on the spatial variable,

i.e. where
×
y(v − v′,A′−1A) is replaced with

×
y(A′−1(v − v′),A′−1A). Assuming the mea-

sure is separable d
×
µ(v,A) = dµ(v)dµ̊(A), the separable convolution with a separable filter

×
y(v,A) = y(v)ẙ(A) can be implemented by either a convolution in G followed by a convo-
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lution in R
2 or the other way around

×
y
×⋆ ×x(v,A) = ∫

v′∈R2
(∫

A′∈G

×
x(v′,A′)ẙ(A′−1A)dµ̊(A′))y(v − v′)dµ(v′) (6.7)

= ∫
A′∈G
(∫

v′∈R2

×
x(v′,A′)y(v − v′)dµ(v′)) ẙ(A′−1A)dµ̊(A′). (6.8)

A non-group invariant joint wavelet family {×φJ , ×ψθ,j,k}θ,j,k is defined as

×
φJ(v,A) = φJ(v)δ(A) (6.9)

×
ψl,j,k(v,A) = ψθ,j(v)ψ̊k(A) (6.10)
×
ψl,j,K(v,A) = ψθ,j(v)φ̊K(A). (6.11)

Since a convolution with a dirac δ does not modify a signal, the convolution with the

window
×
φJ is equivalent to a simple spatial convolution of each component of

×
x with φJ ,

without any smoothing occurring along the linear group variable A

×
x
×⋆ ×φJ(v,A) = (×x(.,A) ⋆ φJ) (v). (6.12)

As it is the case for the joint wavelet family with Theorem 2, if the two wavelet families,
of which the non-invariant separable family is the product, are frame, then the following
theorem states that the non-invariant separable family is also a frame.

Theorem 4. If {φJ , ψθ,j}θ,j and {φ̊K , ψ̊k}k are respectively ǫ and ǫ̊ frame as defined in

(4.44-4.45) then the wavelet family {×φJ , ×ψl,j,k}l,j,k defined in (6.9-6.11) is a
×
ǫ frame of

SE(2) = R2 ⋊ SO(2), i.e. for all
×
x ∈ L2(R2 ⋊G),

(1 − ×ǫ)∥×x∥2 ≤ ∥×x ×⋆ ×φJ,K∥2 + ∑
l,j,k

∥×x ×⋆ ×ψl,j,k∥2 ≤ ∥×x∥2 (6.13)

where
1 − ×ǫ = (1 − ǫ)(1 − ǫ̊) (6.14)

Proof. As opposed to the separable joint wavelet family (4.40-4.43), the non-invariant joint
wavelet family contains only 3 different types of wavelets. The wavelet φJ(u)ψ̊k(A) is not
present because it would be redundant with

×
φJ(u,A) = φJ(u)δ(A) which does not smooth

along A and therefore captures all frequencies along A. Similarly to the proof of Theorem

2, we factorize
×W in

×W = W̊W (6.15)
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where

W ∶ L2(R2 ×G) → L2(R2 ×G ×Λ) (6.16)
×
x ↦ ((v,A,λ) ↦ ×x(.,A) ⋆ψλ(v) ) (6.17)

and

W̊ ∶ L2(R2 ×G ×Λ) → L2(R2 ×G +R2 ×G × {Λ − J} × Λ̊) (6.18)
×
y ↦ {×y(., ., J), (6.19)

(v,A,λ, λ̊)↦ ×y(v, ., λ) ⍟ ψ
λ̊
(A)}. (6.20)

The second operator applies the identity to the slice λ = J and a wavelet transform along

A to all other slices λ ≠ J of
×
y ∈ L2(R2 ×G × Λ). Since the identity is a 0 frame operator

and the wavelet transform along A is a ǫ̊ operator, one can verify that W̊ is also an ǫ̊ frame
operator. Since W is an ǫ frame operator, applying the frame bound inequality to both W
and W̊ in (6.15) finishes the proof.

The non-invariant joint scattering is defined as the joint scattering, but by replacing the
joint wavelet transform with non-invariant wavelet transform. We only compute wavelets
along the spatial u and the orientation variable θ, that is that the linear subgroup that we
are considering is the group of rotations G = SO(2). We start by computing a first spatial
wavelet modulus transform

S0x(v) = x ⋆ φJ(v) (6.21)

U1x(v, θ, j) = ∣x ⋆ ψθ,j ∣(v). (6.22)

Then the first internal layer U1x is retransformed with a non-invariant joint wavelet mod-
ulus operator along each orbit

S1x(v, θ, j) = U1x(., ., j) ⍟ ×φJ(v, θ) (6.23)

= U1x(., θ, j) ⋆ φJ(v) (6.24)
×
U2x(v, θ1, j1, θ2, j2, k2) = ∣U1x(., ., j1) ⋆ ×ψθ2,j2,k2 ∣(v, θ1). (6.25)

As in all scattering networks, U2x is iteratively retransformed into S2x,U3x. In practice,
we do not compute U3x because it has negligible energy. Yet, we do compute S2x with a
spatial windowing

×
S2x(v, θ1, j1, θ2, j2, k2) = ×

U2x(., ., j1, θ2, j2, k2) ×⋆ ×φJ(v, θ1) (6.26)

= ×
U2x(., θ1, j, θ2, j2, k2) ⋆ φJ(v) (6.27)
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which simply corresponds to an average along v. In the classification experiments of Section
6.3.2 we concatenate the non-invariant joint scattering of order 0,1,2 into a single vector

×
Sx = {S0x,S1x, ×S2x}. (6.28)

As the joint scattering S̃x introduced in Chapter 4, and unlike the translation and

separable scattering Sx and S̊x of Chapter 2 and 3, the non-invariant joint scattering
×
Sx

connects the different paths of internal layers through convolutions with multidimensional
wavelets. Yet it is only invariant to translations up to 2J but has no invariance to the linear
transform group GL(R2). The invariance to transformations is delegated to the classifier
which will hopefully learn the appropriate level of invariance for each transformation, given
enough data.

6.3.2 Caltech101, 256 Classification with Non-Invariant Joint Scattering

The classification performance of the non-invariant joint scattering
×
Sx is evaluated on

the CalTech101 and 256 databases. CalTech101 has 102 classes of different objects, each
containing 31 or more images per class with 10k images. CalTech256 is similar but larger
with 256 classes and 30k images. All images are first resized to 128 × 128 by a linear
rescaling. The scattering of each YUV channel of each image are computed separately and
are concatenated. The first wavelet transform W1 is computed with Morlet wavelets of
Section 2.3.2, over 5 scales 0 ≤ 2j1 < 25 with C = 8 angles θ1. The second wavelet transform
×W2 is computed with the same two dimensional and one dimensional wavelet family as

the one described in Section 4.3.2. The final scattering coefficients
×
Sx are computed with

a spatial pooling at a scale 2J = 32, as opposed to the maxima selection used in most

convolution networks. Scattering coefficients
×
Sx are renormalized by a standardization

which subtracts their mean and sets their variance to 1. The mean and variance are
computed on the training databases. Standardized scattering coefficients are then provided
to a linear SVM classifier.

Almost state of the art classification results are obtained on Caltech-101 and Caltech-
256, with a ConvNet [ZF13] pretrained on ImageNet. Table 6.2 shows that with 7 layers
a ConvNet can achieve 85.5% accuracy on Caltech101 and 72.6% accuracy on Caltech256,
using respectively 30 and 60 training images. The classification is performed with a linear
SVM. With only two layers, the ConvNet performances drop to 66.2% on Caltech101
and 39.6% on Caltech256. A non-invariant joint scattering achieves similar performances
without any learning except at the renormalization and classifier stages. The similarity
between those results suggests that the first layers of the deep networks used in [KSH12,
DCM+12, ZF13] are responsible for basic geometric properties images and do not necessarily
have to be trained.
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Representation Layers CalTech101 CalTech256

Joint Scattering 1 51.2 ± 0.8 19.3 ± 0.2
ConvNet pretrained on ImageNet [ZF13] 1 44.8 ± 0.7 24.6 ± 0.4
Joint Scattering 2 68.8 ± 0.5 34.6 ± 0.2
ConvNet pretrained on ImageNet [ZF13] 2 66.2 ± 0.5 39.6 ± 0.3
ConvNet pretrained on ImageNet [ZF13] 3 72.3 ± 0.4 46.0 ± 0.3
ConvNet pretrained on ImageNet [ZF13] 7 85.5 ± 0.4 72.6 ± 0.2

Table 6.2: Classification accuracy on CalTech101 with 30 training images per class and
on CalTech256 with 60 images per class, for different number of layers and different archi-
tecture. For one or two layers, the joint scattering performs similarly to the ConvNet of
[ZF13] pre trained on ImageNet.



Summary of Notations

Groups

• R
2 the set of all real position in the two dimensional plane.

• u, v,w ∈ R2 two dimensional positions.

• GL(R2) the linear group, consisting of all 2 × 2 real invertible matrices.

• A ∈ GL(R2) invertible matrix.

• R
2 ⋊GL(R2) the affine group, endowed with its semi-separable product law.

• g = (v,A) ∈ R2 ⋊GL(R2) element of the affine group.

• G ⊂ GL(R2) a subgroup of the linear group.

• R
2 ⋊G ⊂ R2 ⋊GL(R2) a subgroup of the affine group.

• SO(2) the group of two dimensional rotations.

• SE(2) = R2 ⋊ SO(2) the rigid-motion group.

Fourier and Wavelets

• x, y, z ∈ L2(R2) squared integrable two dimensional functions.

• F the Fourier transform.

• ω ∈ R2 a frequency.

• φ scaling function, low-pass window.

• ψ mother, high-pass wavelet.

• θ ∈ [0,2π) orientation.
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• j index of the scale 2j .

• λ = (θ, j) a compact index of a wavelet.

• J index of a maximum scale 2J .

• φJ low-pass at scale 2J .

• ψθ,j oriented high pass at orientation θ and scale j.

• ⋆ the convolution of two functions in L2(R2).
• W the wavelet transform.

Scattering

• m scattering order, index of a scattering layer, number of high pass modulus opera-
tions necessary to compute a given coefficient.

• M maximum scattering order.

• Umx the internal scattering layer of order m.

• Smx the output scattering layer of order m.

• Sx the scattering vector, consisting of all Smx.

• pm = (θ1, j1, . . . , θm, jm) a scattering path of order m, an sequence of indices of
wavelet.

• Pm the set of all possible scattering paths.

Separable, Joint, Non-invariant Joint Scattering

• k index of a one dimensional wavelet.

• K index of maximum scale 2K .

• .̊ any object related to separable scattering of Chapter 3.

• .̃ any object related to joint scattering of Chapter 4.

• ×. any object related to non-invariant joint scattering of Section 6.3.
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Kyllönen, and Sami Huovinen. Outex - new framework for empirical evalu-
ation of texture analysis algorithms. Proceedings of International Conference
on Pattern Recognition, 1:701–706, 2002.

[OMS14] Edouard Oyallon, Stéphane Mallat, and Laurent Sifre. Generic deep networks
with wavelet scattering. submitted to International Conference on Learning
Representations, 2014.
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[SM13] Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation in-
variant scattering for texture discrimination. IEEE Conference on Computer
Vision and Pattern Recognition, pages 1233–1240, 2013.
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