PHASE RETRIEVAL FOR THE CAUCHY WAVELET TRANSFORM
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ABSTRACT. We consider the phase retrieval problem in which one tries to reconstruct a function
from the modulus of its wavelet transform. We study the uniqueness and stability of the
reconstruction.

In the case where the wavelets are Cauchy wavelets, we prove that the modulus of the wavelet
transform uniquely determines the function up to a global phase. We show that the reconstruc-
tion operator is continuous but not uniformly continuous. We describe how to construct pairs
of functions which are far away in L?-norm but whose wavelet transforms are very close, in
modulus. The principle is to modulate the wavelet transform of a fixed initial function by a
phase which varies slowly in both time and frequency. This construction seems to cover all the
instabilities that we observe in practice; we give a partial formal justification to this fact.

Finally, we describe an exact reconstruction algorithm and use it to numerically confirm our
analysis of the stability question.

1. INTRODUCTION

A phase retrieval problem consists in reconstructing an unknown object f from a set of
phaseless linear measurements. More precisely, let E be a complex vector space and {L;}ic; a
set of linear forms from E to C. We are given the set of all |L;(f)|,i € I, for some unknown
f € E and we want to determine f.

This problem can be studied under three different viewpoints:

e Is f uniquely determined by {|L;(f)|};c; (up to a global phase)?

e Ifthe answer to the previous question is positive, is the inverse application {|L;(f)|};c; —
f “stable”? For example, is it continuous? Uniformly Lipschitz?

e In practice, is there an efficient algorithm which recovers f from {|L;(f)|};c,?

The most well-known example of a phase retrieval problem is the case where the L; represent
the Fourier transform. The unknown object is some compactly-supported function f € L*(R, C)
and the problem is:

reconstruct f from |f]|
Because of its important applications in physics, this problem has been extensively studied
from the 50’s. Unfortunately, |Akutowicz [1956] and [Walther [1963] have shown that it is not
solvable. Indeed, for any f, there generally exists an infinite number of compactly-supported g
such that |f| = |g].
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We are interested in the problem which consists in reconstructing f € L*(R) from the mod-
ulus of its wavelet transform.

A wavelet is a (sufficiently regular) function ¢ : R — C such that [; ¢(z)dx = 0. For any
j € Z, we define ¢;(x) = a~y(a~Jx), which is equivalent to t;(x) = ¢ (a’z). The number a
may be any real in ]1; 4+00[. The wavelet transform of a function f € L*(R) is:

{f *¥5}ien € (L*(R))*
Our problem is then the following:
(1) reconstruct f € L*(R) from {|f *1;|}jez

It can be seen as a collection of phase retrieval subproblems, where the linear form of each
subproblem is the Fourier transform. Provided that 1 is not pathological and f is uniquely
determined by {f % ¢;}, the problem is indeed equivalent to:

reconstruct {f.z/}j}jez from {‘f (fl/%)‘}ﬁ

where F is another notation for the Fourier transform. o
Even if, for any given j, it is impossible to reconstruct f.1; from ‘]—" ( f -%’)‘ only, the recon-

Z

struction may be possible: the f .lﬁj are not independent one from the other and we can use
this information for reconstruction. o

We consider here the case of Cauchy wavelets. In this case, the relations between the f.1;
may be expressed in terms of holomorphic functions. This allows us to study the problem
with the same tools as in [Akutowicz, 1956]. We show that f is uniquely determined by
{If *¥;|}ez and we are able to study the stability of the reconstruction. We show that, when
the wavelet transform does not have too many small values, the reconstruction is stable, up to
modulation of the different frequency bands by low-frequency phases.

This problem of reconstructing a signal from the modulus of its wavelet transform is inters-
esting in practice because of its applications in audio processing.

Indeed, a common way to represent audio signals is to use the modulus of some time-frequency
representation, either the short-time Fourier transform (spectrogram) or the wavelet transform
(scalogram, [Mesgarani et al., 2006; Andén and Mallat, 2011]). Numerical results strongly
indicate that the loss of phase does not induce a loss of perceptual information. Thus, some
audio processing tasks can be achieved by modifying directly the modulus, without taking the
phase into account, and then reconstructing a new signal from the modified modulus (|Griffin
and Lim, [1984],[Balan et al., [2006]), which requires to solve a phase retrieval problem.

The interest of the phase retrieval problem in the case of the wavelet transform is also
theoretical.

A lot of work has been devoted to finding or characterizing systems of linear measurements
whose modulus suffices to uniquely determine an unknown vector. If the underlying vector
space is of finite dimension n, it is known that 4n — 4 generic linear forms are enough to
guarantee the uniqueness (|Conca et al., 2015]). Specific examples of such linear forms have
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been given by Bodmann and Hammen| [2014] and [Fickus et al.| [2014]. (Candes et al.| [2011] and
Candes et al.|[2013] have constructed random measurements systems for which uniqueness holds
with high probability and their reconstruction algorithm PhaseLift is guaranteed to succeed.
These examples either rely on randomization techniques or have been carefully designed by
means of algebraic tricks to guarantee the uniqueness of the reconstruction. By contrast, the
(Cauchy) wavelet transform is a natural and deterministic system of linear measurements, for
which uniqueness results can be proved.

Most of the research in phase retrieval has at first focused on the uniqueness of the recon-
struction or on the algorithmic part. The question of whether the reconstruction is stable to
measurement noise is more recent. Bandeira et al.| [2014] and Balan and Wang| [2015] gave a
necessary and sufficient condition for stability in the case where the unknown vector x is real
but it only partially extends to the complex case. For several random measurement systems, it
has been proved that, with high probability, all signals are determined by the modulus of the
linear measurements, in a way which is stable to noise (see for example |Candes et al., [2013]
and [Eldar and Mendelson, 2013]). Again, our measurement system presents the interest of
being, on the contrary, totally deterministic. Moreover, to our knowledge, it is the first case
where the question of stability does not have a binary answer (the reconstruction is “partially
stable”) and where we are able to precisely describe the instabilities.

1.1. Outline and results. In the section [2, we prove that a function is uniquely determined
by the modulus of its Cauchy wavelet transform. Precisely, if (¢;);ez is a family of Cauchy
wavelets, we have the following theorem:

Theorem. If f,g € L*(R) are two functions such that f(w) = g(w) =0 for any w < 0 and if
|f x| = |g x| for all j, then:

f =¢e"“qg for some ¢ € R

The proof uses harmonic analysis tools similar to the ones used by Akutowicz [1956]. We
also give a version of this result for finite signals. The proof is similar but easier. We show that
it implies a uniqueness result for a system of 4n — 2 linear measurements.

The condition f (w) = g(w) = 0 can seem restrictive but a very similar result holds if,
instead of being analytic, f and ¢ are real-valued, which is almost always the case in practical

applications (corollary [2.3]).
Then, in the section 3 we prove (theorem [3.1)) that the reconstruction operator is continuous.

In the section [d] we explain why this operator is not uniformly continuous: there exist
functions f, g such that ||[f — g|l2 & ||f||2 and |f * ;| ~ |g = ¢;| for all j. In the light
of [Bandeira et al., [2014], we give simple examples of such (f,g). We then describe a more
general construction of pairs (f, g). The principle of this construction is to multiply the wavelet
transform of a fixed signal f by a “slow-varying” phase. Projecting this modified wavelet
transform on the set of admissible wavelet transforms yields a new signal g. For each j, we
have |f x ;| =~ |g * ¢;|, but we may have f % g.
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In the section [5] we give explicit reconstruction formulas. We use them to prove a local form
of stability of the reconstruction problem (theorems and . Our result is approximately
the following:

Theorem. Let f,g € L*(R) be such that f(w) = §(w) = 0 for any w < 0.
Let j € Z,K € N* be fized.
We assume that, for each l =37+ 1,...,5 + K, we have, for all x in some interval:
|f + ()| & |g ()|
| * ()], [g % u(z)| % 0

Then, for some low-frequency function h:
h.(f %) = g*1;

This implies that, if the modulus of the Fourier transform does not have too small values,
all the instabilities of the reconstruction operator are of the form described in section [4]

Finally, in the section [0, we present an algorithm which exactly recovers a function from the
modulus of its Cauchy wavelet transform (and a low-frequency component). This algorithm
uses the explicit formulas derived in the section [5] It may fail when the wavelet transform is
too close to zero at some points but otherwise it almost always succeeds. It does not get stuck
into local minima, like most classical algorithms (for example |Gerchberg and Saxton [1972]),
and it is stable to noise.

1.2. Notations. For any f € L'(R), we denote by f or F(f) the Fourier transform of f:
flw) = / f(x)e ™ dr VYw €R
R

We extend this definition to L? by continuity.
We denote by F~! : L*(R) — L?(R) the inverse Fourier transform and recall that, for any
e L' N IX(R):

1 A .
—1 _ WL
FAN@) = 5 [ fw)erds
We denote by H the Poincaré half-plane: H = {z € C s.t. Im z > 0}.

2. UNIQUENESS OF THE RECONSTRUCTION FOR CAUCHY WAVELETS

2.1. Definition of the wavelet transform and comparison with Fourier. The most
important phase retrieval problem, which naturally arises in several physical settings, is the
case of the Fourier transform:

reconstruct f € L?*(R) from | f |

Without additional assumptions over f, the reconstruction is clearly impossible: any choice of
phase ¢ : R — R yield a signal g = F~ (| f|e’®) € L?(R) such that |g| = | f].
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To avoid this problem, one may for example require that f is compactly supported. However,
Akutowicz| [1957]; Walther| [1963] showed that, even with this constraint, the reconstruction was
still not possible.

More precisely, their result is the following one. If f € L?*(R) is a compactly supported
function, then its Fourier transform f admits a holomorphic extension F over all C: F (2) =
Jg f(z)e **dx. If g € L*(R) is another compactly supported function and G is this holomorphic

extension of its Fourier transform, the equality | f | = |g| happens to be equivalent to:
VzeC, F(2)F(z)=G(2)G(z)
This in turn is essentially equivalent to:

(2) {z} U{zn} = {2} U{z,}
where the (z,) and (z/)) are the respective zeros of F' and G over C, counted with multiplicity.
This means that F' and G must have the same zeros, up to symmetry with respect to the real
axis.

Conversely, for every choice of {2/} satisfying 7 it is possible to find a compactly supported
g such that the zeroes of G are the 2/, which implies | f| = |g]-

A similar result can be established in the case where the function f € L*(R) is assumed to
be identically zero on the negative real line [Akutowicz, 1956] instead of compactly supported.

Let us now define the wavelet transform and compare it with the Fourier transform.
Let ¢ € L' N L*(R) be a wavelet, that is a function such that [z ¢(x)dz = 0. Let a > 1 be
fixed; we call a the dilation factor. We define a family of wavelets by:
Ve €R i(z) = ay(a ) & VweR  9;(w) = ¢(dw)
The wavelet transform operator is:
f e L*(R) = {f xv;}jez € (L*(R))"

This operator is unitary if the so-called Littlewood-Paley condition is satisfied:

(3) (Z\%(W)\z =1,Vwe R) = (Hf\l% =2 llfxwill; vfe LQ(R)>

The phase retrieval problem associated with this operator is:
reconstruct f € L*(R) from {|f ;| }jez

This problem may or may not be well-posed, depending on which wavelet family we use.
The simplest case is the one where the wavelets are Shannon wavelets:

1& = 1[1;(1] = Vj € Z, zﬂj(w) = 1[a7j;a7j+1]
Reconstructing f amounts to reconstruct f Lig-isq-i+1) = fﬂj for all j. For each j, we have

only two informations about, f;: its support is included in [a~7;a7*1] and the modulus of its
inverse Fourier transform is |f x 1;|. From the results of the Fourier transform case, it is not
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enough to determine uniquely f@ﬁ] Thus, for Shannon wavelets, the phase retrieval problem is
as ill-posed as for the Fourier transform.

In this example, the problem comes from the fact that the Q[Jj have non-overlapping supports.
Thus, reconstructing f is equivalent to reconstructing independently each f x1);, which is not
possible.

However, in general, the 1@- have overlapping supports and the f x 1, are not independent
for different values of j. They satisfy the following relation:

(4) (f *1by) % he = (fx) x; Vi, ke€Z

Thus, there is “redundancy” in the wavelet decomposition of f. We can hope that this redun-
dancy compensates the loss of phase of |f x1;|. In the following, we show that, at least for
specific wavelets, it is the case.

2.2. Uniqueness theorem for Cauchy wavelets.
In this paragraph, we consider wavelets of the following form:

(5) d(w) = pw)are s
(W) = P(aw) Vw eR

where p > 0 and p € L*>(R) is such that p(aw) = p(w) for almost every w € R and p(w) # 0, Vw.

The presence of p allows some flexibility in the choice of the family. In particular, if it is
properly chosen, the Littlewood-Paley condition may be satisfied. However, the proofs are
the same with or without p.

When p = 1, the wavelets of the form are called Cauchy wavelets of order p. The figure
displays an example of such wavelets. For these wavelets, the wavelet transform has the
property to be a set of sections of a holomorphic function along horizontal lines.

If f € L?(R), its analytic part f, is defined by:

(6) fi(@) = 2f (W) luso
We define:
(7) F(z)= 217T/R Pfo(w)e“dw  Vzst Imz>0

When f. is sufficiently regular, F' is the holomorphic extension of its p-th derivative.
For each y > 0, if we denote by F(. + iy) the function x € R — F(x + iy):

F( +iy) = F (20" f (w)Lusoe ™)

Consequently, for each j € Z:

abl

(8) 7F(. +ial) = fx1p; VjEZ
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So f % 1); is the restriction of F to the horizontal line R + ia?. In this case, the relation ()
is equivalent to the fact that, for all j, k, f x; and f x ¢, are the restrictions of the same
holomorphic function to the lines R + ia’ and R + ia*.

Reconstructing f; from {|f % 1;|} ez now amounts to reconstruct the holomorphic function
F:H={zeC/Imz >0} - C from its modulus on an infinite set of horizontal lines. The
figure [2| shows these lines for a = 2. Our phase retrieval problem thus reduces to a harmonic
analysis problem. Actually, knowing |F’| on only two lines is already enough to recover F' and
one of the two lines may even be R, the boundary of H.

Theorem 2.1. Let o > 0 be fized. Let F,G : H — C be holomorphic functions such that, for
some M > 0:

(9) /R|F(a:+iy)|2dx<M and /R|G(x+iy)|2dx< M  Yy>0
We suppose that:
|F(x +ia)| = |G(x +icr)| for a.e. x € R
yli)ron+|F(x +iy)| = yli)%lJG(CE +iy)| for a.e. v € R
Then, for some ¢ € R:
(10) F =e@
The proof is given in section [2.4]

Corollary 2.2. We consider wavelets (1;);ez of the form (). Let f,g € L*(R) be such that,
for some j, k € Z with j # k:

(11) [f sl = lgx sl and | fx el = |g % il
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We denote by fi and gy the analytic parts of f and g (as defined in @)
There exists ¢ € R such that:

(12) [+ = €i¢g+
Proof. We may assume that j < k. We define F' and G as in (7)), with the additional p:

1 A ) 1 )
— D wz _ yol ~ Wz
=3 /Rw p(w) fi(w)e*dw G(z) o /Rw p(w) g+ (w)e*dw Vze H

For each y > 0, F(. 4+ iy) = F 1 (2wPp(w)e 1,50 f(w)). For y = @/ and y = a¥, it implies
F(. +ia’) = a%pf*v,bj and F(. + ia*) = a%pf*@/zk From ([11)):

F(z)

i 2 2 i
[P iad) = —|f oyl = g x| = |G( +id))

. 2 2 :
(4 ia")| = [ ] = gl = |G+ i)

So the functions F(. +ia’) and G(. + ia’) coincide in modulus on two horizontal lines: R and
R + i(a* — a’). From theorem they are equal up to a global phase. As p does not vanish,
it implies that f, and g, are equal up to this global phase.

So that we can apply theorem , we must verify that the condition @ holds for F(. +ia’)
and G(. + ia’). For any y > a:

F(.+iy) = F ' (208p(w) fw)e )
= F(+ i)l = 5 ]1267p() fl@)e Lol
< 51120000 f (e Lzol
(2) 1rwwl

The same inequality holds for G: the condition (9) is true for M = ( 2 )2 [|f * ;13 O

ajp

We have just proved that the modulus of the wavelet transform uniquely determines, up to
a global phase, the analytic part of a function, that is its positive frequencies. On the contrary,
as wavelets are analytic (¢;(w) = 0 if w < 0), the wavelet transform contains no information
about the negative frequencies. In practice, signals are often real so negative frequencies are
determined by positive ones and this latter limitation is not really important.

Corollary 2.3. Let f,g € L*(R) be real-valued functions; f, and g, are their analytic parts.
We assume that, for some j, k € Z such that j # k:

|frabil = lgxosl and | f i = |g*
Then, for some ¢ € R:
fr=¢%g & f=Re(e?gy)
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Remark 2.4. Although the corollary holds for only two wavelets and does not require
|fx)s| = |gx1bs| for each s € Z, the reconstruction of f from only two components, |f*1;| and
|f * x|, is very unstable in practice. Indeed, zﬂj and )y, are concentrated around characteristic
frequencies of order 277 and 27%. Thus, from fx1; and fxy (and even more so from | f x|
and | f x| ), reconstructing the frequencies of f which are not close to 277 or 2% is numerically
impossible. It is an ill-conditioned deconvolution problem.

Before ending this section, let us note that, with a proof similar to the one of the corollary
[2.2] the theorem [2.1] also implies the following result.

Corollary 2.5. Let a > 0 be fized. Let f,g € L*(R) be such that f(w) = g(w) = 0 for every
w < 0.
If1f| = |g| and |f(t)e=et| = |g(t)e=2t|, then, for some ¢ € R:

f=e%

This says that there is uniqueness in the phase retrieval problem associated to the masked
Fourier transform, in the case where there are two masks, t — 1 and ¢ — e,

2.3. Discrete case. Naturally, the functions we have to deal with in practice are generally not
in L?(R). They are instead discrete finite signals. In this section, we explain how to switch from
the continuous to the discrete finite setting. As we will see, all results derived in the continuous
case have a discrete equivalent but proofs become simpler because they use polynomials instead
of holomorphic functions.

Let f € C™ be a discrete function. We assume n is even. The discrete Fourier transform of

fis:

A n-l omisk n n
flk] = flsle " fork=——+1,..., -
=0 2 2
The analytic part of f is f, € C" such that:
ﬂ%hﬂhf—g+1§k<0
Folk] = fIA] ifk::()ork;:g
Folk] = 2f[K] if 0 < k < g
When f is real, f = Re (fy).
We consider wavelets of the following form, for p > 0 and a > 1:
13 ik = pla? k) (@ k)Pe P g forall j € Z k= —0 41, =
( ) J p = j ’ 2 ) ) 2

where p : R™ — C is such that p(ax) = p(z) for every x and p does not vanish.

As in the continuous case, the set {|f * ¥;|}jez almost uniquely determines f,. Naturally,
the global phase still cannot be determined. The mean value of f, can also not be determined,
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because 1@ [0] = 0 for all j. To determine the mean value and the global phase, we would need
some additional information, for example the value of f x ¢ for some low frequency signal ¢.

Theorem 2.6 (Discrete version of 2.2)). Let f,g € C" be discrete signals and (1) ez a family
of wavelets of the form . Let j,1 € Z be two distinct integers. Then:

(14) [fx il = lgx il and [f x| = [g x|
if and only if, for some ¢ € R,c € C:
fi=eg, 4o
Proof. We first assume f, = ¢*®g, + c. Taking the Fourier transform of this equality yields:

n

flk] = €%glk]  forallk=1,.., o)

As [kl =0 for k= —2 +1,...,0:

~

FIKID; k] = €gk]d;k]  for all k = —g 1,
= (fry=e(gxy))

So | f x| = |gx ;] and, similarly, | f x| = [g % ].
We now suppose conversely that |f % ;| = |g*¢;| and |f % ¢;| = |g * ¢;|. We define:

|3

n/2

F(z) = f[]() 2* Zg KkPb Ve

3\'—‘

TTM\

These polynomials are the discrete equivalents of functions F and G used in the proof of 2.2
Foralls=—-2+1,..,%

j  2mis ]_ n/2 N g 27miks
Flee%e™n ) = - fIk]p(k)kPe="ke™n™
k=1
. 1 n/z 27mks
=S ke
k=—n/2+1
= a7 (f *1y[s])

] 2mis

Similarly, G(e=*e™n ) = a™P(gx ;[s]) for all s = =% +1,..., 2
Thus, f*1; and gx1; can be seen as the restrictions of F' and G to the circle of radius e~ .

This is similar to the continuous case, where fx; and g« 1; were the restrictions of functions
F, G to horizontal lines.
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The equality implies:

2 2

| 3

F(e_“]e%:s)

= ’G(e_a]ezgs)

for all s = —g +1,..,

2
2mis 2mis

= F(e—aﬂ 27715)?( —a’ _T) _ G(e_aﬂ 27”5)@( —al —T) fOI‘ all S = —g + 1’ vy

AN

The functions z — F(e=®2)F(e~®1) and 2 — G(e ”2)G (e~ 1) are polynomials of degree
n — 2 (up to multiplication by z™271). They share n common values so they are equal. The
same is true for [ instead of j so:

(15) Fle @ )F (e—ajl) — Qe )G( o 1) V2eC

2 z
(16) F(e*2)F <eall> = G(e™2)G (e“l1> VzeC
2 z

If we show that these equalities imply F' = €*G for some ¢ € R, the proof will be finished.
Indeed, from the definition of F and G, we will then have f[k] = ¢/®g[k] for all k = 1, ..y § SO
Filk] = €. [k] for all k 0. It implies f, = ¢*g, + ¢ for ¢ = 1 (f+ [0] — ei®g, [0])
It suffices to show that F' and G have the same roots (with multiplicity) because then, they
will be proportional and, from (15]), (16)), the proportionality constant must be of modulus 1.
For each z € C, let up(2) (resp. pe(2)) be the multiplicity of z as a root of F' (resp. G).
The polynomials of are of respective degree n — 21 (0) and n —2uc(0) so ur(0) = pue(0).
For all z # 0, the multiplicity of e z as a zero of is:

wr(z) + pp (e‘j“ ) = pe(z) + g (eja )

and the multiplicity of €2~z as a zero of is:

—2a7

- e - e—2aj
(€ )z2) +MF< z ) = pa (e z) +MG< z
Substracting this last equality to the previous one implies that, for all z:
pr(2) — pa(z) = pr(e® = z) — pa(e?@=z)
By applying this equality several times, we get, for all n € N:
'—al a'—al
pr(2) = na(2) = pp(e@=2) = pe (@ )z)
= (e =D2) = g e z)

= up (€@ 2) = pe (@ z)



12 STEPHANE MALLAT AND IRENE WALDSPURGER
As F and G have a finite number of roots, pp(e2%'~9z) — pg(e*@=4)z) = 0 if n is large
enough. So up(z) = pe(z) for all z € C. O

As in the section [2.2] a very similar proof gives a uniqueness result for the case of the Fourier
transform with masks, if the masks are well-chosen.

Theorem 2.7 (Discrete version of. Let o > 0 be fized. Let f,g € C* 1 be two discrete
signals with support in {0,...,n — 1}:

fls] =g[s] =0 fors=mn,...,2n —2
If |f| = |9] and ]ﬂ@| = |§®], then, for some ¢ € R:
f=e"
Remark that this theorem describes systems of 4n — 2 linear measurements whose moduli
are enough to recover each complex signal of dimension n. As discussed in the introduction, it

is known that 4n — 4 generic measurements always achieve this property (|Conca et al., 2015]).
However, it is in general difficult to find deterministic systems for which it can be proven.

2.4. Proof of theorem [2.1]

Theorem (2.1)). Let o > 0 be fized. Let F,G : H — C be holomorphic functions such that, for
some M > 0:

© / |F(z +iy)[*dz < M and / |G (z + iy)|*dz < M Yy >0
R R

We suppose that:
|F(x +ia)| = |G(z + icr)| for a.e. x € R
lim |F(x +iy)| = lim |G(z +dy)| for a.e. x € R
y—0+ y—0t

Then, for some ¢ € R:
(17) F =G

Proof of theorem[2.1 This demonstration relies on the ideas used by [Akutowicz| [1956].

If FF =0, the theorem is true: G is null over a whole line and, as GG is holomorphic, G = 0.
The same reasoning holds if G = 0. We now assume F # 0, G # 0.

The central point of the proof is to factorize the functions F, F(. +ia), G, G(. + i) as in the
following lemma.

Lemma 2.8. [Kryloff, 1939]E| The function F' admits the following factorization:
F(z) = P B(2)D(2)S(z)

INon russian speaking readers may also deduce this theorem from [Rudin! [1987, Thm 17.17]: functions over
H may be turned into functions over D(0,1) by composing them with the conformal application z € D(0,1) —

%i € H. The main difficulty is to show that if H : H — C satisfies (9], then H:zeD(0,1)— H (%z) eC

is of class H? and Rudin’s theorem can be applied.
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Here, ¢ and B are real numbers. The function B is a Blaschke product. It is formed with the
zeros of F' in the upper half-plane H. We call (z) these zeros, counted with multiplicity, with
the exception of i. We call m the multiplicity of i as zero.

(18) B(z) = (H)mnm—i\ |2k + 1] 2 — 2

z4+1 kzk—i 2+t 2 —Z

This product converges over H, which is equivalent to:

Im 2z,
19 — < +00

The functions D and S are defined by:

(20) D(z) = exp <1/R 1t—t1;z lof |_ft(2t>|dt>

(21) S(z) = ex;m(i/ Lt tsz(t))

TJR T — %

In the first equation, |F'(t)| is the limit of |F'| on R. In the second one, dE is a positive bounded
measure, singular with respect to Lebesque measure.
Both integrals converge absolutely for any z € H.

The same factorization can be applied to F(. +ia), G and G(. + i«):
F(z) = e“r*r? Bp(z) Dp(2) S (2) G(z) = e*c*6? B (2) D (2) Se ()
F(z+ia) = rtr2Br(2)Dp(2)Sr(2)  G(z +ia) = €eTB6 By (2)Dg(2)Sq(2)

As F(. 4+ ia) and G(. + i) are analytic on the real line, they actually have no singular part
S. The proof may be found in |Garnett, 1981, Thm 6.3]; it is done for functions on the unit
disk but also holds for functions on H.

(22) Sp=2Sa=1
Because lim |F(. 4 iy)| = lim |G(. + iy)| and |F(. 4+ ia)| = |G(. + ic)|, we have Dp = D¢
y—07+ y—0t

and Dp = Dg. We show that it implies a relation between the B’s, that is, a relation between
the zeros of F' and GG. From this relation, we will be able to prove that F' and G have the same
zeros and that, up to a global phase, they are equal.

For all z € H:
elertifrEtio) Br(z 4+ i) Dp(z + i) Sp(z +ia)  F(z +ia) 1
eier+ibrz Br(z) Dy (2) C F(z+ia)
G(z +ia)
- G(z +ia)

eiccHiBa(=+i0) B (5 4 i) D (2 + ia)Sa(z + iav)

eiéc+iéczBG(z)DG<z)
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Br(z + ia)Bg(z) _ iC+iB Sa(z +ia)
(23) - Bea(z +ia)Bp(z) Sr(z + i)

for some C, B € R

Equality holds only for z € H. It is a priori not even defined for z € C — H. Before going
on, we must show that is meaningful and still valid over all C. This is the purpose of the
two following lemmas, whose proofs may be found in appendix [A]

For z € H, we denote by up(z) (resp. pue(z)) the multiplicity of z as a zero of F' (resp. G).

Lemma 2.9. There exists a meromorphic function B, : C — C such that:

B ia)B
Bo(2) = rlz+i0)Ba(z)
Bg(z + ia) Bp(z)

Moreover, for all z € H, the multiplicity of Z — ia as a pole of By, is:
(24) (br(2) = pe(2)) = (pr(z + 2ia) — pe(z + 2ia))
Sg(z+ia) _

Lemma 2.10. For all z € H, Si(z+ia) = 1.

The equation and the lemmas[2.9)and give, for all z € H and thus all z € C (because

functions are meromorphic):
By(z) =e“TB  vzeC
The function e’“*+*B# has no zero nor pole so, from , for all z € H:

(kr(z) = pa(2)) = (pr(z + 2ia) — pe(z + 2ia)) = 0
So if pp(z) # pg(z) for some z, we may by symmetry assume that up(z) > pg(z) and, in
this case, for all n € N*:
wr(z + 2nia) — pe(z + 2nia) = ...
= pr(z + 2ia) — pe(z + 2ia)
= pr(2) — pe(z) >0
In particular, z + 2nia is a zero of F' for all n € N*. But this is impossible because, if it is the

Im(z+2nia)

{zrina) 1 .
? 1+4|z+2nial? ™~ 2na and:

case

Imzk
DL T
. 1+ ’Zk|

where the (z;) are the zeros of F' over H. It is in contradiction with ; )
So for all z € H, up(z) = pe(z). This implies that Bp = Bg and Brp = Bg. So, for all
z € H:

F(z +ia) = er P2 Br(2)Dp(2) = €172 Bo(2) Da(2) = €772 G(z + ia)
with v = ¢p — ¢ and&zBF—BG
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The functions F' and G are meromorphic over H so the last equality actually holds over all
{z € Cst. Imz > —a}.
| lim F(z + iy)| = | lim e FP@F=i0)G (g 4 jg))|
y—0t y—0t
= | lim G (x + iy)|
y—0t

Consequently, because ¢ is real and o # 0, § = 0. So:
F(z) = e"G(z) Vz e H

3. WEAK STABILITY OF THE RECONSTRUCTION

In the previous section, we proved that the operator U : f — {|f x1;|} was injective, up to
a global phase, for Cauchy wavelets. So we can theoretically reconstruct any function f from
U(f). However, if we want the reconstruction to be possible in practice, we also need it to be
stable to a small amount of noise:

U(f)=U(f2) = (ii=f)

In this section, we show that it is, in some sense, the case: U~! is continuous.
Contrarily to the ones of the previous section, this result is not specific to Cauchy wavelets:
it holds for all reasonable wavelets, as soon as U is injective.

3.1. Definitions. As in the previous section, we consider only functions without negative
frequencies:
LZ(R)={f € L*(R) s.t. f(w)=0 for a.e. w <0}
As the reconstruction is always up to a global phase, we need to define the quotient Li (R)/S*:
f=gin LZ(R)/S" & f=¢%gforsome ¢ €R
The set L2 (R)/S* is equipped with a natural metric:
Dy(f,9) = ;ﬁrelﬂngf - €i¢9’|2

Remark that Dy(f,0) = || f]|2-
We also define:

L3(R) = {(hmez € P(R)” st Iyl < +oo}

L= [l — B[ for any (hy), (W) € LA(R)
JEZ

We are interested in the operator U:
U: LZ(R)/S' — L(R)
f = (If *¥])jez

() — )

(25)
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We require two conditions over the wavelets. They must be analytic:

(26) Pi(w) =0 for ae. w<0,j €Z

and satisfy an approximate Littlewood-Paley inequality:

(27) A< W) <B  forae w>0,for some A, B >0
JEL

This last inequality and the fact that Dy(f,0) = || f]|2 imply:

(28) Vf e Li(R)/S', VADy(£,0) <||U(f)ll2 < VBDa(f,0)

In particular, it ensures the continuity of U.

3.2. Weak stability theorem.

Theorem 3.1. We suppose that, for all j € Z, v; € L'(R) N L*(R) and that and
hold. We also suppose that U is injective. Then:

(i) The image of U, Iy = {U(f) s.t. f € L3 (R)/S'} is closed in L3(R).

(i) The application U : Iy — L2 (R)/S* is continuous.

Proof. What we have to prove is the following: if (U(f,))nen converges towards a limit v €
L}(R), then v = U(g) for some g € L% (R)/S* and f,, — g in L% (R)/S™.

So let (U(f,))nen be a sequence of elements in I, which converges in L(R). Let v =
(h;)jez € LE(R) be the limit. We show that v € Iy

Lemma 3.2. For all j € Z, {fo*x 0 }nen is relatively compact in L*(R) (that is, the closure of
this set in L*(R) is compact).

The proof of this lemma is given in appendix [B] It uses the Riesz-Fréchet-Kolmogorov theo-
rem, which gives an explicit characterization of the relatively compact subsets of L?(R).

For every j € Z, {f,*¥; }nen is thus included in a compact subset of L?(R). In a compact set,
every sequence admits a convergent subsequence: there exists ¢ : N — N injective such that
(fo(n) * ¥;)nen converges in L*(R). Actually, we can choose ¢ such that (fy(n) * ¢;), converges
for any j (and not only for a single one). We donote by [; the limits.

Lemma 3.3 (Proof in appendix . There exists g € L2 (R) such that l; = g *; for every j.
Moreover, fom) — g in L*(R).

As U is continuous, U(g) = lim U(fsm)) = v. So v belongs to I.

The g such that U(g) = v is uniquely defined in L% (R)/S* because U is injective (it does
not depend on the choice of ¢). We must now show that f,, — g.

From the lemma , (fn)n admits a subsequence (fg(n)) which converges to g. By the same
reasoning, every subsequence ( fy(n))n of (fn)n admits a subsequence which converges to g. This

implies that (f,), globally converges to g.
0]

Remark 3.4. The same demonstration gives a similar result for wavelets on R?, of the form
() jez~er, for I' a finite set of parameters.
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4. THE RECONSTRUCTION IS NOT UNIFORMLY CONTINUOUS

The theorem states that the operator U : f — {|f*;|};ez has a continuous inverse U™,
when it is invertible. However, U~! is not uniformly continuous. Indeed, for any ¢ > 0, there
exist g1, g2 € L3 (R)/S* such that:

(29) 1U(g1) = Ul(g2)ll <€ but ||lgi —gof[ >1

In this section, we describe a way to construct such “unstable” pairs (g1, go): we start from
any g and modulate each g; x ¢; by a low-frequency phase. We then (approximately) invert
this modified wavelet transform and obtain gs.

This construction seems to be “generic” in the sense that it includes all the instabilities that
we have been able to observe in practice.

4.1. A simple example. To begin with, we give a simple example of instabilities and relate
it to known results about the stability in general phase retrieval problems.

In phase retrieval problems with (a finite number of) real measurements, the stability of
the reconstruction operator is characterized by the following theorem (|[Bandeira et al., 2014],
[Balan and Wang, 2015]).

Theorem 4.1. Let A € R™*" be a measurement matriz. For any S C {1,...,m}, we denote
by As the matriz obtained by discarding the rows of A whose indexes are not in S. We call \%
the lower frame bound of Ags, that is, the largest real number such that:

|Asz|l; = Agllzll; Vo eR”

Then, for any x,y € R™:
1 Az] = Ay| b > (miny/3Z + X&) - min(|[z = yllo, |z + )
Moreover, msin«/)\% + A%, is the optimal constant.

This theorem implies that, in the real case, the reconstruction operator has a Lipschitz
constant exactly equal to 1/ <msin\/>\§ + >\2c>. In the complex case, it is only possible to prove

that the Lipschitz constant is at least 1/ (msin\/A% + /\20>.

Theorem 4.2. Let A € C™*" be a measurement matriz. There exist x,y € C" such that:
x| = 4y lo < (miny/ 35+ 35:) 5

Consequently, if the set of measurements can be divided in two parts S and S¢ such that A%
and \%. are very small, then the reconstruction is not stable.
Such a phenomenon occurs in the case of the wavelet transform. We define:

S ={¢;st. 7>0}and S = {¢; s.t. j <0}

in(||z — nyll2)
nl=1
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FIGURE 3. (a) Wavelet transform of f; (b) Wavelet transform of f (¢) Wavelet
transform of f; + fo (solid blue) and f; — fo (dashed red) (d) Modulus of the
wavelet transforms of f; + fo and f; — fo; the two modulus are almost equal

In each column, each graph corresponds to a specific frequency; the highest fre-
quency is on top and the lowest one at bottom. For complex functions, only the
real part is displayed.

Let us fix a small € > 0. We choose fi, f» € L?(R) such that:
fiz)=0if 2| < 1/e and fo(z)=0if 2 ¢ [~ ¢

For every ¢; € S, fi x1; = 0 because the characteristic frequency of 1; is smaller than 1 and
f1 is a very high frequency function. So:

((fi+ L) x| = | fax by = [ = fax by = |(f1 = f2) * ¥y
And similarly, for v; € S¢, fax1; = 0 and:

[(fi + f2) x| = | fr = i) = [(fr = f2) %
As a consequence:
{{(f1 + f2) ¥l }jez = {I(f1 = f2) ¥l }jez

Nevertheless, f; + fo and f; — fo may not be close in L*(R)/S': g1 = fi + fo and go = f1 — fo

satisfy .
The figure 3| displays an example of this kind.
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4.2. A wider class of instabilities. We now describe the construction of more general “un-
stable” pairs (g1, g2).
Let g, € L*(R) be any function. We aim at finding g, € L*(R) such that, for all j € Z:

(30) (g1 % ;)€™ = go % 1)
for some real functions ¢;.

In other words, we must find phases ¢; such that (g, x ¢;)e*® is approximately equal to the
wavelet transform of some g, € L*(R). Any phases ¢;(t) which vary slowly both in ¢ and in j
satisfy this property.

Indeed, if the ¢;(t) vary “slowly enough”, we set:

92 =3 ((g1 % ;)€™ ) > 1)y

JEZ

where {1);},ez are the dual wavelets associated to {1;}.
Then, for all k € Z,t € R:

g2 x () =3 (g1 * 7)€’ ) % by i (t)

JEZ.

= 3 [ e gy )t~ )3y ) )

JEL

(g1 % i)™V = O3 gy x1hy) x (4 % ) (1)

=3 [ Ot s)t = 0y > ) ) du
So:
(31)  gax tnlt) = (gu 5 () = 3 [ (€90 = ) (g1 x) (¢ = u) (¢ % ) (w) du

The function @/;j * g (u) is negligible if j is not of the same order as k or if u is too far away
from 0. It means that, for some C' € N,U € R (which may depend on k):

goxU(t) — (g1 x Ui (£))e W =~ 3 / (e — €0 (gy by ) (8 — ) (; > hy) () du
|a kl<C UU

If ¢;(t — u) does not vary much over [k — C;k + C] x [—U' U], it gives the desired relation:

9o * Vi(t) — (g1 % Vi(t))e M ~ 0
which is .

To summarize, we have described a way to construct gi,gs € L*(R) such that |g; x 1, =
|g2 % ;| for all j. The principle is to multiply the wavelet transform of g; by any set of phases

{e®i M}y whose variations are slow enough in j and ¢.
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How slow the variations must be depends on g;. Indeed, at the points (j,t) where gy % 1;(t)
is small, the phase may vary more rapidly because, then, the presence of g; x 1;(t — u) in (31))
compensates for a bigger (%t — ¢ix(®)),

All instabilities g1, go that we were able to observe in practice were of the form we described:
each time, the wavelet transforms of g; and g, were equal up to a phase whose variation was
slow in j and ¢, except at the points where g; x 1; was small.

5. STRONG STABILITY RESULT

The goal of this section is to give a partial formal justification to the fact that has been
non-rigorously discussed in section : when two functions g1, go satisfy |g1 x ;| & |go % 1;| for
all 7, then the wavelet transforms {g; *1;(t)}; and {g2 x1;(¢)}; are equal up to a phase whose
variation is slow in ¢ and j, except eventually at the points where |g1 * ¥;(¢)| is small.

In the whole section, we consider f), f? two non-zero functions. We denote by F®), F(
the holomorphic extensions defined in . We recall that, for all j € Z:

2)

PJ ,
(32) fx;(z) = %F(m +ia’) Ve e R
We define:
Nj= sup |fxyy(a)|
z€R,s=1,2

5.1. Main principle. From | fx;|, one can calculate | fxi;|? and thus, from (32), |F(z+ia?)|?,
for all € R. But this last function coincides with G,(z) = F(z + ia?)F(z + ia’) on the
horizontal line Im z = 0. As G is holomorphic, it is uniquely determined by its values on one
line. Consequently, GG; is uniquely determined from |f % 1);|.

Combining the functions G for different values of j allows to write explicit reconstruction

formulas. The stability of these formulas can be studied, to obtain relations of the following
form, for K > 0:

<|f(l) x| = | f@ x| Yk € Z)
o (9« ) FT 5 070) = (12w ) T 5 Gare) V) € 2)

These relations imply that, for each j, the phases of f(1) % Y and f @) % 1; are approximately

)y i

equal up to multiplication by the phase of t
F@ps ik
low-frequency, compared to the phase of f(1) x; and f® x ;.

. If K is not too small, this last phase is

The results we obtain are local, in the sense that if the approximate equality |f M) Uy ~
| f® % x| only holds on a (large enough) interval of R, the equality (f® % ;)(f® x4 k) ~
(f@ % 10;)(f@ % 1bjy ) still holds (also on an interval of R).

Our main technical difficulty was to handle properly the fact that the G;’s may have zeros
(which is a problem because we need to divide by G; in order to get reconstruction formulas).
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We know that, when the wavelet transform has a lot of zeros, the reconstruction becomes
unstable. On the other hand, if they are only a few isolated zeros, the reconstruction is stable
and this must appear in our theorems.

They are several ways to write reconstruction formulas, which give different stability results.
In the dyadic case (a = 2), there is a relatively simple method. We present it first. Then we
handle the case where a < 2. We do not consider the case where a > 2. Indeed, it has less
practical interest for us. Moreover, when the value of a increases, the reconstruction becomes
much less stable.

5.2. Case a = 2. In the dyadic case, we only assume that two consecutive moduli are ap-
proximately known, on an interval of R: |f % ;| and |f x1;41]. We also assume that, on this
interval, the moduli are never too close to 0. Then we show these moduli stabily determine:

x40
[ * i

Theorem 5.1. Let e,¢,\ €]0;1[, M > 0 be fized, with ¢ > e.
We assume that, for all v € [—M27; M27]:

W sah:(2)]2 = [ FP % ab;(2)]?] < eN?
170 x ) j
1D % 1@ = 1P x i (0) | < eNJy
and:
[fO sy ()2 | F2 x4y ()] = N}
[fV %y (@) [ fP ()P > eNTy
Then, for all x € [—N*M27; X2 M27):
JO % 1hj o) J@ % 1hjio < A (Nj /3 ((1/3—0ar)(4/5-aly)
O xthj fO x| 7 ¢ \Njn
if 1/3 —ap >0 and 4/5 — oy, > 0, where:

e A is a constant which depends only on p.
e ayy, oy, — 0 exponentially when M — +o00.

Principle of the proof. Here, we only give a broad outline of the proof. A rigorous one is given
in the appendix [C] with all the necessary technical details.

As explained in the paragraph |f1) % ;4| uniquely determines the values of z —
FO(z +i27+1)F()(Z 4 42+1) on the line Im z = 0. Thus, it uniquely determines all the values
(because the function is holomorphic) and in particular (for z = x + 727):

FO(z +i3.2)FO(z 4+ 127) VYreR
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Moreover, this determination is a stable operation:

(159 %0 @) ~ 1fD % gy (@)? Vo € R)

= (F(l)(l‘ +i3.2)FO (x4 429) ~ F® (2 +i3.2))F@ (z 4+ i27) Va € R)

If we divide this last expression by |FM(x 4 i27)]? =~ |[F® (2 + i27)|? (whose values we know
from |+ 1 ):
FO(z+i3.27)  F®(x+i3.2)
FO)(z+142) ~ F®(x+12i)
As previously, using the holomorphy of F' allows to replace, in the last expression, the real
number x by z + 127:

forx € R

FO(z+i2t2)  FO(z 4 i2012)
FO)(z4i20+1) 7 F@(z 4 27+1)
By , this is the same as:

forx € R

S * Vj+o ~ J® x V)2
JARR Vi1 @ % Vi1

From this theorem, if f(*) % ;12 has no small values either on [—A\?M27; A2 M27], then:
phase(f" x4 11) — phase(f® x ¢b;41) ~ phase(f) x 1;12) — phase(f® * ¢;12)

If more than two consecutive components of the wavelet transform have almost the same modu-
lus (and all these components do not come close to 0), one can iterate this approximate equality.
It gives:

phase(f(l) *Pip1) — phase(f(z) *ip1) R phase(f(l) * 1K) — phase(f(z) *Vi1K)

This holds for any K € N* but with an approximation error that becomes larger and larger as
K increases.

When K is large enough, this means that f0) x4, and f® %, are equal up to a
low-frequency phase.

5.3. Case a < 2.
For this section, we fix:

e j € 7Z: the frequency of the component whose phase we want to estimate

e K € N* such that K = 0[2]: the number of components of the wavelet transform whose
modulus are approximately equal

e ¢,k €]0; 1[: they will control the difference between |f1) 1, and | £ x 1|, as well as
the minimal value of those functions.

e M > 0: we will assume that the approximate equality between the modulus holds on
[—Ma/ 55 MaitE],
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e k € N* such that =% < 2 — a: this number will control the stability with which one can
derive informations about f * 1;_; from |f % ¢;|. Typically, for a < 1.5, we may take
k= 3.

We define:

o Je[j+K—1;j+ K] such that a’ = ﬁaj+K+ Zf}aj: we will prove that f() x4, and

f® x4, are equal up to a phase which is concentrated around a” in frequencies (that

is, a much lower-frequency phase than the phase of f x1;).
ec=1-:24 €]0;1] and dyy = ¢ — 4%, which converges exponentially to ¢
M

when 7= goes to oo.

Theorem 5.2. We assume that r > 2179,
We assume that, for v € [—Ma’ ™5 Ma? ™| and l = j+1,...,j + K:

(33) £ (@) = [ 5 ()P] < eNF
(34) P x (@)% 1 £P x (@) > kNP

MaitE | Mgit+¥E
2 ) 2

Then, for any x € [ ], as soon as dy; < 1:

3) oy [T 00@) (1) — (T 050@) (125 05 (0)] < e
j
K/2-1
where Cy = 1_6\/E I (ap(kfl)%)

As in the dyadic case a = 2, this theorem shows that, if two functions f®) and f® have
their wavelet transforms almost equal in moduli, then, for each j, f( v~ f @) & ¥ up to
multiplication by a low-frequency function.

In contrast to the dyadic case, we are not able to show directly that:

FO ey  fYx i
f(2) *j f(Q) * Vit

Because of that, the inequality we get is less good than in the dyadic case: the bound in ({35
is exponential in K instead of being proportional to K.

With a slightly different method, we could have obtained a better bound, proportional to K.
This better bound would have been valid for any a > 1, but under the condition that f % 1
does not come close to 0 for some explicit non-integer values of [, which would have been rather
unsatisfying because, in practice, these values of [ do not seem to play a particular role.

Principle of the proof. The full proof may be found in appendix [D] Its principle is to show, by
induction over s = 0, ..., K/2, that:

(36) (f(l) * sz)(f(l) * ¢j+K725) ~ (f(2) * st)(f@) * ¢j+K725)
where Jg is an explicit number in the interval [j + K — 1; 5 + K].
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For s =0, we set J, =7+ K and just says:

’f(l) * ¢j+K‘2 ~ ‘f@) *%‘H{'Q

which is true by hypothesis.
Then, to go from s to s + 1, we use the fact that:

(37) (T ge2) (fD 5 ) =~ (FO x c2) (O 5 4)

if we choose [ such that a! = 2a/+5=2571 — q7+5=25;. we can check that, up to multiplication
by a constant, () %,k _2s)(f") %) is the evaluation on the line a/+5-2s — g/+K-2s-1
of the holomorphic extension of |f) x Vi1x-2s—1/*. The holomorphic extension is a stable
transformation (in a sense that has to be made precise). As [f) x g oo 1> & |fP x
Vi1 k—25—1|?, this implies .

Multiplying and and dividing by |f® x4k os|> = [ fP x 1)1 g _os|? yields:

(38) (FO 5 1h ) (D 5 ahy) = (FP %y ) (fP %)

If J,,4 is suitably chosen, (f(’“)*¢Js+1)(f(’“)*¢j+K,2(S+1)) may be seen as the restriction to a line

of the holomorphic extension of (f) x4 )(f) x1);). Because, again, taking the holomorphic
extension is relatively stable, the relation implies the recurrence hypothesis at order
s+ 1.

For s = K/2, the recurrence hypothesis is equivalent to the stated result. 0

6. NUMERICAL EXPERIMENTS

In the previous section, we proved a form of stability for the phase retrieval problem as-
sociated to the Cauchy wavelet transform. The proof implicitly relied on the existence of an
explicit reconstruction algorithm. In this section, we describe a practical implementation of
this algorithm and its performances.

The main goal of our numerical experiments is to investigate the issue of stability. The theo-
rems|[5.1]and [5.2] prove that the reconstruction is, in some sense, stable, at least when the wavelet
transform does not have small values. Are these results confirmed by the implementation? To
what extent does the presence of small values make the reconstruction unstable?

As we will see, our algorithm can fail when large parts of the wavelet transform are close to
zero. In all other cases, it seems to succeed and to be stable to noise, even when the amount of
noise over the wavelet transform is relatively high (~ 10%). The presence of a small number
of zeroes in the wavelet transform is not a problem.

In practical applications, the wavelet transforms of the signals of interest (mostly audio
signals) always have a lot of small values. The algorithm that we present is thus mostly a
theoretical tool. Without modifications, it is not intended for real applications. Nevertheless,
the results it gives for audio signals are better than expected so, with some more work, it could
be suited to practical applications in audio processing. This will be the subject of future work.
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The code is available at http://www.di.ens.fr/~waldspurger/cauchy_phase_retrieval.
html, along with examples of reconstruction for audio signals. It only handles the dyadic case
a = 2 but could easily be extended to other values of a.

6.1. Description of the algorithm. In practice, we must restrict our wavelet transform to
a finite number of components. So we only consider the |f ;| for j € {Jmin, -, Jmax}. TO
compensate for the loss of the |f % ¢;| with j > Jpax, we give to our algorithm an additional
information about the low-frequency, under the form of f x ¢;_ . , where b Juay 18 negligible
outside an neighborhood of 0 of size ~ a~/max,

min ’|f*,l7bv]min+1|7"" |f*wjmax|’f*¢t]max7

for some unknown f, and tries to reconstruct f. The input functions may be contaminated by
some noise. To simplify the implementation, we have assumed that the probability distribution
of the noise was known.

For any real numbers j, ki, ky such that j € Z and 2.0/ = a** + a*?, it comes from the
reasoning of the previous section that |f % ¢;| uniquely determines (f x 1y, ).(f * ¢x,). More
precisely, we have, for all w € R:

The algorithm takes as input the functions |f *

(aF2 —a) qF1Tke
(39) (F 5 ) (Tx ) (@) =[x Pl)el =
The algorithm begins by fixing real numbers ky_. 1,k ..., kj,.. such that:
(40) kJmin—l < Jopin < ]{?Jmin < Jont+1<..< Jmax < kjmax

V7, 2.a7 = a1 4 P

Then, for all j, it applies to determine g, dlef (f*tr,_,).(f * ¥x,). Because of the exponential
function present in (B9), the g; may take arbitrarily high values in the frequency band {(a*> —
a’)w > 1}. To avoid this, we truncate the high frequencies of g;.

The function fxy, may be approximately determined from fx¢y, .. . From this function
and the g;, the algorithm estimates all the f x 4,. As this estimation involves divisions
by functions which may be close to zero at some points, it is usually not very accurate. In
particular, the estimated set {f % ¢y,}; do not generally satisfy the constraint that it must
belong to the range of the function f € L*(IR) — {f * 1, }Jmin—1<<max-

Thus, in a second step, the algorithm refines the estimation. To do this, it attempts to
minimize an error function which takes into account both the fact that (f % vy, ,).(f * ;)
is known for every j and the fact that {f * ¥, , }Jm—1<j</m. Must belong to the range of
f € L*(R) — {f *n, } Jpin—1<j<Jmax- The minimization is performed by gradient descent, using
the previously found estimations as initialization.

Finally, we deduce f from the f %1, , and refine this estimation one more time by a
few steps of the classical Gerchberg-Saxton algorithm ([Gerchberg and Saxton, 1972]). This
final refinement step is useful, because the Gerchberg-Saxton algorithm converges much faster
than the gradient descent. According to our tests, the performances of the algorithm would be


http://www.di.ens.fr/~waldspurger/cauchy_phase_retrieval.html
http://www.di.ens.fr/~waldspurger/cauchy_phase_retrieval.html
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FIGURE 4. examples of signals: (a) realization of a gaussian process (b) sum of
sinusoids (c¢) piecewise regular

approximately the same with more gradient descent iterations and no final refinement. However,
the execution time would be much longer.

The principle of the algorithm is summarized by the pseudocode [1}

Algorithm 1 Reconstruction algorithm

L: Choose k‘J DLy ey kjma as in ({40]).

2: for all j do

3 Determine g; = (f x ¥p,_,).(f * ¥,) from |f % ¢);]*
4: end for

5. Determine f x 1y, from f* ¢y,

6: for all j do

7. Estimate h; & fxy,;.

8: end for

9: Refine the estimation with a gradient descent.

10: Deduce f from {f x ¥, } 1 —1<5< max-

11: Refine the estimation of f with the Gerchberg-Saxton algorithm.
Output: f

6.2. Input signals. We study the performances of this algorithm on three classes of input
signals with finite size n. The figure [4] shows an example for each of these three classes.

The first class contains realizations of gaussian processes with renormalized frequencies. More
precisely, the signals f of this class satisfy:

finl = n—+ 2
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where the X, are independent realizations of a gaussian random variable X ~ N(0,1). The

normalization \/ﬁ ensures that all dyadic frequency bands contain approximately the same

amount of energy.

The second class consists in sums of a few sinusoids. The amplitudes, phases and frequencies
of the sinusoids are randomly chosen. In each dyadic frequency band, there is approximately
the same mean number of sinusoids (slightly smaller than 1).

The signals of the third class are random lines extracted from real images. They usually are
structured signals, with smooth regular parts and large discontinuities at a small number of
points.

To study the influence of the size of the signals on the reconstruction, we perform tests
for signals of size N = 128 N = 1024 and N = 8192. For each N, we used log,(N) — 1
Cauchy wavelets of order p = 3. Our low-pass filter is a gaussian function of the form gﬁ[k] =
exp(—ak?/2), with o independent of N.

6.3. Noise. The inputs that are provided to the algorithm are not exactly {|f x|}, f * @,
but {|f * ;| + 1y}, f*Psna + 1o The ny; and the n, represent an additive noise. In all our
experiments, this noise is white and gaussian.

We measure the amplitude of the noise in relative {>-norm:

\/ans\@ + lny4l13
relative noise = /

- \/I|f*¢Jmaxl|% + Xl x5l

6.4. Results. The results are displayed on the figure [5]

The x-axis displays the relative error induced by the noise over the input and the y-axis
represents the reconstruction error, both over the reconstructed function and over the modulus
of the wavelet transform of the reconstructed function.

For an input signal f and output f,.., we define the relative error between f and f,.. by:

o ||f - frec||2

function error =
1 £1]2

and the relative error over the modulus of the wavelet transform by:

wlf*%x — free % Gl 3+ SIS *5] = Lree 5 13
¢||f*¢Jmax||%+;r\f*wj||%

modulus error =

The modulus error describes the capacity of the algorithm to reconstruct a signal whose
wavelet transform is close, in modulus, to the one which has been provided as input. The
function error, on the other hand, quantifies the intrinsic stability of the phase retrieval problem.
If the modulus error is small but the function error is large, it means that there are several
functions whose wavelet transforms are almost equal in moduli and the reconstruction problem
is ill-posed.
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FIGURE 5. Reconstruction results for the three considered classes of signals. Left
column: our algorithm. Right column: alternate projections (Gerchberg-Saxton)

An ideal reconstruction algorithm would yield a small modulus error (that is, proportional
to the noise over the input). Nevertheless, the function error could be large or small, depending
on the well-posedness of the phase retrieval problem.
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FIGURE 6. wavelet transforms, in modulus, of the signals of the figure i} (a)
realization of a gaussian process (b) sum of sinusoids (c) piecewise regular

Each column represents the wavelet transform of one signal. Each graph corre-
sponds to one frequency component of the wavelet transform. For sake of visi-
bility, only 4 components are shown, although nine were used in the calculation.

We expect that our algorithm may fail when the input modulus contain very small values
(because the algorithm performs divisions, which become very unstable in presence of zeroes).

For almost each of the signals that we consider, there exist ’s such that f vy, (z) ~ 0 but
the number of such points vary greatly, depending on which class the signal belongs. As an
example, the wavelet transforms of the three signals of the figure [4] are displayed in [6]

For gaussian signals, there are generally not many points at which the wavelet transform
vanishes. The positions of these points do not seem to be correlated in either space or frequency.

For piecewise regular signals, there are more of this points but they are usually distributed
in such a way that if fx;(z) = 0, then fxy(z) ~ 0 for all wavelets 1)y, of higher frequencies
than +;. This repartition makes the reconstruction easier.

When the signals are sums of sinusoids, it often happens that some components of the wavelet
transform are totally negligible: for some j, f *1;(x) ~ 0 for any z. The negligible frequencies
may be either high, low or intermediate.

From the results shown in[f] it is clear that the number of zeros influences the reconstruction,
but also that isolated zeroes do not prevent reconstruction. The algorithm performs well on
gaussian or piecewise regular signals. The distance in modulus between the wavelet transform
of the reconstructed signal and of the original one is proportional to the amount of noise (and
generally significantly smaller). This holds up to large levels of noise (10%). By comparison,
the classical Gerchberg-Saxton algorithm is much less efficient.



30 STEPHANE MALLAT AND IRENE WALDSPURGER

However, the algorithm often fails when the input signal is a sum of sinusoids. Not surpris-
ingly, the most difficult signals in this class are the ones for which the sinusoids are not equally
distributed among frequency bands and the wavelet transform has a lot of zeroes. The relative
error over the modulus of the wavelet transform is then often of several percent, even when the
relative error induced by the noise is of the order of 0.1%.

In the section [, we explained why, for any function f, it is generally possible to construct
g such that f and ¢ are not close but their wavelet transform have almost the same modulus.
This construction holds provided that the time and frequency support of f is large enough.

Increasing the time and frequency support of f amounts here to increase the size N of the
signals. Thus, we expect the function error to increase with N. It is indeed the case but
this effect is very weakly perceptible on gaussian signals. It is stronger on piecewise regular
functions, probably because the wavelet transforms of these signals have more zeroes; their
reconstruction is thus less stable.

In the case of the sums of sinusoids, because of the failure of the algorithm, we can not draw
firm conclusions regarding the stability of the reconstruction. We nevertheless suspect that this
class of signals is the least stable of all and that these instabilities are the cause of the incorrect
behavior of our algorithm.

7. CONCLUSION

In this text, we have studied the phase retrieval problem in which one tries to reconstruct a
function from the modulus of its Cauchy wavelet transform. We have shown that the recon-
struction was unique, up to a global phase, and that the reconstruction operator was continuous
but not uniformly continuous. Indeed, if we modulate the wavelet transform of a function by
slow-varying phases, we can construct very different functions with almost the same wavelet
transform, in modulus. Moreover, in the case where the wavelet transform does not take values
too close to zero, all the instabilities of the reconstruction are of this form.

Our proofs are specific to Cauchy wavelets and cannot be extended to generic wavelets
because they strongly use the link between Cauchy wavelets and holomorphic functions. Only
the description of instabilities of the reconstruction operator (section is independent of
the choice of the wavelet family (actually, it could also be extended to other time-frequency
representations that the wavelet transform). However, in practice, the Cauchy wavelets do not
seem to behave differently from other wavelets. We expect that the uniqueness and stability
results are true for much generic wavelets than Cauchy ones but we do not know how to prove
it.
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APPENDIX A. LEMMAS OF THE PROOF OF THEOREM [2.1]

Proof of lemma[2.9. We recall equation (23):

- Br(z +i)Bo(2) _icuup.Salz + i)
Bg(z +ia)Bp(z) Sp(z +ia)

We want to show that the left part of this equality admits a meromorphic extension to C. We
also want this meromorphic extension to have the same poles (with multiplicity) than it would
if all four functions Br, Bg, Bpr and B were meromorphically defined over all C.

We first remark that By and B admit meromorphic extensions to C. Indeed, if the (zx )k are
the zeros of F'(.+ic) in H, this set has no accumulation point in H: if 2., was an accumulation
point, z,, +ta € H would be an accumulation point of the zeros of F' and, as F' is holomorphic,
it would be the null function. From the classical properties of Blaschke products, By converge
over C and so does Bg.

On the contrary, Br and Bg may not admit meromorphic extensions over C. But their
quotient Br/Bg does.

We define:

_> _> F . _F
B}(Z):<Z Z) H|Zk Z|‘Zk+?|z il;

z+1 A 2K —i o +iz—7Zf
where the (z}')’s are the zeros of F, each z{" being counted, not with multiplicity pup(zf ), but
with multiplicity max(0, pp(25) — ua(zf)) (and mp is still the multiplicity of i as a zero of F).

Similarly:
BL(2) (z—z) H|zk i| |28 +i| 2z — 2¢
z)=|——
¢ zZ+1 28 —i 28+ z—7F

where the (z5)’s are the zeros of G' counted with multiplicity max (0, ug(28) — ur(25)).
We define:

Bro(s) = leF’G in +z\ Pk
zZ
£ P z,fG—i zk —i—ZZ 5G

where the z°“ are the zeros of F or G, counted with multiplicity min(up(z;), pa(z©)). The

function Bp ¢ corresponds to the “common part” of By and B, which we may factorize in the
quotient Br/Bg.
The products B, B, Br converge over H and, for all z € H:

Bp(z) = Bp(2)Bra(z)  Ba(z) = Ba(2)Bra(z)

So for all z € H: . ~
Bp(z+ia)Bg(z)  By(z+ia)Bg(z)

Bg(z 4 ia)Bp(z)  Bh(z 4 ia)Bp(z)
B;,(eria)Bg(z)

If we show that Bj and By, converge over C, we can take B, (z) = B (Tia)Bro” It will be
G ZTix z

meromorphic over C.

To prove this, we first establish a relation between the zeros of F' and G.
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Let z be such that 0 < Imz < «. The zeros of Br are the zeros of F' in H, counted with
multiplicity. Thus, z—i« is a zero of Br(.+ia) with multiplicity pugr(z). It is a zero of Bg(.+ia)
with multiplicity pe(z).

Because Im (z — iar) < 0, it is not a zero of By (resp. Bg) but may be a pole. As a pole, its
multiplicity is the multiplicity of z — iov = Z + i as a zero of F(. +ia) (resp. G(. +ia)): it is
wr(Z + 2ia) (resp. pg(Z + 2ia)).

The right part of ([23), e/“T5= gig::g% has no zero neither pole over {z € C s.t. Imz > —a}
(from the definition of S and Sp given in (21])). So neither does the left part. In particular,
z — i is not a zero and is not a pole:

(41) 1 (2) = 1(2) — (= + 2i0) + pp(z + 2ia) = 0
We now explain why B} converges over C. The same result will hold for Bj. From the

properties of Blaschke products, Bf. converges over C if (2£") has no accumulation point in R.
By contradiction, we assume that some subsequence of (2f), denoted by (z¢ k))s COMVerges

to A € R. Because the z{’s appear in B}, with multiplicity max(0, ur(2f) — pg(2L)), we must
have:

pr(Zg0) — uc(zzf( ) >0 VkeN
We can assume that, for all £, 0 < Im z¢( g < o From (41)):

pa(Zgu + 2ia) — pr(Zgpy + 2ia) = pr(2g) — e (25) > 0

Consequently, Zg(k) + 2ia is a zero of G for all k. As zg(k) - A e R, A+ 2 € His an
accumulation point of the zeros of G. This is impossible because G is holomorphic over H and
we have assumed that it was not the null function.

To conclude, we have to prove the equation ([24)).

For any z € H, the multiplicity of Z — i as a pole of Bj(. + i) is the multiplicity of z
as a zero of Bj, that is max(0, ur(2) — pg(z)). Its multiplicity as a pole of Bg(. + ia) is
max(0, ug(z) — pr(2)). As a pole of Br (resp. Bg), it is up(z + 2iar) (resp. ug(z + 2ia)).

The multiplicity of Z — i« as a pole of B, is then, as required:

max(0, pr(2) — pg(2)) — max(0, (=) — (=) — (= + 2ia) + (= + 2ia)
= (br(2) = pe(2)) = (pr(z + 2ia) — pe(z + 2ia))
O

Proof of lemma[2.10. We call dEr and dE¢ the singular measures appearing in the definitions
of Sp and Sg (see (21)))
From equation (23) and lemma , for any z € H:

o (2 [ EE s~ d0) = S5 e

The function z — B, (z — ia)e "“"*B==1) is meromorphic over C. From the following lemma,
dEqg — dEr must then be the null measure, so Sg = Sr over H.
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Lemma A.1. Let dE be a real bounded measure, singular with respect to Lebesque measure.
We define:
141z

RT—2%

S(z) = exp (
If S admits a meromorphic extension in the neighborhood of each point of R, then dE = 0.
Proof. Let s(z) = —log|S(z)] for all z € H. This is well-defined and:

dE(t)) Vze H

- 1 Y 2
— o[ Y 14+2dEW)  Ve,yeRst y>0
stetin) = [ Gy aH B ey €R sty

The lemma[A.2states that (1+¢2)dE(t) is the limit, in the sense of distributions, of s(t+iy)dt
when y — 0. The principle of the proof will then be to show that s(. + iy) also converges to
—log |Sir|, where S|g is the extension of S to R, so dE = —logfr#. The singularity of dE will
imply log|S|g| = 0 and dF = 0.

Lemma A.2. Let dE be a real measure such that 1+:2 18 bounded. Let:

. 1 y

For all continuous compactly-supported f € CO(R):

/R FOME() = lim /R s(t + iy) f(t)dt
Proof.

/R s(t +ig) f(B)dt = - // ,yf)(;)QdE(t’)dt
e L5
(42) — / F(6)dE(t / / yUf )dE(t’)dt
For all y,e > 0,t € R:
(f(t) = f@)) ot Y
(t — )2 + 42 dt’ < (IMS};I;)KJJC@I) f( 2)|> /]R ' —1)2 + 42 dt

)
Y A A
+ (Sup ‘f’) (—t/|>e (t/ _ t)z n yg

L)

|z1—z2|<e

1

+ 2(su / ——du
( p‘f’) |u|>e/y1+u2
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The second term of the last sum tends to 0 when y — 0™, uniformly in ¢’ so:

/R y((f(t/> - f(tz) dt‘ <7 < sup |f(z1) — f($2)|>

t — t)2 +vy |z1—z2|<e

lim sup
y—0t

which tends to 0 when € — 0 because f is uniformly continuous. Convergence is uniform in ¢'.
Moreover, if K is the compact support of f and |K]| is its Lebesgue measure, then, for all

t ¢ K:

[~ f(t))dt’ _

(' —1)* +y?

(' — 1) +y?
< Gwlf) [ g ip s
= (sup /] K]

It implies that the second term of tends to 0. Let K’ = {t' ¢ Rs.t. d(t', K) < 1}.

t/
//y )dE #)dt < sup /y )dt dE(K')
i — veK' i —

Y /

K / —————dE(t

HIRIE 1) [ e e )
Because ‘ﬁ—(tt,;) is bounded, [y ¢ % is bounded when y — 07. So the last expression

tends to 0.

The equation then implies the result. O

We still denote by S(¢) the meromorphic extension of S to a neighborhood of H. Let {r}
be the zeros or poles of S.

When y — 07, s(. +1iy) tends to —log|S| almost everywhere. On every compact of R — {7y},
the convergence is uniform, and thus in L!.

Let r, be any zero or pole and € > 0 be such that S admits a meromorphic extension over
a neighborhood of [ry — €;r, + €| x [—€; €] and 7; & [ry — €; 7, + €] for all j # k. There exist
h:[ry — €1, + € X [—€; €] = C holomorphic and m € Z such that:

S(z) =(z—1e)"h(z) Vz€[ry—¢err+e€ X |[—€ ¢ and h(ry) #0
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For all y €]0;¢[:

rEte TE+e
/ Is(t + i) + log | S(¢)||dt :/ [mlog [t — ry, + iy| + log |A(t +iy)|
. TR —€

TR—€

—mlog|t — 1| — log |h(t)|'dt

T +e

=m /
TE—€

(43) + /
As log |h| is continuous, log |h(. 4 iy)| converges uniformly to log |hr| over [ry — € ) + €]:
/rk—l—e
Tp—€
As log|. — 1y, + iy| converges to log |. — 7¢| in L'([ry — €71, + €]):
/rkJre
rE—€
So, by (43), s(. + iy) converges in L' to t € R — —log|S(t)|, over [ry — €; 7 + €]. As the
sequence (ry,) has no accumulation point in R, s(. +iy) — —log|Sg| (in L') over each compact

set of R.
By the lemma for all f € CO(R):

/Rf(t)(1+t2)dE(t) = lim [ s(t+iy) f(2)dt = —/10g|5(t)|f(t)dt

log [t — 7y, + iy| — log |t — rk”dt

y)| — log |h(t)]||dt

log |h(t + iy)| — log \h(t)]’dt — 0 when y — 0

log |t — 7 + ty| — log |t — rk”dt — 0

y—0+
We deduce that dE(t) = —bgfr# As dE is singular with respect to Lebesgue measure, we
must have log|S(t)| =0 for all t € R and dE = 0. O
O

APPENDIX B. LEMMAS OF THE PROOF OF THEOREM [3.1]
Proof of lemma[3.9 We first recall the Riesz-Fréchet-Kolmogorov theorem.

Theorem (Riesz-Fréchet-Kolomogorov). Let p € [1;4o00[. Let F be a subset of LP(R). The
set F 1is relatively compact if and only if:

(i) F is bounded.
(ii) For every e > 0, there exists some compact K C R such that:

sup || f||zrr—x) < €
fer

(iii) For every € > 0, there exists 0 > 0 such that:
sup [[f(.+h) = fll,<e  Vhe[-5]
feF
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We want to apply this theorem to p =2 and F = {f,, x ¥ }nen.
First of all, F is bounded: actually, from , (fn)nen itself is bounded (because (U(f,))n
converges and thus is bounded). It implies that {f, x ¢;}, is bounded because ||f, * ;|2 <

£l 11y (by Young’s inequality).
Let us now prove (ii). Let any € > 0 be fixed.
The sequence (| f, x ¢;]), converges in L*(R) (to h;, because U(f,) — (h;);ez in LZ(R)). So
{|fn * ¥;]}n is relatively compact in L?*(R). By the Riesz-Fréchet-Kolmogorov theorem, there
exists K C R a compact set such that:

sup || | fox V5] [|L2m—r) < €
neN

But, for all n, || | fo * ¥ ||L2@r—r) = [|fn * ¥jl|L2(r—K) s0 (ii) holds:
SUPan*%HLz K) <€

We finally check (iii). Let ¢ > 0 be fixed. For any h € R:

N xg) () = (fox )ll2 = [1fox (05(- = h) = )|z < [ fnll2ll5( = 7)) = 5l1a
As sup || full2 < +00 and }LILI(I) [|;(. — h) — 1;|]1 = 0 (this property holds for any L' function),

we have, for § > 0 small enough:
sup [|(fn x 95)(- + 1) = (fax Py)lla <€ Vh € [=6;]
O

Proof of lemma[3.3 We want to find g € L% (R) such that Zj — i) for every j € 7.
If w <0, we set g(w) = 0. Then, for each j, we set § = lAj/zﬁj on the support of 1/A1j, which we
denote by Supp ;. This definition is correct in the sense that:

~

if j1 # ja, 2+ = -2 a.e. on Supp ¥, N Supp ¥,
wjl wjz

Indeed for all n, (f¢ *¢j1)*¢j2 = (f¢(n)*1/}j2>*1/}jl SO, by taklng the limit in n, ljl *1/}]'2 = lj2*¢j1

and 1,05, = L1y, o
We can note that, for all j, gio; = ;. It is true on Supp 2/1], by definition. And, on R—Supp wj,

l =0= gwj because l is the L2-limit of f¢ % and f¢ wj =0on R — Supp w]
The ¢ we just deﬁned belongs to L?(R). Indeed, by (27] .

R 1 A 1
<7 12 '2:7/ 2t 112
I8 < 5 [ 9FSW = 5 [ SIF = 5

As fym)*1; goes to I; when n goes to oo and U(fom)) = {|fom) *¥;1}; goes to (hy)jez € LE(R),
we must have |l;| = h; for each j. So Z||l |3 = BZHh 13 = $11(hy)jezll3 < 400 and g

belongs to L*(R).
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As g € L*(R), it is the Fourier transform of some g € L?(R). For all j € Z, as Qzﬁj = Zj, we
have g x ¢, = [;.

We now show that fg,) — g when n — oo.

For every J,n € N:

S W omy *Uill3 = [ D NU(fom)i 113

71> l7|>J
< I NUfomy); — hill3+ D0 1IR3
71> 71>

< NU(fomy) = (hi)llz+ [ > IRyl13
Vi

So lim sup (| = *wjna) < % Il anct
n J

jl>J

lim sup (lequ(n) = 9*%|I3> < limsup < > I fowm 5 = g*¢j||§>

JEZ " ljl<J

+1imsup<z || fom) * ¥; —9*%‘”3)

" 31>

= limnsup < S fom) * 05 — 9*%’“3)

lil>J

< X Iwll

lil>J

This last quantity may be as small as desired, for J large enough, so 3 || fam)*¢; — g*1;]|3 — 0.
jez

By :

Y M oy * 15 — g x5 = /R [ foon — §

JEZ

(1)

2

>A/ oty — 0
> R)ﬁb() g

A 2
—%quﬁ(n)—g“z

50 || fom) — gll2 = 0. O

APPENDIX C. PROOF OF THEOREM [5.1]

In this section, we prove the theorem [5.1] which gives a stability result for the case of dyadic
wavelets.
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For all y > 0, we define:
N(y) = suwp [FO(x+iy)|

z€R,s=1,2

The following lemma is not necessary to our proof but we will use it to progressively simplify
our inequalities.

Lemma C.1. For all y;,y, € RY, if y1 < ya:
(44) N (1) > N(y2)
and for all y3 € [y1; Y2

Y2—Y3 ¥3—yu1

(45) N(ys) < N(y1) 2o N(ya) 2

Proof. The second inequality comes directly from theorem , applied to functions FM and
F® on the band {z € C s.t. y; < Imz < yy}.

The first inequality may be derived from (45)). The function A (y) is bounded when y — +oo.
Keeping y; and y3 fixed in and letting y, go to 400 then gives:

N(?J:%) < N(yl)

O
Remark C.2. When y — 400, then N(y) — 0 because, from (7)) and the Holder inequality:

FO +ig)] = |- [ @ filw)e v
1

< o

1

<

which decreases geometrically to zero when y — +00.

£+ llallo — wret =],

[1f+llzllw = wPe™|l5

We can now prove the theorem.

Proof of theorem[5.1. From the relation between F(*) and the f(*) x1); and from the hy-
potheses, the following inequalities hold for all z € [—M27; M27]:

|FO (@ +i2)]” = [FO (2 +i2)]P| < eN(2)?
|FO 4 i) — PO + i) < N (24
|FO (x4 i27) ]2, |F® (2 +427))* > eN(27)?
[FW (@ + 2P [FO (2 + a2t P > eN(2771)?
Let us set, for all z such that —2/*! < Im z < 27+

G(z) = FO(z 4+ i THYFO (7 4 i25+1) — FO(z 420 FO) (7  27+1)
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For all z such that Im z = 0:
G(2)] = [|FO(z + 2T = [FO (2 4 2 T)]?| < eN(271)? if [Rez| < M2
< N (27112 if |Rez| > M27
and for all z such that Imz = 3.2~ 1
1G(2)] = [FY(Rez + 7.2 1) FO(Re z + 20 Li) — FP(Rez + 7.2 1) F@(Re z 4 20-14)|
<2N(T27HN (2771

We apply the lemmal[E.2|for a = 0,b = 3.2t = 2/3, A = N(27*1)2, B = 2 N (7.20"H )N (2771).
It implies that, for all z € [-AM27; A\M27]:

G+ i27)| < 223V /3o NF(QIHV)2BAS(2T 1) 2B NS (7.2071)2/3

oy e~ (-NM)
where o) = 31—exp(~ZF(1-N)M)’

Replacing G by its definition gives, for all z € [-AM27; A\M27]:

|FW (2 +i3.2)FO(z +i27) — F® (x4 i3.27)F@ (x + i27)|
< 22/361/3_QMN(2J+1)2/3N(2J_1)2/3N(7.2j_1)2/3
S 261/3—(1]V[N(2j+1)4/3N(2j—1)2/3

We used the equation to obtain the last inequality.
So, for all & € [-AM27; \M27):

|FO (2 +i3.27) FO (z + i20) F®) (3 + i27 ) FO) (3 + i29)
—FO(z +i3.2)FO(z + i29) F ) (z + i2/) FO (z + 2|
< |FW (2 4 i3.2)FO (z +i20) — F® (2 +i3.2)FO (x4 i27)|.| FP (z + i27)F®) (z + i27)|
+|FP (x4 i3.2)FO (x4 i20)||FP (z 4 i2)F@ (2 + i2) — FO (2 + i27) FO) (z + i27)|
< 26! Bmom N(HNABN (277123 PO (2 4+ i20) | + eN(20)?|F P (2 + i3.20) FO) (4 29|

Dividing by |FM(x + i27) F®)(x + i27)| gives:
|FD (2 4+ i3.2)FP (2 4 i27) — FO(z +43.20)FW (z +i27)|

F@(x +i27)|
< 9 1/3—an 2]+1 4/3 2] 1 2/3' :
‘ NETVENET) |FO) (2 + 429
o |F@ (2 +13.27)]
|F)(z 4 427)|
For each z € [~AM27; \M27], this relation also holds if we switch the roles of F(\) and F(?)
Thus, we can assume that |F® (x4 i27)| < |[FU)(z + i27)|. Using also the fact that |F(!)(z +

+ eN(27)
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i27)| > \/cN(27) yields (always for x € [-AM27; AM27]):
|FW (2 4 i3.2)FP (x4 i27) — F® (2 +43.20)FW (z +i27)|
< 9el/3=am \f(QIHIVBAr(21)23 1 C Nr(29 )N/ (3.27)

e
) _ JH1VA/3 AS(95—1)2/3 .
1\ 2/3 ¢
< 2N(2)N(3.27) ( %E;HD A M)
G—1\\ 2/3
(46) < 3N (2N (3.27) W) el/3—anm

In the middle, we used the equation (45): N(27+1) < N(29)V/2N/(3.27)1/2. For the last inequal-

. - 5 1N2/3 /5w
ity, we used the fact that ¢ > € so 3% < % < 61/32 M < (%gjﬁ;) 61/32 M

For all z such that Imz > —27, we set:
H(z) = FO(z +i3.2)F® (2 +i2)) — F® (2 +i3.2)FW (2 +27)
From (46)):
|H(2)| < 2N (2/)N(3.29) if Imz = 0 and |Re z| > A\M?2J

. ‘ J=1)\ %3 .
< 2N(2/)N(3.27) min (12 (j:[/gmi) 61/3—W> if Imz = 0 and |Re z| < AM?2?

< 2N (27PN (6.27) if Imz = 5.27
We may apply the lemma again. For all z € [-\2M27; \2M2):

|H (z +i2)| < 2min <1,3 (%g:;

2
N 2/3 4/5—ay,
< 2min <1,2 (ﬁ//‘g;l;) E1/3—aM> N(Qj)4/5/\/'(2j+1)6/5

2/3 4/5—a'y,
) El/gaM> N(Qj)4/5N(3.2j)4/5N(2j+3)1/5./\/’(6-2j)1/5

2 exp(—%)\(l—)\)M))
5 1—exp(—ZA(1-A)M)) "
Replacing H by its definition and dividing by —F® (x + 27+ F@)(z + i27+1)| (which is

greater that ¢\ (2771)?) gives:
. 4/5—0/1\4 . 4/5
9 . SN N o, N(27)
< foin (1 (5g) (3em)

o
where o), =

FO(x +i27%2)  FO(x 4 27+2)
FO(x +i201)  F@(g 4 20H1)
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As soon as 4/5 — oy, > 0 and 1/3 — apr > 0:

FO(z 4272)  F@ (g 4i2t2)| 3 (NEIIN\Y® 1 N (27) \*° (1/3—anr)(4/5-c/y,)
FO(z+i2+1)  F@(z442t0)| = ¢ \N(2i 1) N@Eiy ) €
i1 4/3
<3 (AN/ EQJ 1;) L(1/3—an)(4/5—aly)
— 2+
‘ 4/3
_3 <NJ—122p> ((1/3=anr)(4/5—aly)
¢ \Nj1
So: .
FO % 4hj40(x) _ FP x4hj10(2) < §2“Tp <Nj—1> & c(1/3—anr)(4/5—aly,)
fOxhja(r)  f@xihja(z)] ~ c Njn
which is the desired result for A = 3.2". O

APPENDIX D. PROOF OF THE THEOREM
In this whole section, as in the paragraph [5.3] & is assumed to be a fixed integer such that:
—k
a " <2—a

and we define:
a—1

1—ak
Lemma D.1. Let the following numbers be fized:
€ €]0; 1] M >0 pe [0; M| JjEZL
We assume that, for all v € [—Ma’; Ma?]:
I1FO (@ +ia))* = |[FO(x +ia) | < eN(a?)?
Then, for all x € [—(M — p)a’; (M — p)a?]:
[FO (@ +i(207 — o 1)) FO (e ia?™) — FO(z +i(207 — a1 71))FO (x +ia’*)|
< N(@)* (2N (@ N (@7 F)) e

c=1

where:
e T

o= ZW
Proof. We set:
H(z) = FO(z +ia)) FV (2 +ia’) — FO(z +iad) F® (2 +ia?)
When y = 0, |H(z +iy)| = ||FU(x + ia?)[2 — |[F(x + ia?) . So:
|H(z +iy)| < eN(a?)? if z € [-Ma’; Md’]
< N(d)*if x ¢ [-Ma’; Md’]
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When y = o/ — o/ *:

|H(z + iy)| = |[FO(z + iai=*)FY (x + (267 — a’*)) — FO(z + iad =) FP(z +i(2a7 — o’ %))
< 2N (207 — a? )N (a7 ) (Vz € R)
We apply the lemma to H, restricted to the band {z € C s.t. Imz € [0;a’ — a/7*]}.
From this lemma, when y = ¢/*! — ¢/ and x € [—~uMa’; uMa’]:

’H(.I + Zy)’ < Ef(r+iy)N(aj)20 (2]\/(2@] _ aj—k)N<aj—k>)1—c

a—1

where ¢ = 1 — ;%= and:

- Nlajf\z|

a—1 e "al-al™¥
_ ok _ ]\/fuj7|:l;|
1 a 1—e T ik

flx+iy) >c—2

Mal —|z| > M

Because of the definition of k, % < 1. Moreover, == > == > p, so:
e T
N> a9 €0
flx+1iy) > ¢ 21—@‘”“ c—«

Replacing H by its definition yields:
‘F(l)(x +i(2a7 — a1 ) FY(z 4+ ia? )= FO(z 4+ i(20) — ai+))F P (z + iajH)‘
— |G+ 0™ — )
< N (a?)* (2N(2aj — aj*k)/\f(aj’k))l_c

To conclude, it suffices to note that, because of the way we chose k, 24/ — a’~* > a/*! so, from

[C] M(2d7 — a=F) < N(a?h). O
Theorem D.2. Let the following numbers be fixed:

€,k €]0; 1[ with k > 17°) M >0 € [0; M| JEL K eN
We assume that, for anyn € {j +1,....5+ K} and x € [-Ma’T5; Ma/TE]:
(47) IFD (@ + i) — [FO(z + ia") | < eN(a")
(48) |FD (2 4+ ia™)|?, |FP (z + ia™)|? > kN (a")?
We define recursively:
ng=j+K wy = o/t
Vie N N1 =n; — 2 w1 = w; — (a — 1)%a™+
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For any 1 > 0 such that ny > j and M — (I + 1)u > 0, we have, provided that ¢; < 1:

1 . -
yvapmyvornd i FO (g 4 ia™)— FO(z + iw) FO(z + ia™
N (w)N(a™) ’ )z + jwy) (x +ia™) (x + dwy) (x +ia )‘
2k~ l2 _ - U=1)/2 _ 1
< 3D c
< 3D, ( 1= r ) €
(49) (v € [—(M — (1 + D)™ (M — (1 + )p)a?*¥])

Proof. We procede by induction over [.
For [ = 0, is a direct consequence of . Indeed, wg = a™, Dy = 1,¢9 < 1 so, for
T € [-Ma't5; Ma/tE]:
1

N’(aTJ,O)Q’|F(1)(x+ZGnO)|2 . |F(2)($+2a"0)|2' S € S 3D0660

We now suppose that holds for [ and prove it for [ + 1.

We procede in two parts. First, we use the induction hypothesis to bound the function
‘F(l)(x +iw)) FO (2 + i(2a™ ™ — a™)) — F®(x + dw;) F (z + i(2a™ " — a”l))‘. In a second part,
we use this bound to obtain the desired result.

First part: by triangular inequality,

\Fu)(g; +iwy) FO(z +i(2a7 — a™)) — FO (2 + iw)) FP (z + i(2a™ ™t — a”l)))
(50) < [FO(z +iw) FO(z + ia™) — FO(z + iw) FO (z + ia™)
FO (2 44(2a™ — a™))
FO(z + ia™)
FO(x 4ia™)  FO(z +iam)
FO(x4ia™)  FO(x + iam™)

X ‘F ) (z + iw) FY(z 4 i(2a™ a"’))‘
(52) + [FO(z +iam) FY(z 4 i(2a™ ™ — a™)) — FO(z + ia™) FP (2 + i(2a™ ™t — a”l))‘
FO)(z 4 iw)
FO(z 4 ia™)

By the induction hypothesis, for z € [—(M — 2lu)a?™5; (M — 2lu)a?* ], (50) is bounded by:

[FO@ + iw)FO (2 +ia™) ~FO(x + iw) FO (x + ia™)|

=l/2 _ —(-1)/2 _
< 3D, <2K; 1 i \/E 1) N(UJ[)N(CL”Z)ECI
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Because of (47) and (48]) (for n = n;), (51)) is bounded by:

FO(z+ia™)  FO(z+iam)| ||[FO(z+ia™)|? — |[FO(z 4 ia™)|?
FO(x4ia™)  FO(z + ia™) N FO(x +ia™)FO(x + ia™)

IN
R

Finally, from the lemma applied to j = n; — 1, (52)) is bounded by:

[FO @ +iam) FO(x + (20" = a™)) = FO(z +iam) FP (x +i(2a™ " = a™))|
S N(anl_l)QC(QN(anl)N(anl_l_k))l_CGC_a

for all z € [-Ma’™® + pa?; Ma?t5 — pa?] O [—(M — (I + D)p)a? 5 (M — (20 + 1)p)a? TE].

We insert these bounds into the triangular inequality. We also use the fact that |FM)(z +
ia™)|, |F® (x + ia™)| > /N (a™). We get, for any x € [—(M — (I + 1)p)a?* 5 (M — (1 +
Dp)a’E]:

‘Fu)(;@ +iwy) FO(z +i(2am ™ —a™)) — FO(z + i) FP (x + i(2a™ " — a"l))]
1 9 —1/2 _ —(1-1)/2 _ 1
< ﬁi))Dl < " . i N )/\/'(wl)/\/'(Qa’”_1 —a™)e
= NN — a)
2170 N(wl) n;—1\2c¢ ny—1—k\l—c _c—a
R NN

We must now simplify this inequality.
First, 2a™~! — a™ = ca™ ' + (1 — ¢)a™ "% so, from the lemma [C.1} N'(2a™! — a™) <
N(a™ 1N (am~1F)1=e So:
[FO @ +iw) FO(z 420" = a™)) = FO(z + iw) F (z + (2" " = a™))|
S N(wl)/\/‘(amil){Af(dnlilik)lic

1 2ﬁ—l/2 _ Ii_(l_l)/g -1 € 21—0N(anl—1)c
x | —=3D; €+ — + e
VK 1—+/k kK Kk N(am)e
Now we note that 1 < N /\(/(]{ZZ)I) (from the lemma [C.1| again, because a™~! < a™). Because
k> €179 we also have €< \E/E < Ej/_g. And as ¢ — o > ¢, €@ < €. This gives:

‘F(l)(l’ +iwy) FO(z +i(2a™ — a™)) — FO(z + dw) FP (z + i(2a™ ™ — a"l)))
c n;—1\2c n;—1—k\1—c 2) -l/2 _ —(1-1)/2 _ 1
< N (M N @ T <3Dl< " : " >+1+2H>

Nlany Vi
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If we bound 2'7¢ by 2 and notice that D; > 1 (because, from [C.1} it is a product of terms bigger
that 1), we have:

’F(l)(x +iwy) FO(z+i(2a™ — a™)) — FO(z + iw) FP (z + i(2a™ " — a”l))‘
a n;—1)\2¢c n—1—k\1—c 2 -1/2 _ . —(1-1)/2 _ 1
< £ 3Dl/\/(wl)N(a )*N (a ) K K +1
VE N(am)e 1 -k

N N(anl—1)2c/\/’(anl—l—k)l—c 2/ﬁ}_(l+1)/2 _ /1_1/2 -1
S 3€ Dl/\/'(wl) N(anl)c 1 \/E

Finally, from [C.1] we have A/(a™~) < N(a™)Y2N (2a™~" — a™)/? so:
)F(l)(g; +iwy) FO(z +i(20" — a™)) — FO(z + iw)) FP (x + i(2a™ " — a"l))\

N (a1 I=e ro—+1)/2 _ /2

Second part: we define, for any z € C such that —2a™ ! +a™ < Imz < w;:

H(z) = FOZ 4 iw) FY (2 +i(2a™ 7! — a™)) — FO(Z + iw)) FP (2 4 i(2a™ 1 — a™))

We write:
n—1—k I—c 9—(+1)/2 _ =1/2 _ 1
B §Dz N(a ) K K
2 N(2am—1 — am) 11—k

From the first part:
|H(z +iy)| < 2N (w)N (20"~ —a™)Be if y = 0,2 € [~(M — (I + 1))’ (M — (I + 1) p)a” ]
< 2N (w)N (2" —a™) if y=0,2 ¢ [~(M— ([ +1)u)a ™ (M = (I + 1)p)a’**]

Moreover, if we set y; = w; — 2a™ ! + a™:

H(x +iy) = FO(z +i(2an=1 — am))FY (2 4 iwy) — FO(z 4+ i(2am—1 — a™))FO (z + iw,)
= H(x)
Thus, we also have:
|H(z +iy)] < 2N (w)N (20"~ —a™)Be if y =y, € [(M — (I + 1)) (M — (I + 1) p)a’ ]
CON (N —a™) iy =ya @ [~(M — (L D) (M — (14 1)) K]

We apply the lemma [E.3) with a = 0,6 = 3. For Imz = (¢ — 1)%2a™ 2 and |Re z| < (M — (I +
1)p)a? T

(53) |H(2)| < 2N (w)N (2a™ 1 — a™)(Bext)/®

M=+l P Re 2| >
v

Y _ (M—(+D)padtE—|Re 2|

e vy

Wlth f(Z) Z 1 _ 4(a71)21a’ﬂl*2 ( e
1
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From the definition of w;, one may check that (w;) is a decreasing sequence which converges

to QZTIK when [ goes to oo. So, for any [ > 0:
Yy < w < wp = al i
+K +K _
Yz 2 ggnt 4 g > 20T gt gt wwm

From this we deduce:

M =+)maT K |Re z|

a®—1 5, e .
f(Z) >1-4 ma Lo (Af—<z+1>i;¢z+f;K—|Re 2|
i+ K a’?—1_—21— e TH
So, when [Rez| < (M — (I +2)u)a’™™, f(2) > 1 —4%5a™ ! (=)

As B > land f(z) < 1, B/ < B. Moreover, ¢; < 1so ¢, f(z) > ¢,—(1—f(2))if 1—f(2) > 0.
The equation thus gives:

a2—1 —2]— e TH
) < 2N (g 2t — et S (55
= QN(wl)N(Za”l_l _ anl)B66l+1

—(4+1)/2 _ —1/2 _
_ BDZN(wl)N(Qa"l*I i am)c./\/‘(anzflfk)lfc <2/f K 1) e

11—k

Because w; > wyyq and 2a™ 1 —a™ > a™17% we have N (w;) < N (wy41) and N (2a™ 1 —a™) <
N (a™=1=F). Thus:

n—1—k —(+1)/2 _ —1/2 _
H(2)| < 3D (wi) A () )<2ﬁ 7 1>

N(anl—Q) 1— \/E
2,{/*“4*1)/2 _ K*l/? -1
60l+1
e
So, for any z € [=(M — (I + 2)u)a” 5 (M — (I + 2)p)a’*¥]:
1
N (wiy1)N (am

= 3D N (wi1)N (a™?) (

) ‘ FO(z 4 dwpy ) FY (z +ia™+) — FO (2 4 dwyy) FP (z + da™+)
= |H(z +i(a — 1)%a™?)|
2ﬁ—(l+1)/2 _ K—Z/Q . 1)
GCZ+1

1=k

This is exactly the induction hypothesis at the order [ + 1. O

< 3D (

Proof of the theorem[5.2, We will obtain the desired theorem as a corollary of the previous one
D2).

The conditions and (48) in the statement of the theorem are equivalent to and
(34), required in the theorem 5.2
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Thus, if we fix u € [0; M|, we have that, for any [ > 0 such that n; > j and M — (14 1)u > 0,
under the condition that ¢; < 1:

1 e -

N [P0+ i) PO+ i) = FO+ fu) FO(o + ia™)
QU2 _ p—(1=1)/2 _ 1)

€

NG
(V33 S [_(M — (l—|— 1)u)aj+K; (M B (l—|— 1>M)aj+K])

§3Dz<

where the constants are defined as in [D.2]

We can check that, for any [, w; = “(::( (24 (a —1)a™?).

We take [ = K/2. We then have w; = 270/ + a7 = a’ and n; = j. For this [, the
previous inequality is equivalent to:

Nij ‘f(l) x (@) [V %) = [ xipy(x) f *%’(l’)‘

9 -K/4 _ —(K-2)/4 _ 1
< 3D, ( i a >eCl
11—k
. a e~ T e TH k- K/A_—(K=2)/4_

We observe that ¢; > llgglocl = c—2 (1 +2 m) (1_87,7”) >c—4 (l_e,w) and 2 T L <
2k~ K/4

v . 4

So, for any = € [—(M — p(1 + K/2))a?™5; (M — p(1 + K/2))a/ TE]:
1 -
O sy () f O () = F@ s ipy () fO ()
N;yN;

< op N (i)

NG

From the equation (32)):

D — Kﬁ_l N (a™=17F) _ Kﬁl (ap(k—1) an—l—k>
: s=0 N(an5_2) s=0 an—2

For p = our last inequality is exactly the desired result. 0

M
K+2°
APPENDIX E. BOUNDS FOR HOLOMORPHIC FUNCTIONS

In the proofs of the section [5, we often have to consider holomorphic functions defined on
a band of the complex plane. We want to obtain informations about their values inside the
band from their values on the boundary of the band. This is the purpose of the three theorems
contained in this section.

In the whole section, a,b are fixed real numbers such that a < b. We write B,, = {z €
Cs.t. a < Imz < b}. We consider a holomorphic function W : B,;, — C which satisfies the
following properties:
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(i) W is bounded on B,.
(i) W admits a continuous extension over B,;, which we still denote by .
The first theorem we need is a well-known fact. We recall its demonstration because it is
very short and relies on the same idea that will also be used in the other proofs.
Theorem E.1. We suppose that, for some A, B > 0:
W) <Aiflmz=a
(W(z)| <Biflmz=1»b
Then, for all t €]0;1] and all z € C such that Im z = (1 — t)a + tb:
W(z)| < A'B
Proof. For every € > 0 and z € By
(b —Imz)log(A) + (Im z — a) log(B)
b—a
is subharmonic on B,; and continuous on B, ;. It is upper-bounded and takes negative values
on 0B,p. Moreover, L(z) — —oo when Re(z) — Zoo. From the maximum principle, this

function must be negative on B .
Letting € go to 0 implies:

L(z) = log(|W(2)[) — —elog|z +i(1 —a)|

(b—Imz)log(A) + (Imz — a) log(B)
b—a

b—Im = Im 2—a

= |W(z)] < AT B

log(|W(2)[) <

Vz € Fa,b

Lemma E.2. Let A, B,e > 0 be fixed real numbers, with e < 1. We assume that:
W(z)| < Biflmz=5b
(W(z)| <Aiflmz=a and Rez ¢ [—M; M|
(W (2)] <€A iflmz=a and Rez € [-M; M]
Then, for all z such that a < Imz < b, if t € [0;1] is such that Imz = (1 — t)a + tb:
W (2)] < @A B

where:

f(z) = —arg o—7M/(b—a) _ gn(z—ia)/(b—a)

1 ewM/(b—a) _ eﬂ'(z—z'a)/(b—a)
™

M7|Re z

and this function satisfies, when [Rez| < M: f(z) > (1 —1t) — 2t%.

1—e b—a
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eﬂ'(z—ia)/(b—a)

|
T T

0 e—7M/(b—a) e™M/(b—a)

FIGURE 7. Positions of the points used in the definition of f

Proof. The function f may be continuously extended to B, — {—M +ia; M +ia}. By looking
at the figure [7] one sees that:
f(x+ia)=0forallz € R — [-M; M|
=1forall x €] — M; M|
flx+ib)=0for all z € R

We set:
f(=M +ia) = f(M +ia) =1
This definition makes the extension of f upper semi-continuous on B, (because f < 1 on all
Bap).
For any n > 0, the following function is subharmonic on B, :
(b —Imz)log(A) + (Im z — a) log(B)
b—a

L(z) = log(|W(2)]) — log(e) f(z) — —nlog|z +i(1 —a)|
It is upper semi-continuous on B, and tends to —oo when Rez — +oo. Thus, this func-
tion admits a local maximum over B,;,. This maximum is attained on 0B,;, because L is
subharmonic.

From the hypotheses, one can check that L(z) < 0 for all z € 0B,;. The function L is
thus negative on the whole band B,;. Letting 1 go to zero gives, for all z € B, such that
Imz=(1—t)a+tb:

W (2)] < @At

M—|Re 2

We are only left to show that f(z) > (1 —1t) — 2¢ e = b

a
A17|Re z

| when Im z = (1 — t)a + tb.

l1—e b—a
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If we write z = Re (2), we have:

1 I em(@=M)/(b=a) gmit)
fe) = T are <_6 1 — e n(M+2)/(b—a) g it

1 1— ew(w—M)/(b—a)em't)
- (1 o t) + ; arg 1 — e m(M+z)/(b—a)o—mit

We note that:

And the same inequality holds for . This implies the result.

_ M4z o
arg (1 —e Thae ”t)

O

The proof of the third result is similar to the proof of the second one. We do not reproduce
it.

Lemma E.3. Let M, A, e > 0 be fixed real numbers, with e < 1. We assume that:

W(z+ia)| < A W(x+ib)| <A VreR-[-M;M]
(W (x +ia)] < eA |W(zx+ib)| <eA  Vxe|-M;M]

Then, for all z such that a < Im z < b:

W (z)] < @A

where:
1 eﬂ'M/(b—a) _ ew(z—ia)/(b—a) _e—WM/(b—a) _ eﬂ(z—ia)/(b—a)
f(Z) = —arg —7M/(b—a w(z—ia)/(b—a) " wM/(b—a m(z—ia)/(b—a
T e /(b—a) _ em(z—ia)/(b—a)" _emM/(b—a) _ gm(z—ia)/(b—a)
- IM—|R6 z|
and this function satisfies, when |Rez| < M: f(z) > 1 — 4t % , fort = Ing_za_“.

1—e b—a
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