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Abstract—This article describes a new algorithm that solves a
particular phase retrieval problem, with important applications
in audio processing: the reconstruction of a function from its
scalogram, that is, from the modulus of its wavelet transform.

It is a multiscale iterative algorithm, that reconstructs the sig-
nal from low to high frequencies. It relies on a new reformulation
of the phase retrieval problem, that involves the holomorphic
extension of the wavelet transform. This reformulation allows to
propagate phase information from low to high frequencies.

Numerical results, on audio and non-audio signals, show that
reconstruction is precise and stable to noise. The algorithm has
a linear complexity in the size of the signal, up to logarithmic
factors, and can thus be applied to large signals.

Index Terms—Phase retrieval, scalogram, iterative algorithms,
multiscale method

I. INTRODUCTION

The spectrogram is an ubiquitous tool in audio analysis
and processing, eventually after being transformed into mel-
frequency cepstrum coefficients (MFCC) by an averaging
along frequency bands. A very similar operator, yielding the
same kind of results, is the modulus of the wavelet transform,
sometimes called scalogram.

The phase of the wavelet transform (or the windowed
Fourier transform in the case of the spectrogram) contains
information that cannot be deduced from the single modulus,
like the relative phase of two notes with different frequencies,
played simultaneously. However, this information does not
seem to be relevant to understand the perceptual content
of audio signals [1], [2], and only the modulus is used in
applications. To clearly understand which information about
the audio signal is kept or lost when the phase is discarded,
it is natural to consider the corresponding inverse problem: to
what extent is it possible to reconstruct a function from the
modulus of its wavelet transform? The study of this problem
mostly begun in the early 80’s [3], [4].

On the applications side, solving this problem allows to
resynthesize sounds after some transformation has been ap-
plied to their scalogram. Examples include blind source sepa-
ration [5] or audio texture synthesis [6].

The reconstruction of a function from the modulus of its
wavelet transform is an instance of the class of phase retrieval
problems, where one aims at reconstructing an unknown signal
x € C™ from linear measurements Az € C™, whose phase has
been lost and whose modulus only is available, |Ax|. These
problems are known to be difficult to solve.

Two main families of algorithms exist. The first one consists
of iterative algorithms, like gradient descents or alternate pro-
jections [7], [8]. In the case of the spectrogram, the oldest such
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algorithm is due to Griffin and Lim [3]. These methods are
simple to implement but, because the phase retrieval problem
is non-convex, they are not guaranteed to converge towards
the correct solution, and often get stuck in local minima. For
measurement matrices A that are chosen at random (according
to a suitable distribution), this problem can be overcome with a
careful initialization of the algorithm [9]-[11]. However, these
methods do not apply when measurements are not random. In
the case of the spectrogram or scalogram, the reconstructed
signals tend to present auditive artifacts. For the spectrogram,
the performances can be improved by applying the algorithm
window by window and not to the whole signal at the same
time [12]. If additional information on the nature of the audio
signal is available, it can also be taken into account in the
algorithm [13], [14]. Nevertheless, in the general case, the
reconstruction results are still perfectible.

More recently, convexification methods have been proposed
[15], [16]. For generic phase retrieval problems, these methods
are guaranteed to return the true solution with high probability
when the measurement matrix A is chosen at random. In the
case of the spectrogram or scalogram, the matrix is not random
and the proof does not hold. However, numerical experiments
on small signals indicate that the reconstruction is in general
correct [17], [18]. Unfortunately, these methods have a high
complexity, making them difficult to use for phase retrieval
problems whose size exceeds a few hundred.

In this article, we present a new algorithm for the recon-
struction of a function from its scalogram. As convexification
methods, it offers a reconstruction of high quality. However,
it has the complexity of an iterative method (roughly propor-
tional to the size of the signal, up to logarithmic factors) and
can be applied to large signals. The memory it requires is also
proportional to the size of the signal.

The algorithm is multiscale: it performs the reconstruction
frequency band by frequency band, from the lowest frequen-
cies up to the highest ones.

The main idea of this algorithm is to introduce an equivalent
formulation of the phase retrieval problem (by using the
analytic extension of the wavelet transform).

This reformulation gives an explicit method to propagate
towards higher scales the phase information reconstructed at
the low scales. Moreover, the local optimization algorithm nat-
urally derived from this reformulation, although non-convex,
seems very robust to the problem of local minima.

Additionally:

o we introduce a multigrid error correction method, to
detect and correct eventual errors of the reconstruction
algorithm afterwards
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Figure 1. Example of wavelets; the figure shows +; for J —5 < j < J in
the Fourier domain. Only the real part is displayed.

e we use our algorithm to numerically study the intrinsic
stability of the phase retrieval problem, and highlight the
role played by the sparsity or non-sparsity of the wavelet
coefficients.

Section II is devoted to definitions and notations. We explain
our reformulation of the phase retrieval problem in Section
III, prove its equivalence with the classical formulation, and
describe its advantages. In Section IV, we describe the re-
sulting algorithm. In Section V, we discuss the superiority
of multiscale algorithms over non-multiscale ones. Finally, in
Section VI, we give numerical results, and empirically study
the stability of the underlying phase retrieval problem.

The source code, and several reconstruction examples, are
available at:

http://www.di.ens.fr/~waldspurger/wavelets_phase_retrieval.html

II. DEFINITIONS AND ASSUMPTIONS

All signals f[n] are of finite length N. Their discrete Fourier
transform is defined by:

N—1
flk] =" fl)e® %  k=0,..,N-1
s=0
and the convolution always refers to the circular convolution.
We define a family of wavelets (1;)o<;<J by:

bilk] = $(a’k)
where the dilation factor a can be any number in (1;+00)
and ¢ : R — C is a fixed mother wavelet. We assume that
J is sufficiently large so that 1) ; is negligible outside a small

set of points. An example is shown in Figure 1.
The wavelet transform is defined by:

Wf={fxv¥jto<i<s

The problem we consider here consists in reconstructing
functions from the modulus of their wavelet transform:

k=0,..,N—1

VfeRN,

Reconstruct f from {|f * ;| }o<j<s
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Figure 2. s,...,%j4+1,%; (in the Fourier domain), along with wé"w and
11%9" (dashed lines)

Multiplying a function by a unitary complex does not change
the modulus of its wavelet transform, so we only aim at
reconstructing functions up to multiplication by a unitary
complex, that is up to a global phase.

All signals are assumed to be analytic:

fl[k] =0 when N/2<k<N -1 (1)
Equivalently, we could assume the signals to be real but set
the ¢;[k] to zero for N/2 < k < N — 1.

III. REFORMULATION OF THE PHASE RETRIEVAL PROBLEM

In the first part of this section, we reformulate the phase
retrieval problem for the wavelet transform, by introducing
two auxiliary wavelet families.

We then describe the two main advantages of this refor-
mulation. First, it allows to propagate the phase information
from the low-frequencies to the high ones, and so enables
us to perform the reconstruction scale by scale. Second,
from this reformulation, we can define a natural objective
function to locally optimize approximate solutions. Although
non-convex, this function has few local minima; hence, the
local optimization algorithm is efficient.

A. Introduction of auxiliary wavelets and reformulation
Let us fix  €]0; 1] and define:

Vk=0,.,N—1,  @l*[k] = g;[k]r*
G5 K] = k]

This definition is illustrated by Figure 2. The wavelet z/?l-ow
has a lower characteristic frequency than QL]‘ and 1%”9 a
higher one. The following theorem explains how to rewrite a

condition on the modulus of fx1); as a condition on f *wé-m”
and f * w;”g "

Theorem IIL1. Let j € {0,...,J} and g; € (RT)N be fixed.
Let QQ; be the function whose Fourier transform is:

N -~

Q;lk] = r* g3 [K] @)



For any f € CV satisfying the analycity condition (1), the
following two properties are equivalent:

D fxil=9

2) (Frup) (i) = Q;
Proof. The proof consists in showing that the second inequal-
ity is the analytic extension of the first one, in a sense that
will be precisely defined.

For any function A : {0,...,N — 1} — C, let P(h) be:

A
> k]

k=& |-N+1

VzeC P(h)(2) =
Up to a change of coordinates, P(|f x1;|*) and P(g3) are
equal to P((f *9!o)(f x¢}*")) and P(Q;):
Lemma IIL.2. For any f satisfying the analycity condition
(1), and for any z € C:
P(|f #*)(r2) = P((f x00)(f % 457" (2)
and  P(g3)(rz) = P(Q;)(2)

This lemma is proved in the appendix B. It implies the result
because then:

|f x| = g;
= |f*xP =g
= Vz, P(|f x¢;[*)(2) = P(97)(2)
=z, P(|f x 9 ]*)(rz) = P(g7)(r2)
=V, P((f % 40 (f x 9™™)) (2) =
= (frle)(f ol = Q;

P(Qy)(2)

O

By applying simultaneously Theorem III.1 to all indexes j,
we can reformulate the phase retrieval problem |f x ;| =
g5, Vj in terms of the f x{*’s and f*w;mgh,&

Corollary IIL.3 (Reformulation of the phase retrieval prob-
lem). Let (gj)o<j<s be a family of signals in (RT)N. For
each j, let QQ; be defined as in (2). Then the following two
problems are equivalent:

Find f satisfying (1) such that:
Vi, |f sl =g;

Find f satisfying (1) such that:

Vi, (fule)(f i) = @, 3)

B. Phase propagation across scales

This new formulation yields a natural multiscale reconstruc-
tion algorithm, in which one reconstructs f frequency band by
frequency band, starting from the low frequencies.

Indeed, once f x1y,..., f x1;4+1 have been reconstructed,
it is possible to estimate f x w;m" by deconvolution. This
deconvolution is stable to noise because, if r is sufficiently
small, then the frequency band covered by 1/)5»"“’ is almost

included in the frequency range covered by 17, ..., ;1 (see

figure 2). From f *wgow, one can reconstruct f *w;”g , using
3): o
frue = )
Fevm

Finally, one reconstructs f *; from f * z/J;.‘ig " and f plow.

The classical formulation of the phase retrieval problem
does not allow the conception of such a multiscale algorithm.
Indeed, from f %1y, ..., f x1;41, it is not possible to directly
estimate fx1;: it would require performing a highly unstable
deconvolution. The introduction of the two auxiliary wavelet
families is essential.

C. Local optimization of approximate solutions

From the reformulation (3), we can define a natural ob-
jective function for the local optimization of approximate
solutions to the phase retrieval problem. This is also possible
from the classical formulation but the objective function then
has numerous local minima, which make it difficult to globally
minimize. Empirically, the objective function associated to the
reformulation suffers dramatically less from this drawback.

The objective function has 2.J + 3 variables: (h\")o<;j<J.
(h;”gh)g<j<J and f. The intuition is that f is the signal we
aim at reconstructing and the hlo“’ hh”gh correspond to the
fxaplew’s and f wmgh’s The objectlve function is:

obj(h'P™, . b B hg f)
J
= D lmrRy - Q113
j*O
+AZ(IIf*¢““” P34 11 )0 — RO )
)

We additionally constrain the variables (hé-"w
(h;”gh)ogjgj to satisfy:

Jo<j<s and

Vji=0,..,J—1 héf)w *wﬁglh — phigh *wéow ©6)

Jj+1

The first term of the objective ensures that the equalities (3) are
satisfied, while the second term and the additional constraint
(6) enforce the fact that the hé"“”s and h;”gh’s must be the
wavelet transforms of the same function f.

The parameter \ is a positive real number. In our implemen-
tation, we choose a small A, so that the first term dominates
over the second one.

A similar objective function can also be derived directly
from the classical formulation. However, empirically, it ap-
pears to have much more local minima than the function (5);
hence, it is more difficult to efficiently minimize. A possible
explanation is that the set of zeroes of the first term of (5)
(which dominates the second one) has a smaller dimension
when the reformulation is used, thus reducing the number of
local minima it contains.



IV. DESCRIPTION OF THE ALGORITHM

In this section, we describe our implementation of the
multiscale reconstruction algorithm introduced in Section III.
We explain the general organization in Paragraph IV-A. We
then describe our exhaustive search method for solving phase
retrieval problems of very small size (paragraph IV-B), which
our algorithm uses to initialize the multiscale reconstruction. In
Paragraph IV-C, we describe an additional multigrid correction
step.

A. Organization of the algorithm

We start by reconstructing f * ¢ from |f x| and |f *
1 y—1]. We use an exhaustive search method, described in the
next paragraph IV-B, which takes advantage of the fact that
1& 7 and t;_; have very small supports.

We then reconstruct the components of the wavelet trans-
form scale by scale, as described in Section III.

At each scale, we reconstruct f % wé-ow by propagating
the phase information coming from f % v¥s,...,f x V41
(as explained in Paragraph III-B). This estimation can be
imprecise, so we refine it by local optimization, using the
objective function defined in Paragraph III-C, from which
we drop all the terms with higher scales than j. The local
optimization algorithm we use in the implementation is L-
BFGS ( [19]), a low-memory approximation of a second order
method.

We then reconstruct f * ;[;h’gh

by the equation (4).

At the end of the reconstruction, we run a few steps of
the classical Gerchberg-Saxton algorithm to further refine the
estimation.

The pseudo-code 1 summarizes the structure of the imple-
mentation.

Algorithm 1 overview of the algorithm
Input: {|f xv;[}o<j<y

1: Initialization: reconstruct f x ¢ ; by exhaustive search
forallj*J (=1):0 do

Estimate f x wlow by phase propagation

Refine the values of f o plpw L f * e f o«

hlgh, o f *w;lj_gl by local optimization

5: Do an error correction step
6:  Refine again
7
8

Eal i

. Compute f * ’(/J}”gh by f* ’(/J}”gh =Q;/f* w;ow
: end for

9: Compute f

10: Refine f with Gerchberg-Saxton

Output: f

B. Reconstruction by exhaustive search for small problems

In this paragraph, we explain how to reconstruct fx1; from
|fx1,| and | f *ij_1| b}/ exhaustive search, in the case where
the support of 1; and ;_; is small.

This is the method we use to initialize our multiscale
algorithm. It is also useful for the multigrid error correction
step described in the next paragraph IV-C.

Lemma IV.1. Let m € RN and K € N* be fixed. We consider
the problem:

Find g € CN s.t. |g| =m

and Supp(g) C {1, ..., K}

This problem has at most 25 =1 solutions, up to a global phase,
and there exist a simple algorithm which, from m and N,
returns the list of all possible solutions.

Proof. This lemma is a consequence of classical results about
the phase retrieval problem for the Fourier transform. It can
for example be derived from [20]. We give a proof in the
appendix A. O

We apply this lemma to m = |f x ;| and |f % ¢;_1]|, and
construct the lists of all possible f x1;’s and of all possible
fx1j_1’s. The true fx; and fx);_, are the only pair in
these two lists which satisfy the equality:

(fxahg) xhj1 = (f % 1) * ¥y
This solves the problem.

The number of elements in the lists is exponential in the
size of the supports of QL]‘ and ﬁj_l, so this algorithm has
a prohibitive complexity when the supports become large.
Otherwise, our numerical experiments show that it works well.

C. Error correction

When the modulus are noisy, there can be errors during
the phase propagation step. The local optimization generally
corrects them, if run for a sufficient amount of time, but, for
the case where some errors are left, we add, at each scale,
a multigrid error correction step. This step does not totally
remove the errors but greatly reduces their amplitude.

1) Principle: First, we determine the values of n for which
fxplewin] and f * L/J;liglh[ | seems to have been incorrectly
reconstructed. We use the fact that f wé-"w and f ¢§”+’91h
must satisfy:

l high high l
(f*wjow) *,(/}jzjrglb _ (f*’(/}jliglb) *wjow

The points where this equality does not hold provide a good
estimation of the places where the values of f % zb;ow and

fx W”glh are erroneous.

We then construct a set of smooth “windows” wq, ..., wg,
whose supports cover the interval on which errors have
been found (see figure 3), such that each window has a
small support. For each s, we reconstruct (f wéow).ws and
(f *wﬁglh).ws, by expressing these functions as the solutions
to phase retrieval problems of small size, which we can solve
by the exhaustive search method described in Paragraph IV-B.

As wg is smooth, the multiplication by wg approximately

commutes with the convolution by 1, ;4 1:

[(fows) x 5] = |[(f % 5)-ws| = ws| f * 9y
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Figure 3. Four window signals, whose supports cover the
interval in which errors have been detected

|(fws) *x jva| = [(f *¥j11)ws| = ws|f *bja]

The wavelets v; and ;11 have a small support in the Fourier
domain, if we truncate them to the support of ws, so we
can solve this problem by exhaustive search, and reconstruct
(fws) x5 and (f.ws) * ;1.

From (f.ws) % 1; and (f.ws) % 141, we reconstruct (f
) g~ (faws)x i and (fxih3 ) we & (Favs)x i
by deconvolution.

2) Usefulness of the error correction step: The error cor-
rection step does not perfectly correct the errors, but greatly
reduces the amplitude of large ones.

Figure 4 shows an example of this phenomenon. It deals
with the reconstruction of a difficult audio signal, representing
a human voice saying “I'm sorry”. Figure 4a shows f % y,°®
after the multiscale reconstruction at scale 7, but before the
error correction step. The reconstruction presents large errors.
Figure 4b shows the value after the error correction step. It is
still not perfect but much closer to the ground truth.

So the error correction step must be used when large errors
are susceptible to occur, and turned off otherwise: it makes
the algorithm faster without reducing its precision.

Figure 5 illustrates this affirmation by showing the mean
reconstruction error for the same audio signal as previously.
When 200 iterations only are allowed at each local optimiza-
tion step, there are large errors in the multiscale reconstruction;
the error correction step significantly reduces the reconstruc-
tion error. When 2000 iterations are allowed, all the large
errors can be corrected during the local optimization steps and
the error correction step is not useful.

V. MULTISCALE VERSUS NON-MULTISCALE

Our reconstruction algorithm has very good reconstruction
performances, mainly because it uses the reformulation of the
phase retrieval problem introduced in Section III. However, the
quality of its results is also due to its multiscale structure. It
is indeed known that, for the reconstruction of functions from
their spectrogram or scalogram, multiscale algorithms perform
better than non-multiscale ones [12], [21].
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Figure 4. For an audio signal, the reconstructed value of f x 7,[)17"“’ at the
scale 7 of the multiscale algorithm, in modulus (dashed line); the solid line
represents the ground true. (a) Before the error correction step (b) After the
error correction step

In this section, we propose two justifications for this phe-
nomenon (paragraph V-A). We then introduce a multiscale
version of the classical Gerchberg-Saxton algorithm, and nu-
merically verify that it yields better reconstruction results than
the usual non-multiscale version (paragraph V-B).

A. Advantages of the multiscale reconstruction

At least two factors can explain the superiority of multiscale
methods, where the fx1);’s are reconstructed one by one, and
not all at the same time.

First, they can partially remedy the possible ill-conditioning
of the problem. In particular, if the f*1);’s have very different
norms, then a non-multiscale algorithm will be more sensitive
to the components with a high norm. It may neglect the
information given by | fx;|, for the values of j such that this
function has a small norm. With an multiscale algorithm where
all the | f x1);|’s are successively considered, this happens less
frequently.

Second, iterative algorithms, like Gerchberg-Saxton, are
very sensitive to the choice of their starting point (hence the
care given to their initialization in the literature [9], [10]). If
all the components are reconstructed at the same time and the
starting point is randomly chosen, the algorithm almost never
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Figure 5. Mean reconstruction error (9) as a function of the noise, for an
audio signal representing a human voice. (a) Maximal number of iterations
per local optimization step equal to 200 (b) Maximal number equal to 2000.

converges towards the correct solution: it gets stuck in a local
minima. In a multiscale algorithm, the starting point at each
scale can be chosen so as to be consistent with the values
reconstructed at lower scales; it yields much better results.

B. Multiscale Gerchberg-Saxton

To justify the efficiency of the multiscale approach, we
introduce a multiscale version of the classical Gerchberg-
Saxton algorithm [8] (by alternate projections) and compare
its performances with the non-multiscale algorithm.

The multiscale algorithm reconstructs f x; by exhaustive
search (paragraph IV-B).

Then, for each j, once f*1)y,..., fx1;41 are reconstructed,
an initial guess for f % v; is computed by deconvolution.
The frequencies of f x 1; for which the deconvolution is
too unstable are set to zero. The regular Gerchberg-Saxton
algorithm is then simultaneously applied to f x 1y, ..., f x ;.

We test this algorithm on realizations of Gaussian random
processes (see Section VI-B for details), of various lengths.
On Figure 6, we plot the mean reconstruction error obtained
with the regular Gerchberg-Saxton algorithm and the error
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Figure 6. Mean reconstruction error, as a function of the size of the signal;
the solid blue line corresponds to the multiscale algorithm and the dashed red
one to the non-multiscale one.

obtained with the multiscale version (see Paragraph VI-A for
the definition of the reconstruction error).

None of the algorithms is able to perfectly reconstruct the
signals, in particular when their size increases. However, the
multiscale algorithm clearly yields better results, with a mean
error approximately twice smaller.

VI. NUMERICAL RESULTS

In this section, we describe the behavior of our algorithm.
We compare it with Gerchberg-Saxton and with PhaseLift.
We show that it is much more precise than Gerchberg-Saxton.
It is comparable with PhaseLift in terms of precision, but
significantly faster, so it allows to reconstruct larger signals.

The performances strongly depend on the type of signals we
consider. The main source of difficulty for our algorithm is the
presence of small values in the wavelet transform, especially
in the low frequencies. .

Indeed, the reconstruction of f % w;”gh by the equation (4)
involves a division by f x 1/1}0“’. When f x wé"w has small
values, this operation is unstable and induces errors.

As we will see in Section VI-C, the signals whose wavelet
transform has many small values are also the signals for which
the phase retrieval problem is the least stable (in the sense
that two functions can have wavelet transforms almost equal
in modulus without being close in [?-norm). This suggests
that this class of functions is intrinsically the most difficult to
reconstruct; it is not an artifact of our algorithm.

We describe our experimental setting in Paragraph VI-A.
In Paragraph VI-B, we give detailed numerical results for
various types of signals. In Paragraph VI-C, we use our
algorithm to investigate the stability to noise of the underlying
phase retrieval problem. Finally, in Paragraph VI-D, we study
the influence of various parameters on the quality of the
reconstruction.

A. Experimental setting

At each reconstruction trial, we choose a signal f and
compute its wavelet transform {|f * 1;|}o<;<s. We corrupt



it with a random noise n;:
hj = f x4;] +n; ™

We measure the amplitude of the noise in /2-norm, relatively
to the [2-norm of the wavelet transform:

2lIng113
J

amount of noise = —— (8)

[20I1S #1513
J

We run the algorithm on the noisy wavelet transform
{h;}o<j<. It returns a reconstructed signal f,... We quantify
the reconstruction error by the difference, in relative [2-norm,
between the modulus of the wavelet transform of the original
signal f and the modulus of the wavelet transform of the
reconstructed signal f;..:

¢z|| | %103 = |free % 951113
J

[20I1L #5113
J

Alternatively, we could measure the difference between f and

fTEC:
Hf B frecH2
[1.f[l2

But we know that the reconstruction of a function from the
modulus of its wavelet transform is not stable to noise [22]. So
we do not hope the difference between f and f,... to be small.
We just want the algorithm to reconstruct a signal f... whose
wavelet transform is close to the wavelet transform of f, in
modulus. Thus, the reconstruction error (9) is more relevant
to measure the performances of the algorithm.

reconstruction error =

)

error on the signal = (10)

In all the experiments, unless otherwise specified, we use
dyadic Morlet wavelets, to which we subtract Gaussian func-
tions of small amplitude so that they have zero mean:

P(w) = exp(—p(w — 1)%) — Bexp(—pw?)

where $ > 0 is chosen so that 1/3(0) = 0 and the parameter p is
arbitrary (it controls the frequency bandwidth of the wavelets).
For N = 256, our family of wavelets contains eight elements,
which are plotted on Figure 18a. The performances of the
algorithm strongly depend on the choice of the wavelet family;
this is discussed in Paragraph VI-D1.

The maximal number of iterations per local optimization
step is set to 10000 (with an additional stopping criterion, so
that the 10000-th iteration is not always reached). We study
the influence of this parameter in Paragraph VI-D2.

The noises are realizations of Gaussian white noises.

The error correction step described in Paragraph IV-C is
always turned on.

Gerchberg-Saxton is applied in a multiscale fashion, as
described in Paragraph V-B, which yields better results than
the regular implementation.

We use PhaseLift [23] with ten steps of reweighting, fol-
lowed by 2000 iterations of the Gerchberg-Saxton algorithm.
In our experiments with PhaseLift, we only consider signals
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Figure 7. Realization of a Gaussian process (left) and modulus of its wavelet
transform (right)
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Figure 8. Mean reconstruction error as a function of the noise, for Gaussian
signals of size N = 256 or 10000

of size N = 256. Handling larger signals is difficult with a
straightforward Matlab implementation.

B. Results

We describe four classes of signals, whose wavelet trans-
forms have more or less small values. For each class, we plot
the reconstruction error of our algorithm, Gerchberg-Saxton
and PhaselLift as a function of the noise error.

1) Realizations of Gaussian random processes: We first
consider realizations of Gaussian random processes. A signal
f in this class is defined by:

A X .

kl=— ifked{l,.. N/2

fil) = o ke (1 N/2)
=0 if not

where X1, ..., Xv/o are independent realizations of complex
Gaussian centered variables. The role of the vk+ 1 is to
ensure that all components of the wavelet transform approxi-
mately have the same [?-norm (in expectation). An example is
displayed on Figure 7, along with the modulus of its wavelet
transform.

The wavelet transforms of these signals have few small
values, disposed in a seemingly random pattern. This is the
most favorable class for our algorithm.

The reconstruction results are shown in Figure 8. Even for
large signals (/N = 10000), the mean reconstruction error is
proportional to the input noise (generally 2 or 3 times smaller);
this is the best possible result. The performances of PhaseLift
are exactly the same, but Gerchberg-Saxton often fails.



Figure 9. Line from an image (left) and modulus of its wavelet transform
(right)
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Figure 10. Mean reconstruction error as a function of the noise, for lines
extracted from images, of size N = 256 or 10000

2) Lines from images: The second class consists in lines
randomly extracted from photographs. These signals have
oscillating parts (corresponding to the texture zones of the
initial image) and smooth parts, with large discontinuities in
between. Their wavelet transforms generally contain a lot a
small values, but, as can be seen in Figure 9, the distribution
of these small values is particular. They are more numerous at
high frequencies and the non-small values tend to concentrate
on vertical lines of the time-frequency plane.

This distribution is favorable to our algorithm: small values
in the wavelet transform are mostly a problem when they are
in the low frequencies and prevent the correct initialization
of the reconstruction at medium or high frequencies. Small
values at high frequencies are not a problem.

Indeed, as in the case of Gaussian signals, the reconstruction
error is proportional to the input noise (figure 10). This is also
the case for PhaseLift but not for Gerchberg-Saxton.

3) Sums of a few sinusoids: The next class of signals
contains sums of a few numbers of sinusoids, multiplied by
a window function w to avoid boundary effects. Formally, a

oo

os

o
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I 0.1
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Figure 11. Random sum of sinusoids, multiplied by a window function (left)
and modulus of its wavelet transform (right)
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Figure 12. Mean reconstruction error as a function of the noise, for random
sums of sinusoids multiplied by a window function, of size N = 256 or
10000

signal in this class is of the form:

N/2

fin = | Sewenp (2}?”) x wln)

where the oy, are zero with high probability and realizations of
complex Gaussian centered variables with small probability.

The wavelet transforms of these signals often have compo-
nents of very small amplitude, which may be located at any
frequential scale (figure 11). This can prevent the reconstruc-
tion.

The results are on Figure 12. Our algorithm performs much
better than Gerchberg-Saxton but the results are not as good
as for the two previous classes of signals.

In most reconstruction trials, the signal is correctly re-
constructed, up to an error proportional to the noise. But,
with a small probability, the reconstruction fails. The same
phenomenon occurs for PhaseLift.

The probability of failure seems a bit higher for PhaseLift
than for our algorithm. For example, when the signals are
of size 256 and the noise has a relative norm of 0.01%, the
reconstruction error is larger than the noise error 20% of the
time for PhaseLift and only 10% of the time for our algorithm.
However, PhaseLift has a smaller mean reconstruction error
because, in these failure cases, the result it returns, although
not perfect, is more often close to the truth: the mean recon-
struction error in the failure cases is 0.2% for PhaseLift versus
1.7% for our algorithm.

4) Audio signals: Finally, we test our algorithm on real
audio signals. These signals are difficult to reconstruct because
they do not contain very low frequencies (as the human ear
cannot hear them, these frequencies are not included in the
recordings), so the first components of their wavelet transforms
are very small.

The reconstruction results may vary from one audio signal
to the other. We focus here on two representative examples.

The first signal is an extract of five seconds of a musical
piece played by an orchestra (the Flight of the Bumblebee,
by Rimsky-Korsakov). Figure 13a shows the modulus of its
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Figure 14. mean reconstruction error as a function of the noise, for the audio
signal “Rimsky-Korsakov”
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Figure 15. mean reconstruction error as a function of the noise, for the audio
signal “I’'m sorry”

wavelet transform. It has 16 components and 9 of them (the
ones with lower characteristic frequencies) seem negligible,
compared to the other ones. However, its non-negligible com-
ponents have a moderate number of small values.

The second signal is a recording of a human voice saying
“I'm sorry” (figure 13b). The low-frequency components of
its wavelet transform are also negligible, but even the high-
frequency components tend to have small values, which makes
the reconstruction even more difficult.

LB

(b)

Wavelet transforms of the audio signals (a) Rimsky-Korsakov (b) “I’'m sorry”

The results are presented in Figures 14 and 15. For relatively
high levels of noise (0.5% or higher), the results, in the
sense of the [?-norm, are satisfying: the reconstruction error
is smaller or equal to the amount of noise.

In the high precision regime (that is, for 0.1% of noise or
less), the lack of low frequencies does not allow a perfect
reconstruction. Nevertheless, the results are still good: the
reconstruction error is of the order of 0.1% or 0.2% when the
noise error is below 0.1%. More iterations in the optimiza-
tion steps can further reduce this error. By comparison, the
reconstruction error with Gerchberg-Saxton is always several
percent, even when the noise is small.

C. Stability of the reconstruction

In this section, we use our reconstruction algorithm to
investigate the stability of the reconstruction. From [22], we
know that the reconstruction is not globally stable to noise:
the reconstruction error (9) can be small (the modulus of the
wavelet transform is almost exactly reconstructed), even if the
error on the signal (10) is not small (the difference between
the initial signal and its reconstruction is large).

We show that this phenomenon can occur for all classes
of signals, but is all the more frequent when the wavelet
transform has a lot of small values, especially in the low
frequency components.

We also experimentally show that, when this phenomenon
happens, the original and reconstructed signals have their
wavelet transforms { f x,(t)} ez +cr equal up to multiplica-
tion by a phase {€?% ()}, 7 ;cr, which varies slowly in both
j and t, except maybe at the points where f x 1);(t) is close
to zero. This has been conjectured in [22].

We perform a large number of reconstruction trials, with
various reconstruction parameters. This gives us a large num-

ber of pairs (f, frec), such that V5, ¢, | fx1, (t)] = | frec*1; (£)].
For each one of these pairs, we compute:
\/z| | %3] = |free % 951113
error on the modulus = ’ 9

ST
J

||f B frec||2
112

error on the signal = (10)



The results are plotted on Figure 16, where each point corre-
sponds to one reconstruction trial. The x-coordinate represents
the error on the modulus and the y-coordinate the error on the
signal.

We always have:
error on the modulus < C' x (error on the function)

with C a constant of the order of 1. This is not surprising
because the modulus of the wavelet transform is a Lipschitz
operator, with a constant close to 1.

As expected, the converse inequality is not true: the error
on the function can be significantly larger than the error
on the modulus. For each class, an important number of
reconstruction trials yield errors such that:

error on the signal ~ 30 x error on the modulus

For realizations of Gaussian random processes or for lines
extracted from images (figures 16a and 16b), the ratio between
the two errors never exceeds 30 (except for one outlier). But
for sums of a few sinusoids (16¢) or audio signals (16d), we
may even have:

error on the signal > 100 x error on the modulus

So instabilities appear in the reconstruction of all kinds of
signals, but are stronger for sums of sinusoids and audio
signals, that is for the signals whose wavelet transforms have
a lot of small values, especially in the low frequencies.

These results have a theoretical justification. [22] explain
how, from any signal f, it is possible to construct g such that
|f x ;| ~ |g* ;] for all j but f % g in the [>-norm sense.

The principle of the construction is to multiply each f %
¥;(t) by a phase €% (). The function (j,t) — %) must
be chosen so that it varies slowly in both j and ¢, except maybe
at the points (j,t) where f ;(t) is small. Then there exist
a signal g such that (f xv;(t))e’®®) a gx1p;(t) for any j,t.
Taking the modulus of this approximate equality yields:

|f ;)] = [g % ;(t)]

However, we may not have f ~ g.

This construction works for any signal f (unless the wavelet
transform is very localized in the time frequency domain), but
the number of possible {e*® (1)} j,¢ is larger when the wavelet
transform of f has a lot of small values, because the constraint
of slow variation is relaxed at the points where the wavelet
transform is small (especially when the small values are in
the low frequencies). This is probably why instabilities occur
for all kinds of signals, but more frequently when the wavelet
transforms have a lot of zeroes.

Vj,t

From our experiments, it seems that the previous construc-
tion describes all the instabilities: when the wavelet transforms
of f and f,.. have almost the same modulus and f is not close
to frec, then the wavelet transforms of f and f,... are equal
up to slow-varying phases {e’ (M}, ;.

Figure 17 shows an example. The signal is a sum of
sinusoids. The relative difference between the modulus is

error on the signal
error on the signal

error on the signal
error on the signal

10 107 10° 107 10 107 107 107
error on the modulus error on the modulus

(c) (@)

Figure 16. error on the signal (10) as a function of the error on the modulus of
the wavelet transform (9), for several reconstruction trials; the red line y = =
is here to serve as a reference (a) Gaussian signals (b) lines from images (c)
sums of sinusoids (d) audio signal “I'm sorry”

0.3%, but the difference between the initial and reconstructed
signals is more than a hundred times larger; it is 46%. The
right subfigure shows the difference between the phases of
the two wavelet transforms. It indeed varies slowly, in both
time and frequency (actually, it is almost constant along the
frequency axis), and a bit faster at the extremities, where the
wavelet transform is closer to zero.

D. Influence of the parameters

In this paragraph, we analyze the importance of the two
main parameters of the algorithm: the choice of the wavelets
(paragraph VI-D1) and the number of iterations allowed per
local optimization step (paragraph VI-D2).

1) Choice of the wavelets: Two properties of the wavelets
are especially important: the exponential decay of the wavelets
in the Fourier domain (so that the @;’s (2) are correctly com-
puted) and the amount of overlap between two neighboring
wavelets (if the overlap is too small, then fxy, ..., f x4
contain not much information about f x1; and the multiscale
approach is less efficient).

We compare the reconstruction results for four families of
wavelets.

The first family (figure 18a) is the one we used in all the
previous experiments. It contains dyadic Morlet wavelets. The
second family (figure 18b) also contains Morlet wavelets, with
a smaller bandwidth (Q-factor &~ 8) and a dilation factor of
21/8 instead of 2. This is the kind of wavelets used in audio
processing. The third family (figure 18c) consists in dyadic
Laplacian wavelets ¢)(w) = w2e'~*". Finally, the wavelets of
the fourth family (figure 18d) are (derivatives of) Gammatone
wavelets.
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Figure 17. (a) modulus of the wavelet transform of a signal (b) phase dif-
ference between the wavelet transform of this signal and of its reconstruction
(black points correspond to places where the modulus is too small for the
phase to be meaningful)
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Figure 18. Four wavelet families. (a) Morlet (b) Morlet with dilation factor
21/8 (¢) Laplacian (d) Gammatone
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Figure 19. Mean reconstruction error as a function of the noise for the four
wavelet families displayed in 18. (a) Lines from images (b) Audio signal “I'm
sorry”

Figure 19 displays the mean reconstruction error as a
function of the noise, for two classes of signals: lines randomly
extracted from natural images and audio signals.

Morlet wavelets have a fast decay and consecutive wavelets
overlap well. This does not depend upon the dilation factor so
the reconstruction performances are similar for the two Morlet
families (figures 19a and 19b).

Laplacian wavelets are similar, but the overlap between
consecutive wavelets is not as good. So Laplacian wavelets
globally have the same behavior as Morlet wavelets but require
significantly more computational effort to reach the same
precision. Figures 19a and 19b have been generated with a
maximal number of iterations per optimization step equal to
30000 (instead of 10000) and the reconstruction error is still
larger.

The decay of Gammatone wavelets is polynomial instead of
exponential. The products @); cannot be efficiently estimated
and our method performs significantly worse. In the case of
lines extracted from images (19a), the reconstruction error
stagnates at 0.1%, even when the noise is of the order of
0.01%. For audio signals (19b), it is around 1% for any amount
of noise.

2) Number of iterations in the optimization step: The
maximal number of iterations allowed per local optimization
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Figure 20. for the audio signal “I’'m sorry”, reconstruction error as a function
of the maximal number of iterations (a) with 0.01% of noise (b) with 0.6%
of noise

step (paragraph III-C) can have a huge impact on the quality
of the reconstruction.

Figure 20 represents, for an audio signal, the reconstruction
error as a function of this number of iterations. As the objective
functions are not convex, there are no guarantees on the speed
of the decay when the number of iterations increases. It can be
slow and even non-monotonic. Nevertheless, it clearly globally
decays.

The execution time is roughly proportional to the number
of iterations. It is thus important to adapt this number to the
desired application, so as to reach the necessary precision level
without making the algorithm exaggeratedly slow.

VII. CONCLUSION

We have presented an new iterative algorithm that recon-
structs a signal from its scalogram. This algorithm is based
on a new reformulation of the reconstruction problem, using
the analytic extension of the wavelet transform. It is precise
and stable to noise, and has a sufficiently low complexity to
be applied to audio signals.

In future works, we plan to investigate further ways to speed
up the reconstruction, including parallelization, and to test our
algorithm on concrete applications, like source separation.

APPENDIX A
PROOF OF LEMMA IV.1

Lemma. (IV.1) Let m € RN and K € N* be fixed. We
consider the problem:

Find g € CN s.1. |gl =m

and Supp(g) C {1,..., K}

This problem has at most 251 solutions, up to a global phase,

and there exist a simple algorithm which, from m and N,
returns the list of all possible solutions.

Proof. We define:
P(g)(X) = g[1]

We show that the constraint |g| = m amounts to knowing
P(g9)(X)P(g)(1/X). This is in turn equivalent to knowing
the roots of P(g) (and thus knowing g) up to inversion with
respect to the unit circle. There are in general K — 1 roots,
and each one can be inverted. This gives 2%~ solutions.

+G[21X + ... + g[K) XK

We set:

Q(9)(X) = P(g)(1/X)

= g[K]X BV 1 g[K —1]x %2 4 4]

}

The equation |g|*> = m?® is equivalent to \/gF = m2, that is
+G+g=m?2 Foreach k € {—(K —1),..,K — 1}:

§* glk] Zg — slg[-

This number is the coefficient of order & of P(g)(X)Q(g)(X),
so |g| = m if and only if:

2

K—-1 -
=N > mkx*

k=—(K—1)

P(g)(X)Q(9)(X) (11

Let us denote by 71, ...,k —1 the roots of P(g)(X), so that:
P(g)(X) = IKI(X — 1) (X — i)
Q9)(X) = gIK](1/X = 7T1)...(1) X =Tk 1)

From (11), the equality |g] = m holds if and only if

9IK], 71, ..., i1 satisfy:
K—1
H —r)(1/X =75)
j=1
K—1
=N Z m2[k] X" (12)
k=—(K-1)

If we denote by s1,1/31,...,8Kx-1,1/Sx_1 the roots of the
K—1

polynomial function i r/n\2[k}X *_then the only possi-

k=—(K-1)
ble choices for r1,...,7x_1 are, up to permutation:

ry =81 Or 1/?1 9 = So Or 1/§2

So there are 251 possibilities. Once the r; have been chosen,

g[K] is uniquely determined by (12), up to multiplication by
a unitary complex.

From 71, ...,7x_1, §[K], P(g) is uniquely determined and
so is g. The algorithm is summarized in 2. O

Algorithm 2 reconstruction by exhaustive search for a small
problem

Input: K,m
K-1
1: Compute the roots of Y. m2[k]X*
k=—(K—1)

2: Group them by pairs (s1,1/51), ...,
3: List the 25! elements (71, ...
{srk—1,1/5x-1}

(sx-1,1/3K-1)
77“[(,1) of {51, 1/51} XX

4: for all the elements do
5:  Compute the corresponding §[K] by (12)
6:  Compute the coefficients of P(g)(X) = g[K](X —

Tl)(X — ’I“K,1)
7 Apply an IFFT to the coefficients to obtain g
8: end for
Output: the list of 251 possible values for g




APPENDIX B
PROOF OF LEMMA 111.2

Lemma (II1.2). For any f satisfying the analycity condition

(:

Ve € P(f x4 (rz) = P(f x5 (f % 45°7"))(2)
and  P(g7)(rz) = P(Q;)(2)

Proof. Recall that, by definition, for any h € C:

s

> bk

4 ]-n+

VeeC  P(h)(z) =

So for any two signals h, H, the condition P(h)(rz
P(H)(z),Vz € C is equivalent to:

) =

Vk = LNJ ~N+1,.., LNJ hlklr® = H[k]  (13)

2 2

Applied to g and @);, this property yields the equality
P(g7)(rz) = P(Qy)(2),Yz € C: by the definition of Q; in
(2), the equation (13) is clearly satisfied.

Let us now show that:

P(|f x1;%)(rz) = P((f x 1) (f < ¢"9"))(2), V2 € C
It suffices to prove that (13) holds, that is:

N N
— | -N+1,..., | =
vhe |3 |-t 3).

—

P2l = (F %l )(f 7o ]
Indeed, because the analycity condition (1) holds, we have for
all k:
et = (70) « (7 )
AL
=~ 2 S0 = k[ — K]
1=1
i LN/2]
r

) (f*w’“gh> i

(
( (f = wlow)( f*w’”gh>) (K]
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