
Submitted to the Annals of Statistics

arXiv: arXiv:1311.4104

INTERMITTENT PROCESS ANALYSIS WITH

SCATTERING MOMENTS
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Scattering moments provide non-parametric models of random
processes with stationary increments. They are expected values of
random variables computed with a non-expansive operator, obtained
by iteratively applying wavelet transforms and modulus non-linearities,
which preserves the variance. First and second order scattering mo-
ments are shown to characterize intermittency and self-similarity
properties of multiscale processes. Scattering moments of Poisson
processes, fractional Brownian motions, Lévy processes and multi-
fractal random walks are shown to have characteristic decay. The
Generalized Method of Simulated Moments is applied to scattering
moments to estimate data generating models. Numerical applications
are shown on financial time-series and on energy dissipation of tur-
bulent flows.

1. Introduction. Defining non-parametric models of non-Gaussian sta-
tionary processes remains a core issue of probability and statistics. Com-
puting polynomial moments is a tempting strategy which suffers from the
large variance of high order moment estimators. Image and audio textures
are examples of complex processes with stationary increments, which can be
discriminated from a single realization by the human brain. Yet, the amount
of samples is often not sufficient to reliably estimate polynomial moments
of degree more than 2. These non-Gaussian processes often have a long
range dependency and some form of intermittency generated by randomly
distributed burst of transient structures at multiple scales. Such multiscale
intermittent processes appear in many domains including turbulent flows,
network traffics, financial time series, geophysical and medical data.

Statistical instabilities in presence of intermittency can be reduced by cal-
culating expected values of non-expansive operators in mean-square norm,
which thus do not increase the variance. Polynomial moments do not sat-
isfy this property, for degree different than one. Scattering moments are
computed with such a non-expansive operator. They are calculated by iter-
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2 BRUNA ET AL.

atively applying wavelet transforms and modulus non-linearities [21]. This
paper shows that they characterize self-similarity and intermittency prop-
erties of processes with stationary increments. These properties are studied
by computing the scattering moments of Poisson processes, fractional Brow-
nian motions, Levy processes and multifractal cascades, which all have very
different behaviors. Scattering moments provide non parametric descriptors
which reveal complex statistical properties of time series. The generalized
method of simulated moments [13, 25] applied to scattering moments gives
a parameter estimator for data generating models. Besides parameter esti-
mation, a key challenge is to validate data generating models from limited
data sets. Keeping sufficiently high order scattering coefficients provides a
number of scattering moments which is larger than the dimensionality of
the model parameter. Confidence levels for model validation can thus be
computed with a χ2 J-test [13].

Section 2 reviews the scaling properties of wavelet polynomial moments
for fractal and multifractal processes. Scattering moments are defined and
related to multiscale intermittency properties. Poisson processes illustrate
these first results. Section 3 proves that self-similar processes with stationary
increments have normalized scattering moments which are stationary across
scales. Gaussian processes are discriminated from non-Gaussian processes
from second order scattering moments. Results on fractional Brownian mo-
tion and stable Levy processes illustrate the analysis of multiscale intermit-
tency properties. Section 4 extends these results to self-similar multifractal
cascades [22, 23, 5].

Section 5 applies scattering moments to model parameter estimations. It
introduces a scattering moment estimator whose variance is bounded. Pa-
rameters of data generating models are estimated from scattering moments
with the generalized method of simulated moments [13, 25]. Scattering mo-
ments of financial time-series and turbulence energy dissipation are com-
puted from numerical data. Models based on fractional Brownian, Levy sta-
ble and multifractal cascade processes are evaluated with a J-test. Computa-
tions can be reproduced with a software available at www.di.ens.fr/data/software/scatnet.

Notations: We denote {X(t)}t
d
= {Y (t)}t the equality of all finite-dimensional

distributions. The dyadic scaling of X(t) is written LjX(t) = X(2−jt). If
X(t) is stationary then E(X(t)) does not depend on t and is written E(X),
and σ2(X) = E(|X|2) − E(X)2. We denote B(j) ≃ F (j) , j → ∞ (resp

j → −∞) if there exists C1, C2 > 0 and J ∈ Z such that C1 ≤ B(j)
F (j) ≤ C2

for all j > J (resp for all j < J).
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2. Scattering Transform of Intermittent Processes.

2.1. Polynomial Wavelet Moments. Polynomial moments of wavelet co-
efficients reveal important multiscaling properties of fractals and multifrac-
tals [3, 31, 15, 14, 1, 28, 27]. We consider real valued random processes X(t)
having stationary increments X(t)−X(t− τ) for any τ ∈ R. A wavelet ψ(t)
is a function of zero average

∫
ψ(t) dt = 0 with |ψ(t)| = O((1 + |t|2)−1),

which is dilated:
∀j ∈ Z , ψj(t) = 2−jψ(2−jt) .

The wavelet transform of X(t) at a scale 2j is defined for all t ∈ R by

(1) X ⋆ ψj(t) =

∫
X(u)ψj(t− u)du .

Since
∫
ψ(t) dt = 0, if X has stationary increments then one can verify that

X ⋆ψj(t) is a stationary process [31]. The dyadic wavelet transform of X(t)
is:

(2) WX = {X ⋆ ψj}j∈Z .

A wavelet ψ satisfies the Littlewood-Paley condition if its Fourier trans-
form Ψ satisfies for all ω 6= 0:

(3)
∞∑

j=−∞

|Ψ(2jω)|2 +
∞∑

j=−∞

|Ψ(−2jω)|2 = 2 .

If X(t) is a real valued stationary process with E(|X(t)|2) < ∞ then the
wavelet transform energy equals the process variance σ2(X) = E(|X|2) −
|E(X)|2:
(4) E(‖WX‖2) =

∑

j∈Z

E(|X ⋆ ψj|2) = σ2(X) .

This is proved by expressing E(|X ⋆ ψj |2) from the power spectrum of X
and inserting (3).

The Holder regularity of a function is characterized by the decay of
wavelet coefficients across scales. A wavelet ψ(t) is said to have q vanishing
if

∫
tk ψ(t) = 0 for 0 ≤ k < q. If α < q then a function x(t) is uniformly

Lipschitz α if and only if |x ⋆ ψj(t)| = O(2jα). This result can be localized
to characterize the pointwise regularity of x(t) [16].

For random processes X(t), the decay of monomial wavelet moments
across scales can be related to the distributions of singularities [3, 31, 15].
Moments of degree q define a scaling exponents ζ(q) such that

E(|X ⋆ ψj(t)|q) ≃ 2jζ(q) .
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Monofractals such as fractional Brownian motions have linear scaling expo-
nents: ζ(q) = q ζ(1). These Gaussian processes are uniformly regular and
are therefore not intermittent. The curvature of ζ(q) is related to the pres-
ence of singularities with different Holder exponents [14, 28]. It is used as
a measurement intermittency. However, as q deviates from 1, estimations of
moments become progressively more unstable which limits the application
of this multifractal formalism to very large data sets.

2.2. Scattering Moments. Scattering moments are expected values of a
non-expansive transformation of the process. They are computed with a
cascade of wavelet transforms and modulus non-linearities [21]. We review
their elementary properties.

Let ψ be a C1, complex wavelet, whose real and imaginary parts are or-
thogonal, and have the same L2(R) norm. In this paper we impose that ψ has
a compact support normalized to [−1/2, 1/2], which simplifies the proofs.
However, most results remain valid without this compact support hypoth-
esis. We consider wavelets ψ which are nearly analytic, in the sense that
their Fourier transform Ψ(ω) is nearly zero for ω < 0. The compact support
hypothesis prevents it from being strictly zero. All numerical computations
in the paper are performed with the compactly supported complex wavelets
of Selesnick [35], whose real and imaginary parts have 4 vanishing moments
and are nearly Hilbert transform pairs.

Let X(t) be a real valued process with stationary increments having finite
first order moments: E(|X(t) −X(t − τ)|) < ∞ for all τ ∈ R. The wavelet
transform X ⋆ ψj1(t) is a complex stationary random process. First order
scattering moments are defined by

∀j1 ∈ Z , SX(j1) = E(|X ⋆ ψj1|) .

First order scattering moments provide no information on the time dis-
tribution of singularities or transient structures. This information is partly
provided by second order scattering moments computed from the wavelet
transform of each |X ⋆ ψj1(t)|:

∀(j1, j2) ∈ Z
2 , SX(j1, j2) = E(||X ⋆ ψj1| ⋆ ψj2 |) .

These moments measure the average multiscale time variations of |X⋆ψj1(t)|,
with a second family of wavelets ψj2 . If j2 < j1 then SX(j1, j2) has a fast
decay to zero as j1 − j2 increases. Its amplitudes depend on the wavelet
properties as opposed to the properties of X. Indeed, if |ψ| is Cp and has
p vanishing moments then |X ⋆ ψj1 | is typically almost everywhere Cp so
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SX(j1, j2) = E(||X ⋆ ψj1| ⋆ ψj2 |) = O(2p(j2−j1)). We thus concentrate on
scattering moments for j2 > j1.

The expected value of second order moments averages the time variability
of ||X ⋆ ψj1| ⋆ ψj2(t)|. This lost information can be recovered by calculating
the wavelet transform of ||X ⋆ ψj1| ⋆ ψj2(t)| for each (j1, j2). Iterating this
process computes scattering moments at any order m ≥ 1:

(5) ∀(j1, ..., jm) ∈ Z
m , SX(j1, ..., jm) = E(| |X ⋆ ψj1 | ⋆ ...| ⋆ ψjm|) .

If E(|X(t) −X(t − τ)|) < ∞ for all τ ∈ R then E(|X ⋆ ψj1|) < ∞ and one
can verify by induction on m that SX(j1, ..., jm) <∞.

The vector of all scattering moments of X defines a non-parametric rep-
resentation

SX =
{
SX(j1, ..., jm) : ∀(j1, ..., jm) ∈ Z

m , ∀m ∈ N
∗
}
.

Its l2 norm is

(6) ‖SX‖2 =
∞∑

m=1

∑

(j1,...,jm)∈Zm

|SX(j1, ..., jm)|2.

Since the wavelet transform preserves the variance in (4) and the modulus
operators obviously also preserves the variance, each wavelet transform and
modulus iteration preserves the variance. If E(|X|2) <∞ then by applying
(4), we verify [21] by induction on l that scattering coefficients satisfy

l−1∑

m=1

∑

(j1,...,jm)∈Zm

|SX(j1, ..., jm)|2 = E(|X|2)−|E(X)|2−
∑

(j1,...,jl)∈Zl

E(| |X⋆ψj1 |⋆...|⋆ψjl
|2) .

It results that

(7) ‖SX‖2 ≤ σ2(X) = E(|X|2) − |E(X)|2 .

Numerical experiments indicate that for large classes of ergodic stationary
processes,

∑
(j1,...,jl)∈Zl E(| |X ⋆ ψj1 | ⋆ ...| ⋆ ψjl

|2) converges to zero as 2l

increases. It then implies that (7) is an equality. Similarly to the Fourier
power spectrum, the l2 norm of scattering moments is then equal to the
variance. However, this remains a conjecture [21].

The scattering norm (6) can be approximated with a summation restricted
to moments of order m = 1, 2, because higher order scattering moments
usually have a much smaller energy [2, 7]. First and second order scattering
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moments applied to image and audio textures provide state of the art clas-
sification errors [7, 2, 36] with a deep convolution network architecture [20],
but these results are strictly numerical. In the following, we concentrate on
the mathematical properties of first and second order scattering moments,
which characterize self-similarity and intermittency properties.

2.3. Normalized Scattering and Intermittency. Scattering moments are
normalized to increase their invariance. Invariance to multiplicative factors
is obtained with

S̃X(j1) =
SX(j1)

SX(0)
=

E(|X ⋆ ψj1 |)
E(|X ⋆ ψ|) .

Second order scattering moments are normalized by their first order moment:

S̃X(j1, j2) =
SX(j1, j2)

SX(j1)
=

E(||X ⋆ ψj1 | ⋆ ψj2 |)
E(|X ⋆ ψj1|)

.

This can be rewritten

S̃X(j1, j2) = SX̃j1(j2) = E(|X̃j1 ⋆ ψj2|) with X̃j1 =
|X ⋆ ψj1 |

E(|X ⋆ ψj1 |)
.

If X has stationary increments then X̃j1 is a normalized stationary process
providing the occurrence of “burst” of activity at the scale 2j1 . Normal-
ized second order moments S̃X(j1, j2) thus measures the time variability
of these burst of activity over time scales 2j2 ≥ 2j1 , which gives multiscale
measurements of intermittency.

Intermittency is a geometric notion which characterizes the time distribu-
tion of transient structures and singularities. It is not modified by the action
of derivative operators, which are translation invariant. We verify that this
invariance property holds for normalized second order moments. Let dα be
a fractional derivative defined by the multiplication by (iω)α in the Fourier
domain. Since

dαX ⋆ ψj1(t) = 2−αj1 X ⋆ ψα
j1(t)

where ψα = dαψ and ψα
j1

(t) = 2−j1ψα(2−j1t), it results that

(8) SdαX(j1) = 2−αj1E(|X ⋆ ψα
j1|)

and

(9) S̃dαX(j1, j2) =
E(||X ⋆ ψα

j1 | ⋆ ψj2|)
E(|X ⋆ ψα

j1
|) .
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If X(t) has no oscillating singularity [16] then its wavelet coefficients calcu-
lated with ψ and ψα have the same asymptotic decay, so

(10) SdαX(j1) ≃ 2−αj1SX(j1) and S̃dαX(j1, j2) ≃ S̃X(j1, j2) .

Modifications of regularity produced by derivative operators affect the decay
of first-order scattering moments but not the decay of normalized second
order moments. Fractional Brownian motions illustrate these properties in
Section 3.2.

Global intermittency parameters computed with wavelet moments can
be related to normalized second order scattering moments. Section 2.1 ex-
plained that multifractal analysis quantifies intermittency from scaling prop-
erties of wavelet moments. If E(|X ⋆ψj |q) ≃ 2jζq then intermittency is mea-
sured by the curvature of ζ(q). It can be quantified by ζ(2) − 2ζ(1) which
satisfies

E(|X ⋆ ψj |2)
E(|X ⋆ ψj |)2

≃ 2j(ζ(2)−2ζ(1)) .

The following proposition relates this ratio to normalized second order scat-
tering moments.

Proposition 2.1. If X has stationary increments then for any j1 ∈ Z

(11)
E(|X ⋆ ψj1 |2)
E(|X ⋆ ψj1 |)2

≥ 1 +
+∞∑

j2=−∞

|S̃X(j1, j2)|2 .

Proof: Applying the mean-square energy conservation (4) to X⋆ψj proves
that

(12) E(|X ⋆ ψj |2) = |E(|X ⋆ ψj |)|2 +
+∞∑

j2=−∞

E(||X ⋆ ψj | ⋆ ψj2|2) .

Applying again (4) to ||X ⋆ ψj | ⋆ ψj2| proves that

E(||X ⋆ψj | ⋆ ψj2 |2) = E(||X ⋆ψj| ⋆ ψj2|)2 +
+∞∑

j3=−∞

E(|||X ⋆ψj| ⋆ ψj2 | ⋆ ψj3 |2).

Inserting this equation in (12) proves (11). �

It results from (12) that if
∑+∞

j2=−∞ S̃X(j1, j2)
2 ≃ 2j1β then ζ(2)−2ζ(1) ≥

β > 0. However, these moment computations eliminate the dependence’s on
the scale parameter 2j2 , which provides a finer multiscale characterization
of the intermittency regularity. This dependency upon 2j2 is studied in the
next sections and is used for model selection in Section 5.

imsart-aos ver. 2013/03/06 file: multifractals_aos.tex date: November 26, 2013



8 BRUNA ET AL.

2.4. Scattering Poisson Processes. The properties of scattering moments
are illustrated over a Poisson process, which is a simple Lévy process with
stationary increments. A homogeneous Poisson process {X(t) , t ≥ 0} has
increments X(t+∆)−X(t) which count the number of occurrence of events
in [t, t+∆], and have a Poisson distribution of intensity λ. Figure 1(a) shows
an example. The following proposition gives the decay of first and second
order scattering moments of Poisson processes.

Theorem 2.2. If X is a Poisson process of intensity λ and ψ̄(t) =∫ t
0 ψ(u) du then for all j1 ≤ j2

(13) SX(j1) = 2j1 λ‖ψ̄‖1

(
1 +O(2j1λ)

)
,

(14) lim
j1→∞

2−j1/2SX(j1) = Cλ1/2 > 0 ,

where C depends only upon the wavelet ψ, and

(15) S̃X(j1, j2) =
‖|ψ̄| ⋆ ψj2−j1‖1

‖ψ̄‖1

(
1 +O(λ2j1) +O(λ2j2)

)

(16) lim
j2→∞

2j2/2S̃X(j1, j2) = C ′ > 0 .

The proof is in Appendix A, but these results can be explained as follows.
A Poisson distribution has on average 1 jump on intervals of size λ−1. When
2j1 ≪ λ−1 then the probability that there is one jump on the support of ψj1

is 2j1λ, and there is at most one jump with overwhelming probability. We
have SX(j1) ≈ λ 2j1‖ψ̄‖1 because the wavelet transform of a jump satisfies∫ |1[0,∞) ⋆ ψj1(t)| dt = ‖ψ̄‖1. For 2j1 ≫ λ−1, the average number of jumps
on the support of ψj1 is 2j1λ−1. Since the jump locations are independent,
Appendix A proves that X ⋆ ψj(t) converges to the wavelet transform of a
Gaussian white noise of variance λ 2j1 . The first order scattering moments
are thus equal to the first order moments of these Gaussian random variables,
which are proportional λ1/2 2j1/2. Figure 1(b) verifies that log2 S̃X(j1) has
a slope of 1 for j1 ≪ − log2(λ) and a slope of 1/2 for j1 ≫ − log2(λ).

Second order moments S̃X(j1, j2) depend upon the signal intermittency.
Their behavior is totally different when 2j2 ≪ λ−1 and 2j2 ≫ λ−1. If 2j2 ≪
λ−1 then S̃X(j1, j2) is approximately equal to ‖|ψ̄| ⋆ ψj2−j1‖1/‖ψ̄‖1, which
is a function of j2 − j1. This is a self-similarity property. Indeed, it depends
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Fig 1. (a): Realization of a Poisson process X(t) of intensity λ = 10−4. (b): log2 S̃X(j)

and log2 S̃dX(j) as a function of j. (c): log2 S̃X(j1, j2) as a function of j2 − j1 for several
values of j1. (d): The same curves as in (c), but restricted to j2 < − log2(λ) − 1.

on the wavelet transform of a jump 1[0,∞)(t), which is a self-similar function.
When j2 − j1 increases

lim
j1→−∞

S̃X(j1, j2) = ‖ψ‖1

(
1 +O(2j2λ)

)
.

This convergence to a constant indicates a high degree of intermittency
corresponding to isolated singularities. Figure 1(d) shows log2 S̃X(j2−j1, j2)
as a function of j2 − j1, for j2 ≤ − log(λ). As expected, these curves overlap
for different j1, and converge to ‖ψ‖1.

If j2 ≫ − log2(λ
−1) then S̃X(j1, j2) ≃ 2−j2/2. This decay is characteris-

tic of Gaussian stationary processes, which are uniformly regular and thus
have no intermittency. This is further studied in Section 3.2 for fractional
Brownian motions. Figure 1(c) verifies that S̃X(j2 − j1, j2) decays with a
slope of −1/2 as a function of j2 − j1. This behavior is typical of random
processes having an “integral scale,” here equal to λ−1, beyond which the
process converges to a Gaussian process.

When going fromX to dX then the sum of jumps is replaced by a measure
which is a sum of Diracs. We verify from Appendix A that SdX(j1) ≃
2−j1SX(j1). This reflects the change of regularity. Figure 1(b) shows that the
difference between the slopes of log2 S̃X(j1) and log2 S̃dX(j1) is indeed equal
to 1. The situation is different for normalized second order moments where
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10 BRUNA ET AL.

S̃dX(j1, j2) is nearly equal to S̃X(j1, j2). When 2j1 ≪ λ−1 then dX and
X have isolated singularities occurring with same probability distribution
so have the same intermittency. When 2j1 ≫ λ−1 then dX ⋆ ψj and X ⋆ ψj

converge to stationary Gaussian processes having different power spectrum
and hence different regularity, but they have the same intermittency because
their regularity is uniform.

3. Self-Similar Processes. Second order scattering moments of self-
similar processes are proved to be stationary across scales. Fractional Brow-
nian motions and Lévy stable processes are studied in Sections 3.2 and 3.3.

3.1. Scattering Self-Similarity. Self-similar processes of Hurst exponent
H are stochastic processes X(t) which are invariant in distribution under a
scaling of space or time:

(17) ∀ s > 0 , {X(st)}t
d
= {sHX(t)}t .

We consider self-similar processes having stationary increments. Fractional
Brownian motions and α-stable Lévy processes are examples of Gaussian
and non-Gaussian self-similar processes with stationary increments.

If X is self-similar, then applying (17) with a change of variable u′ = 2−ju
in (1) proves that

∀j ∈ Z , {X ⋆ ψj(t)}t
d
= 2jH {X ⋆ ψ(2−jt)}t .

The following proposition proves that normalized second order scattering
moments can be written as a univariate function.

Proposition 3.1. If X is a self-similar process with stationary incre-
ments then for all j1 ∈ Z

(18) S̃X(j1) = 2j1H ,

and for all (j1, j2) ∈ Z
2

(19) S̃X(j1, j2) = SX̃(j2 − j1) with X̃(t) =
|X ⋆ ψ(t)|
E(|X ⋆ ψ|) .

Proof: We write Ljx(t) = x(2−jt). Since ψj1 = 2−j1Lj1ψ, a change of
variables yields Lj1|X ⋆ ψ| = |Lj1X ⋆ ψj1 | , and hence

(20) |X ⋆ ψj1| = Lj1|L−j1X ⋆ ψ| d
= 2j1H Lj1|X ⋆ ψ| .

imsart-aos ver. 2013/03/06 file: multifractals_aos.tex date: November 26, 2013



INTERMITTENT PROCESS ANALYSIS WITH SCATTERING MOMENTS 11

0 2 4 6 8 10 12 14

x 10
4

−600

−400

−200

0

200

(a)

2 4 6 8 10 12 14 16
0

2

4

6

8

(b)

0 5 10 15
−10

−5

0

 

 

(c)

Fig 2. (a): Realization of a Brownian motion X(t). (b): log2 S̃X(j1) as a function of j1.

(c) The curves log2 S̃X(j1, j1 + l) as a function of l are identical for different j1.

If Y (t) is stationary then E(LjY (t)) = E(Y (t)), which proves (18).
By cascading (20) we get

(21) ∀ (j1, j2) , ||X ⋆ ψj1| ⋆ ψj2 |
d
= 2j1H Lj1||X ⋆ ψ| ⋆ ψj2−j1| ,

so SX(j1, j2) = 2j1H E(||X ⋆ψ|⋆ψj2−j1|) . Together with (18) it proves (19).
�

Property (19) proves that if X is self-similar then S̃X(j1, j1 + l) is a func-
tion of l, which can be interpreted as a stationary property across scales.
This function of l is a scattering intermittency measure of the random pro-
cess. A Brownian motion is a Gaussian self-similar process with a Hurst
exponent H = 1/2. It results from (18) that log2 S̃(j1) = j1/2, which is
illustrated by Figure 2 (b). Figure 2 (c) displays S̃X(j1, j2) expressed as a
function of j2 − j1, for different j1. The curves for different j1 are equal, as
proved by (18). When j2 − j1 < 0, S̃X(j1, j2) increases with a slope which
does not depend on X but on the number of vanishing moments and on
the regularity of the wavelet ψ. For j2 − j1 ≥ 0, the decay depends upon
the property of X and satisfies S̃X(j1, j2) ≃ 2−(j2−j1)/2. Next section proves
this result in the more general context of fractional Brownian motions, and
shows that it reflects the fact that a Brownian motion is a Gaussian process.

3.2. Fractional Brownian Motions. We compute the normalized scatter-
ing representation of Fractional Brownian Motions, which are the only self-
similar Gaussian processes with stationary increments. A fractional Brown-
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Fig 3. (a,b) Realizations of fractional Brownian motions X(t) with H = 0.2 in (a) and

H = 0.8 in (b). (c) log2 S̃X(j1) as a function of j1, for H = 0.2, 0.4, 0.6, 0.8. Slopes are

equal to H. (d) log2 S̃X(j1, j1 + l) as a function of l do not depend on j1 for all H.

ian motion of Hurst exponent 0 < H < 1 is defined as a zero mean Gaussian
process {X(t)}, satisfying

∀ t, s > 0 ,E(X(t)X(s)) =
1

2

(
t2H + s2H − |t− s|2H

)
E(X(1)2) .

It is self-similar and satisfies

∀ s > 0 , {X(st)}t
d
= sH{X(t)}t .

Proposition 3.1 proves in (18) that

S̃X(j1) = 2Hj1 .

This is verified by Figure 3(a) which shows that log2 S̃X(j1) = H j1 for
several fractional Brownian motions with H = 0.2, 0.4, 0.6, 0.8.

Figure 3(c) displays log2 S̃(j1, j2), which is a function of j2− j1, as proved
by (19). Modulo a proper initialization at t = 0, ifX is a fractional Brownian
motion of exponent H then dαX is a fractional Brownian motion of exponent
H − α. We thus expect from (10) that log2 S̃X(j2 − j1) nearly does not
depend upon H. This is shown by Figure 3(c) where all curve superimpose
for j2 − j1 > 0, with a slope of −1/2. This result is proved by the following
theorem.
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Theorem 3.2. Let X(t) be a Fractional Brownian Motion with Hurst
exponent 0 < H < 1. There exists a constant C > 0 such that for all j1 ∈ Z

(22) lim
l→∞

2−l/2S̃X(j1, j1 + l) = C .

Proof: Proposition 3.1 proves in (19) that S̃X(j1, j1 + j) = E(|X̃ ⋆ ψj |)
and X̃(t) = |X⋆ψ(t)|/E(|X ⋆ ψ|). We denote S̃2X(j) = E(|X̃⋆ψj |). Let B(t)
be a Brownian motion and dB(t) be the Wiener measure. The two processes
X ⋆ψ(t) and dH−1dB ⋆ ψ(t) are Gaussian stationary processes having same
power spectrum so

{|X ⋆ ψ(t)|}t
d
= {|dH−1dB ⋆ ψ(t)|}t

d
= {|dB ⋆ dH−1ψ(t)|}t .

It results that

(23) S̃2X(j) =
E(||dB ⋆ dH−1ψ| ⋆ ψj |)

E(|X ⋆ ψ|)

Since ψ is C1, with a compact support and two vanishing moments, one can
verify that |dH−1ψ(u)| = O((1 + |u|2)−1). It results that |dB ⋆ dH−1ψ| is
stationary process whose autocorrelation has some decay. As the scale 2j in-
creases, the second convolution with ψj performs a progressively wider aver-
aging. By applying a central-limit theorem for dependent random variables,
the following lemma applied to ϕ = dH−1ψ proves that 2j/1|dB⋆dH−1ψ|⋆ψj

converges to a Gaussian processes and that its first moment converges to a
constant when j goes to ∞. The theorem result (22) stating that 2j/2S̃2X(j)
converges to a constant results from (23).

Lemma 3.3. If ϕ(u) = O((1 + |u|2)−1) then

(24) 2j/2|dB ⋆ ϕ| ⋆ ψj(t)
l−→

j→∞
N (0, σ2Id) ,

with σ2 = ‖ψ‖2
2

∫
RY (τ)dτ and

(25) lim
j→∞

E(|2j/2|dB ⋆ ϕ| ⋆ ψj|) = σ

√
π

2
. �

For a fractional Brownian motions, log2 S̃X(j1, j1+l) do not depend on j1
or H, and their slopes is thus equal to −1/2 when l increases. This value is
characteristic of wide-band Gaussian stationary processes. It indicates that
there is no intermittency phenomenon at all scales.
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14 BRUNA ET AL.

3.3. α-stable Lévy Processes. In this section, we compute the scattering
moments of α-stable Lévy processes and analyze their intermittency behav-
ior for 1 < α ≤ 2. These processes have finite polynomial moments only
for degree strictly smaller than α ≤ 2. The Lévy-Khintchine formula [19]
characterizes infinitely divisible distributions from their characteristic ex-
ponents. Self-similar Lévy processes have stationary increments with heavy
tailed distributions. Their realizations contain rare, large jumps, which are
responsible for the blow up of moments larger than α. They induce a strongly
intermittency behavior.

For α > 1, an α-stable Lévy process X(t) has stationary increments and
E(|X(t) − X(t − τ |) < ∞ for any τ ∈ R. Its scattering moments are thus
well defined at all orders. This process satisfies the self-similarity relation

(26) {X(st)}t
d
= sα−1{X(t)}t ,

so Proposition 3.1 proves that

(27) S̃X(j1) = 2j1α−1
.

This is verified in Figure 4 which shows that log2 S̃X(j1) = α−1j1. First or-
der moments thus do not differentiate a Lévy stable processes from fractional
Brownian motions of Hurst exponent H = α−1.

The self-similarity implies that S̃X(j1, j1 + l) does not depend on j1.
However, they have a very different behavior than second order scattering
moments of fractional Brownian motion. Figure 4 shows that log2 S̃X(j) has
a slope which tends to α−1 − 1 and hence that when l increases

(28) S̃X(j1, j1 + l) ≃ 2l(α−1−1) .

For α < 2 then α−1−1 > −1/2 so S̃(j1, j1+l) has a slower decay for α-stable
Lévy processes than for fractional Brownian motion, which corresponds to
the fact that these processes are highly intermittent and the intermittency
increases when α decreases. For α = 2, the Lévy process X is a Brownian
motion and we recover that S̃X(j1, j1 + l) ≃ 2−l/2 as proved in Theorem
3.2.

The scaling property (28) is explained qualitatively, without formal proof.
We proved in (19) that

(29) S̃X(j1, j2) =
E(||X ⋆ ψ(t)| ⋆ ψl|)

E(|X ⋆ ψ|) for l = j2 − j1.

The stationary process |X ⋆ψ(t)| measures the amplitude of local variations
of the process X. It is dominated by a sparse sum of large amplitude bumps
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Fig 4. (a,b): Realizations of α-stable Lévy processes X(t) with α = 1.1 and α = 1.5.

(c) log2 S̃Xα(j1) as a function of j1 with α = 1.1, 1.2, 1.3. Slopes are equal to α−1. (d)
log2 SXα(j1, j1 + l) as a function of l do not depend on j1. Slopes tend to α−1

− 1 when l

increases.

of the form a |ψ(t − u)|, where a and u are the random amplitudes and
positions of rare large amplitude jumps in X(t), distributed according to
the Lévy measure. It results that

(30) E(||X ⋆ ψ| ⋆ ψl|) ≃ E(|dX ⋆ |ψ̄| ⋆ ψl|) with ψ(t) =

∫ t

0
ψ(u) du.

If 2l ≫ 1 then |ψ̄| ⋆ ψl ≈ ‖ψ̄‖1 ψl, and E(|dX ⋆ ψl|) ≃ 2l(α−1−1) because the
Lévy measure dX(t) satisfies the self-similarity property

{dX(st)}t
d
= sα−1−1{dX(t)}t .

Inserting (30) in (29) gives the scaling property (28).

4. Scattering Moments of Multiplicative Cascades. We study the
scattering representation of multifractal processes which satisfy a stochastic
scale invariance property. Section 4.2 studies the particularly important case
of log-infinitely divisible multiplicative processes.

4.1. Stochastic Self-Similar Processes. We consider processes with sta-
tionary increments which satisfy the following stochastic self-similarity:

(31) ∀ 1 ≥ s > 0 , {X(st)}t≤2L
d
= As · {X(t)}t≤2L ,
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16 BRUNA ET AL.

where As is a log-infinitely divisible random variable independent of X(t)
and the so-called integral scale 2L is chosen (for simplicity) as a power of
2. The Multifractal Random Measures (MRM) introduced by [30, 6] are
important examples of such processes. Let us point out that MRM’s are
stationary increments versions of the multiplicative cascades initially in-
troduced by Yaglom [38] and Mandelbrot [22, 23], and further studied by
Kahane and Peyriere [17]. Strictly speaking, these multiplicative cascades
do not satisfy (31). However they do satisfy an extremely similar equation
when sampled on a dyadic-grid, and consequently, all the results that we
obtained on MRM’s are easily generalized to multiplicative cascades. For
the sake of conciseness, we did not include them here.

Since X has stationary increments and satisfies (31), with a change of
variables we verify that

∀j ≤ L , {X ⋆ ψj(t)}t
d
= A2j {X ⋆ ψ(2−jt)}t ,

and hence for all q ∈ Z and j ≤ L

(32) E(|X ⋆ ψj|q) = E(|A2j |q)E{|X ⋆ ψ|q} ≃ Cq2
jζ(q) ,

where ζ(q) is a priori a non-linear function of q. Since the self-similarity is
upper bounded by an integral scale, the convexity of moments [14] implies
that ζ(q) is a concave function of q. Similarly to Proposition 3.1, the following
proposition shows that normalized scattering moments capture stochastic
self-similarity with a univariate function.

Proposition 4.1. If X is randomly self-similar in the sense of (31)
with stationary increments then for all j1 ≤ L

(33) S̃X(j1) = E(|A2j1 |) .

If 2j1 + 2j2 ≤ L then

(34) S̃X(j1, j2) = SX̃(j2 − j1) with X̃(t) =
|X ⋆ ψ(t)|
E(|X ⋆ ψ|) .

Proof: Property (18) is particular case of (32) for q = 1. If 2j1 + 2j2 ≤ L,
with the same derivations as for (21), we derive from (31) that

(35) ||X ⋆ ψj1| ⋆ ψj2|
d
= A2j1 Lj1 ||X ⋆ ψ| ⋆ ψj2−j1 | ,

so SX(j1, j2) = E(A2j1 )E(||X ⋆ ψ| ⋆ ψj2−j1|) . Together with (33) it proves
(34). �.
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Fig 5. (a): log2 SXα(j1, j1 + l) as a function of l for a Multifractal Random Measure
(MRM) with λ2 = 0.04 and an integral scale 2L = 213. Different colors stand for different
values of j1. (b): Same curves restricted to j2 = j1 + l < L − 1.

Figure 5 shows the normalized scattering of a multiplicative cascade pro-
cess described in Section 4.2, with an integral scale 2L = 217. When 2j2 ≥ 2L

is beyond the integral scale, as for a Poisson process, wavelet coefficients
converge to Gaussian processes. It results that log2 S̃(j1, j2) decays with a
slope −1/2 as a function of j2 − j1 for j2 > L, as shown in Figure 5(a). If
j1 < j2 < L then (34) proves that S̃X(j1, j2) only depends on j2 − j1, and
all curves in Figure 5(b) superimpose in this range.

Propositions 3.1 and 4.1 show that the stationary property S̃X(j1, j2) =
S̃X(j2 − j1) can be used to detect the presence of self-similarity, both de-
terministic and stochastic. This necessary condition is an alternative to the
scaling of the q-order moments, E(|X ⋆ψj |q) ≃ Cq2

jζ(q), which is difficult to
verify empirically for q ≥ 2 or q < 0.

Multifractals typically become decorrelated beyond their integral scale.
At scales 2j2 > 2L, wavelet coefficients converge to Gaussian processes.
The resulting normalized second order scattering thus converge to that of a
Gaussian process, which decays like 2−j2/2 as seen in Section 3.2. If 2j1 > 2L

then X ⋆ ψj1(t) already becomes Gaussian and second order moments thus
decay like 2(j1−j2)/2. Consequently, the resulting normalized second order
scattering is

(36) S̃XL(j1, j2) ≈
{
S̃X(j2 − j1) if j1 < j2 < L

C 2(j1−j2)/2 if L < j1 < j2
.

4.2. Log-infinitely divisible Multifractal Random Processes. Multiplica-
tive cascades as introduced by Mandelbrot in [22, 23] are built as an itera-
tive process starting at scale 2L with the Lebesgue measure on the interval
[0, 2L]. The iteration consists in cutting this interval at the middle point and
multiplying the mass on each interval by a log-infinitely divisible variable (iid
versions are used on each interval). One then gets a random measure ”living”
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at scale 2L−1 (i.e., it is uniform on intervals of length 2L−1 : [0, 2L−1] and
[2L−1, 2L]). The iteration is then applied recursively on each sub-interval.
At the nth iteration, one gets a random measure living at scale 2L−n (i.e.,
which is uniform on each interval of the form [k2L−n, (k + 1)2L−n]). The
object of interest is the weak limit (n → +∞) of this random measure. At
a given point t it can be written as an infinite product

∏+∞
n=1Wn where Wn

are iid log-infinitely divisible variables.
Multifractal Random Measures, introduced in [30, 6], can be seen as sta-

tionary increments versions of these multiplicative cascades. They are ob-
tained by infinitely decomposing each iteration step, i.e., no longer going
directly from scale s = 2L−n to scale s = 2L−n−1 but going from an arbi-
trary scale s to a scale rs where r is infinitely close to 1. Thus, they are built
using an infinitely divisible random noise dP distributed in the half-plane
(t, s) (s > 0). Using the previous notations, the noise around (t, s) can be
seen as the equivalent of the infinitely divisible variable log2Wlog s(t). More

precisely, if ω2L

l (t) =
∫
A2L

l
(t)
dP where A2L

l (t) is the cone in the (t, s) half-

plane pointing to point (0, s) and truncated for s < l, the MRM is defined
as the weak limit

(37) dM(t) = lim
l→0

eω
2L

l
(t)dt.

For a rigorous definition of ω2L

l and of a Multifractal Random Measure, we
refer the reader to [6]. In this section, we will study the scaling properties
of scattering moments associated with X = dM . Thanks to the discussion
in Section 2.3, one can easily show that all our results can be extended to
X(t) = M(t) =

∫ t
0 dM .

One can prove that dM is a stochastic self-similar process in the sense of
(31). It is multifractal in the sense that

E(|X ⋆ ψj|q) = E(|A2j |q)E{|X ⋆ ψ|q} ≃ Cq2
jζ(q) ,

where ζ(q) is a non-linear function which is uniquely defined by infinitely
divisible law chosen for dP . Notice that if dP is Gaussian, then dM is a
log-Normal random cascade. In this case [6]:

(38) ζ(q) = (1 +
λ2

2
)q − λ2

2
q2 .

The curvature of the concave function ζ(q) at q = 0 is considered as an
intermittency factor in the multifractal formalism [14], which is here equal
to λ2. The bigger λ2, the more intermittency.

imsart-aos ver. 2013/03/06 file: multifractals_aos.tex date: November 26, 2013



INTERMITTENT PROCESS ANALYSIS WITH SCATTERING MOMENTS 19

The self-similarity properties of dM are mainly direct consequences of a
“global” self-similarity properties of ω2L

l , which is true for all L and all s > 0
:

(39) {ωs2L

sl (st)}t
law
= {ω2L

l (t)}t.

But also of a stochastic self-similarity property, which is true for all L and
s < 1

(40) {ω2L

sl (su)}u<T
law
= {Ωs + ω2L

l (u)}u<T ,

where Ωs is an infinitely divisible random variable independent of ω2L

l (u)
such that E(eqΩs) = e−(q−ζ(q)) ln(s). More precise results used in the proofs
are stated in Appendix C. The following proposition computes the first order
normalized scattering moments of dM .

Proposition 4.2. If dM is a multifractal random measure then for all
j < L

(41) S̃dM(j) = 1.

Proof: We first prove that for all t ∈ [0, 2L − 1] and all j < L

(42)
dM ⋆ ψj

E(|dM ⋆ ψ|)
law
= eΩ2j−L ξ(t2−j) ,

where Ωs is the random variable defined in (40) and ξ1(t) is a normalized
1-dependent, stationary random process independent of Ω2j−L defined as:

(43) ξ(t) = K−1ǫ1(t)

where ǫ1(t) = liml→0
∫
ψ(u− t)eω

1
l
(u)du and K = E(|ǫ1(t)|).

Let j < L and dMl = eω
2L

l
(t)dt. From (39), one has:

dMl ⋆ ψj
law
= 2−j

∫
e
ω2j

2j−Ll
(u2j−L)

ψ(2−j(t− u))du ,

and thus, by setting s = 2j−L, from (40) and (39):

dMl⋆ψj
law
= 2−jeΩs

∫
ψ(2−j(t− u))eω

2j

l
(u)du

law
= eΩs

∫
ψ(2−jt−u)eω

1
l2−j

(u)
du .

Taking the limit l → 0 for a fixed j in the last equation shows that

(44) dM ⋆ ψj
law
= eΩ2j−L ǫ1(t2

−j) ,
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Fig 6. (a,b) Realizations dM of log-normal Multifractal Random Measures with λ2 =

0.04 and λ2 = 0.1. (c) log2 S̃dM(j1) with λ2 = 0.04, λ2 = 0.07 and λ2 = 0.1. (d)

log2 S̃dM(j1, j1 + l), for λ2 = 0.04, λ2 = 0.07 and λ2 = 0.1, as a function of l, for
j1 + l < L where 2L = 213 is the integral scale.

with

(45) ǫT (t) = lim
l→0

∫
ψ(u− t)eω

T
l

(u)du.

Normalizing ǫ1(t) by E(|dM ⋆ ψ|) proves (42).
Since ψ has a compact support of size 1, the process ǫ1(t) (and therefore

the process ξ1(t)) is a 1-dependent process, i.e., ∀τ > 1, ǫ1(t+ τ) is indepen-
dent from {ǫ1(t′)}t′≤t. Equation (41) is a direct consequence of (42) and of
the fact that E(eΩs) = 1. �

The following theorem proves that normalized second order moments
S̃(j1, j2) converge to a constant when j1 decreases.

Theorem 4.3. Let j1, j2 < L. If ζ(2) > 1 then S̃dM(j1, j2) depends only
on j1 − j2 and there exists K̃ > 0 such that for for each j2 ≤ L

(46) lim
j1→−∞

S̃dM(j1, j2) = K̃.

The proof is in Appendix D. Let us illustrate the results of Proposition
4.2 and Theorem 4.3 in the log-normal case. Figures 6(a,b) displays two
realizations of log-Normal MRM cascades for λ2 = 0.04 and and λ2 = 0.07,
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with an integral scale 2L = 213. Figure 6(c) shows estimations of normalized
first order scattering moments for λ2 = 0.04, λ2 = 0.07 and λ2 = 0.1.
As predicted by Proposition 4.2, log2 S̃dM(j1) = 0 for j1 < L = 13. The
second order scattering moments for the same values of λ2 are displayed in
Figure 6(d). As expected from Theorem 4.3, log2 S̃dM(j1, j2) only depends
on j2 − j1 for j2 < L. It converges to a constant K̃ when j2 − j1 increases.

With a Taylor expansion, one can show that, for large j2−j1, K̃ is a linear
function of λ up to some O(λ2) additive term. This is numerically verified
by Monte Carlo simulations which shows that K̃ ≈ 0.82λ. We see here
again the correspondence between scattering coefficients and intermittency
measurements. The constant 0.82 depends upon the choice of wavelet ψ.

Another important class of a stochastic self-similar processes is obtained
by performing a change of variable in a Brownian motion B(t) with a Mul-
tifractal Random Measure, which defines X(t) = B(M(t)). Such kind of
processes, called Multifractal Random Walks (MRW), were introduced in
[29, 6]. It can be shown [6] that a MRW process can be obtained as the limit
when l goes to 0 of

(47) Xl(t) = l
2−ζ(2)

2

∫ t

0
eω

2L

l
(u)dB(u) ,

where dB(u) is the standard Wiener noise. Accordingly, B(M(t)) can be
considered as a stochastic volatility model, where the associated MRM,

(48)
dMl(u)

du
= l2−ζ(2)e2ω2L

l
(u)

corresponds is the local stochastic variance of a Brownian motion. In that
respect, such a model can account for asset price fluctuations in financial
markets by mimicking the stochastic behavior of asset volatility [29, 4, 5].

Since B(t) is self-similar, one can verify that X(t) inherits the stochastic
self-similarity of M(t) and satisfies (32). In particular, one can show (see e.g.
[6]) that the multifractal spectrum ζ(q) of the MRW X(t) defined in (47) is
related to the spectrum ζM(q) of the MRM M(t) defined in (48) through:

(49) ζ(q) = ζM (q/2) .

Another consequence is that scattering moments of a multifractal random
walk behave similarly as the scattering moments of dM . The following the-
orem proves that the results of Proposition 4.2 and Theorem 4.3 also apply
to Multifractal Random Walks.
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Fig 7. (a,b) Realizations X(t) of log-normal Multifractal Random Walks with λ2 = 0.04

and λ2 = 0.1. (c) log2 S̃X(j1) with λ2 = 0.04, λ2 = 0.07 and λ2 = 0.1. (d) log2 S̃X(j1, j1+
l), for λ2 = 0.04, λ2 = 0.07 and λ2 = 0.1, as a function of l, for j1 + l < L where 2L = 213

is the integral scale.

Theorem 4.4. Let X(t) be a Multifractal Random Walk as defined in
(47) of integral scale 2L and scaling exponents ζ(q). For all j < L

(50) S̃X(j) = 2j
3−ζ(2)

2 .

If ζ(2) > 1 and j1, j2 < L then S̃X(j1, j2) depends only on j1 − j2, and for
each j2 < L:

(51) lim
j1→−∞

S̃X(j1, j2) = K̃

where the constant K̃ is the constant of theorem 4.3 of the Multifractal Ran-

dom Measure associated with eω
2L

l in (47).

The proof is very similar to the proof of Proposition 4.2 and Theorem 4.3
for Multifractal Random Measures dM so we only provide in Appendix E
the main steps without entering into details.

Figure 7 shows the scattering moments of multifractal random walks
X(t) = B(dM(t)) for a log-normal random measure dM , with λ2 = 0.04,
λ2 = 0.07 and λ2 = 0.1. In the log-normal case, it results from (49) that

(52) ζ(q) = (1 + 2λ2)
q

2
− λ2

2
q2 ,
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Thereby ζ(2) = 1. As expected from (50), Figure 7(c) shows that log2 S̃X(j1) =

j1(
3−ζ(2)

2 ). As expected from (51), Figure 7(d), compared to Figure 6(d),

shows that second order scattering moments satisfy S̃X(j1, j2) ≈ S̃dM(j1, j2),
for the three values of λ2. If one uses the same wavelet ψ, we check that they
converge to the same constant K̃ as in the MRM case which is proportional
to the intermittency parameter λ: K̃ ≈ 0.82λ in the displayed examples.

5. Parametric Model Estimation with Scattering Moments. Sec-
tion 5.1 introduces estimators of scattering moments. Section 5.2 applies the
generalized method of simulated moments to scattering moments to estimate
the parameters of data generating models. Section 5.3 and 5.4 analyze the
scattering moments of turbulence data and financial time series to evaluate
fractional Brownian, Lévy stable and multifracal cascade models. Compu-
tations are performed with a Selesnik compactly supported wavelet [35].

5.1. Estimation of Scattering Moments. We study scattering moment
estimators introduced in [21], and compute upper bounds of their mean-
square error. A scattering moment SX(j1, ..., jm) = E(| |X⋆ψj1 |⋆...|⋆ψjm |) is
estimated by replacing the expected value by a time averaging at a scale 2M .
It is calculated with a time window φM (t) = 2−Mφ(2−M t) with

∫
φ(t) dt = 1.

For any (j1, ..., jm) ∈ Z
m with jk ≤M , the estimator is

(53) ŜX(j1, ..., jm) = | |X ⋆ ψj1| ⋆ ...| ⋆ ψjm | ⋆ φM (t0) .

where t0 is typically in the middle of the domain where X(t) is known. Since∫
φM (t) dt = 1, this estimator is unbiased E(ŜX(j1, ..., jm)) = SX(j1, ..., jm).

Theorem 5.1. Suppose that the Fourier transform Φ(ω) of φ satisfies

(54) |Φ(ω)|2 ≤ 1

2

∞∑

j=1

(
|Ψ(2jω)|2 + |Ψ(−2jω)|2

)
with Φ(0) = 1 .

If X has stationary increment and E(|X ⋆ ψj1|2) <∞ then
(55)

∀ j1 ≤M , E(|ŜX(j1)|2)+
∞∑

m=2

∑

−∞<j2,...,jm≤M

E(|ŜX(j1, ..., jm)|2) ≤ E(|X⋆ψj1 |2) .

Proof: The Fourier transform Ψ(ω) of ψ satisfies the Littlewood-Paley
condition (3)

∞∑

j=−∞

(
|Ψ(2jω)|2 + |Ψ(−2jω)|2

)
= 2 .
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It results that

(56) |Φ(2Mω)|2 +
1

2

M∑

j=−∞

(
|Ψ(2jω)|2 + |Ψ(−2jω)|2

)
≤ 1 .

Let Y be a stationary process with E(|Y (t)|2) <∞, and PY (ω) be its power
spectrum. Multiplying (56) by PY (ω) and integrating in ω gives

(57) E(|Y ⋆ φM |2) +
M∑

j=−∞

E(|Y ⋆ ψj|2) ≤ E(|Y |2) .

Let us prove by induction that for any q ≥ 2

E(|ŜX(j1)|2) +
q−1∑

m=2

∑

−∞<j2,...,jm≤M

E(|ŜX(j1, ..., jm)|2) +

∑

−∞<j2,...,jq≤M

E(| |X ⋆ ψj1 | ⋆ ...| ⋆ ψjq |2) ≤ E(|X ⋆ ψj1 |2) .(58)

Applying (57) to Y = |X ⋆ψj1 | proves that (58) for q = 2. If (58) is valid for
q we prove it for q + 1 by applying (57) to each Y = | |X ⋆ ψj1| ⋆ ...| ⋆ ψjq |.
Taking the limit of (57) as q goes to ∞ proves (55). �

If ψ has a compact support then one can verify that there exists φ hav-
ing the same support as ψ, whose Fourier transform satisfies (54), with
an equality on the Fourier transform modulus. Since E(ŜX(j1, ..., jm)) =
SX(j1, ..., jm), the mean-square estimation error at the scale 2j1 is

ǫ(j1)
def
= E(|ŜX(j1)−SX(j1)|2)+

∞∑

m=2

∑

−∞<j2,...,jm≤M

E(|ŜX(j1, ..., jm)−SX(j1, ..., jm)|2) .

It results from (55) that

(59) ǫ(j1) ≤ σ2(|X ⋆ ψj1|) −
∞∑

m=2

∑

−∞<j2,...,jm≤M

|SX(j1, ..., jm)|2 .

When j1 is close to M then |X ⋆ψj1(t)| decorrelates slowly relatively to the
averaging window scale 2M so ǫ(j1) is large, but it is bounded by σ2(|X⋆ψj1 |).

Large variance estimators ŜX(j1, ..., jm) are eliminated by keeping only
small scales jk ≤ J for 1 ≤ k ≤ m, with M − J sufficiently large. For
most classes of random processes, including fractional Brownian motions
and multifractal random walks, we observe numerically that ǫ(j1) converges
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to zero as the averaging scale 2M goes to ∞. Equation (59) proves that it is
the case if for all j1

σ2(|X ⋆ ψj1 |) =
∞∑

m=2

∑

−∞<j2,...,jm≤∞

|SX(j1, ..., jm)|2 .

This energy conservation has been conjectured for large classes of processes
in [21], but it is not proved.

For n independent realizations {Xk(t)}1≤k≤n, we compute an averaged
scattering estimator

(60) ŜX = n−1
n∑

k=1

ŜXk .

Its variance is thus reduced by n−1. When n goes to ∞, the central limit
theorem proves that ŜX−SX converges to a zero-mean normal distribution
whose variance goes to 0.

5.2. Generalized Method of Simulated Moments. The generalized method
of simulated moments computes parameter estimators for data generative
models, from arbitrary families of moments. It is applied to scattering mo-
ments and results are numerically evaluated on synthetic data generated
from multifractal random measures.

Suppose that {Xk}1≤k≤n are n independent realizations of X(t). If the
Xk(t) are realizations of a parametric model Yθ then ŜXk is an unbiased
estimator of SYθ so

m(θ) = E(ŜXk) − SYθ = 0 .

The generalized method of moments estimates this moment condition by an
empirical average defined by

(61) m̂(θ) = n−1
n∑

k=1

ŜXk − SYθ = ŜX − SYθ.

When n goes to ∞ the central limit theorem proves that m̂(θ) converges
to a normal distribution. The generalized method of moments finds the
parameter θ̂ such that:

(62) θ̂ = argmin
θ

m̂(θ)Wm̂(θ)T

for appropriate matrices W . Setting W = Id gives

(63) θ̂1 = argmin
θ

‖ŜX − SYθ‖2 .
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The two-step generalized method of moment updates the first estimator θ̂1
by setting W = Ŵθ̂1

, where Ŵθ is the inverse of the empirical covariance

(64) Ŵθ =
(
n−1

n∑

k=1

(ŜXk − SYθ)(ŜXk − SYθ)
T
)−1

.

It computes

(65) θ̂ = argmin
θ

m̂(θ) Ŵθ̂1
m̂(θ)T .

Since we can not compute SYθ analytically, according to the simulated
method of moments [25], SYθ is replaced in (61) and (64) by an estimator
ŜYθ calculated with a Monte Carlo integration. This estimator is computed
with n′ ≫ n realizations which are adjusted in order to yield a negligible
mean-square error E(‖ŜYθ − SYθ‖2).

In numerical computations, the dimension p of the vector of scattering
moments is limited by keeping only the finest scale moments. This reduces
the variance of the estimator (65). The estimation is often over-identified
in the sense that the dimension p is larger than the dimension d of the
parameter vector θ. A p-value is computed for the null hypothesis which
supposes that the parametrized model is valid. The J-test [13] is a chi-
squared goodness of fit test, which we normalize by the p − d degrees of
freedom:

(66) χ2
red = (p − d)−1 n m̂(θ̂) Ŵθ̂ m̂(θ̂)T .

Under the null hypothesis, (p− d)χ2
red asymptotically follows a chi-squared

distribution with p− d degrees of freedom.
In all numerical computations, we limit ourself to first and second or-

der scattering coefficients, which carry most of the energy of the scattering
vector. Computations are performed from discretized data sequences whose
sampling interval is normalized to 1. Wavelet coefficients can thus be com-
puted at scales 2j > 1. However, we often need to eliminate the finest scale
coefficients j1 ≤ J0 to remove high frequency errors due to aliasing, dis-
cretization or to some data smoothing. As explained in Section 5.1 we only
keep coefficient below a maximum scale j1 ≤ J and j2 ≤ J , to eliminate the
largest variance scattering estimators. Second order coefficients SX(j1, j2)
for j2 ≤ j1 are also eliminated, because they have a negligible amplitude
which carries little information on X, as explained Section 2.2. The result-
ing scattering vector is thus

SX =
(
SX(j1)SX(j1, j2)

)

J0<j1≤J,j1<j2≤J
.
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It has J − J0 first order scattering moments and (J − J0 − 1)(J − J0)/2
second order moments. They are estimated by the scattering estimator ŜX
computed in (53) and in (60) for multiple realizations.

The dimension of the scattering vector ŜX is p = (J − J0 + 1)(J − J0)/2.
As J increases, the dimension p of the scattering vector increases but the
variance of this vector also increases. The method of generalized moments
requires that Ŵθ in (64) gives an accurate estimation of the inverse of the
covariance matrix of SYθ whose dimension is p. For large p it is sufficient
to have a number n of independent realizations such that n ≃ p log2 p [37].
This condition limits the maximum value of J .

The Generalized Method of Simulated Moments can still be applied if we
observe a single realization X(t), when sufficiently far away wavelet coeffi-
cients become independent. This is indeed sufficient to guarantee that ŜX
becomes asymptotically normal. Let us consider scattering vector estimators
computed at intervals ∆:
(67)
ŜXk(j1) = |X⋆ψj1 |⋆φM (k∆) and ŜkX(j1, j2) = ||X⋆ψj1 |⋆ψj2 |⋆φM (k∆) .

The goodness of fit J-test supposes that the variable (66) follows a chi-
squared distribution with p− d degrees of freedom, which requires that the
estimators ŜXk are independent for different k. This is the case if wavelet
coefficients for different k are computed from independent values of X. If
X has an integral scale T , as in multifractal cascades, then increments are
independent at distances larger than T . One can thus set ∆ = 2T . Other pro-
cesses, such as fractional Brownian motions have no integral scales but their
wavelet coefficients become nearly independent at distances much larger
than the scale. Nearly independent estimators are thus obtained if ∆ ≫ 2M .

The situation is different if we only compute the parameter estimator θ̂
with (65). Its consistency requires that ŜX converges to a normal distribu-
tion, but we can estimate its covariance up to an unknown multiplicative
factor. It is then unnecessary to estimate the decorrelation properties of
wavelet coefficients, and one can set ∆ = 1 to be the process sampling inter-
val. Indeed, although the ŜXk are correlated, their average ŜX still becomes
asymptotically normal if there exists a ∆ for which the ŜXk become indepen-
dent. Reducing ∆ is equivalent to averaging several correlated estimators,
where each one is computed from independent realizations and converges to
a normal distribution as N increases. It introduces a multiplicative factor
in the covariance estimation, which does not affect estimator θ̂ in (65).

The properties of the Scattering Method of Moments are illustrated on
the estimation of the intermittency parameter θ = λ2 for multifractal ran-
dom measures. Section 4.2 proves that normalized second order scattering
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moments converge to a constant K̃ which is proportional to λ, which shows
that the intermittence λ2 is characterized by first and second order scatter-
ing moments. However, the information is not just carried by this asymptotic
value, which is why all scattering moments are used for the estimation. The
scattering estimation is compared with two estimators dedicated to this par-
ticular estimation problem [5].

Scattering moment estimators are computed from n independent realiza-
tions of size 211 of a multifractal random measure having an integral scale
T = 210. The total number of data points is N = n · 211, and we set J0 = 0.
For different values of N = n ·211, we report in Table 1 the value of J which
minimizes the mean squared error E(|θ̂ − θ|2), estimated with Monte Carlo
simulations. We also give the average value of the reduced χ2

red test in (66)
and the model p-value. For small values of n, the covariance of ŜX is com-
puted up to a multiplicative constant, from correlated scattering coefficients
calculated within each realization with ∆ = 1 in (67). It leads to a good
estimation of θ̂ but the model p-value can not be estimated.

The intermittency parameter of multifractal random measures can also
be estimated directly from wavelet coefficients. Section 4.2 explains that the

scaling exponent of wavelet moments of order q is ζ(q) =
(

1
2 + λ2

)
q− λ2

2 q
2.

It results that λ2 = 2ζ(1) − ζ(2). The intermittency parameter can thus be
estimated with a linear regression on the estimated first and second order
moments of wavelet coefficients at scales 2j < 2L:

(68) 2 log2 E(|X ⋆ ψj |2) − log2 E(|X ⋆ ψj|)2 ≈ j(ζ(2) − 2ζ(1)) + C .

The wavelet moments E(|X⋆ψj |2) and E(|X⋆ψj |) are estimated with empir-
ical averages of |X ⋆ψj | and |X ⋆ψj |2, calculated from the N data samples.
An improved estimator has been introduced in [4, 5] with a regression on the
covariance of the log of the multifractal random measure. One can indeed
prove that

(69) Cov (log |X ⋆ ψj(t)|, log |X ⋆ ψj(t+ l)|) ≃ −λ2 ln

(
l

2L

)
+ o

(
j

l

)
,

which leads to lower variance estimations.
Table 1 shows that the scattering moment estimation of λ2 has a smaller

variance than the regression of first and second order wavelet moments.
This is due to the low variance of the scattering estimators which are com-
puted with non-expansive operators. It gives comparable results with the
log-covariance estimator, which was optimized for this problem [5]. The J-
test validates the multifractal model, since we obtain a normalized J-test

with mean and standard deviation close to 1±
√

2
p−1 , corresponding to mean
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Table 1

Estimation of λ2 for a multifractal random measure. The table gives the mean and the
standard deviation of estimators computed with a wavelet moment regressions (68), a log
covariance regression (69), and the method of simulated scattering moments, for several

values of λ2 and several sample sizes N = n · 211.

λ2 N θ̂ Wavelet θ̂ log-cov θ̂ Scattering J χ2
red p-value

0.02 106 0.025 ± 2 · 10−3 0.02 ± 2 · 10−4 0.02 ± 2 · 10−4 7 1.1 ± 0.3 0.7 ± 0.3
0.05 106 0.055 ± 2 · 10−3 0.05 ± 6 · 10−4 0.05 ± 3 · 10−4 6 0.8 ± 0.3 0.5 ± 0.3
0.1 106 0.105 ± 4 · 10−3 0.1 ± 10−3 0.1 ± 10−3 5 0.8 ± 0.5 0.5 ± 0.3
0.1 105 0.109 ± 10−2 0.1 ± 3 · 10−3 0.1 ± 2 · 10−3 5 0.7 ± 0.3 0.3 ± 0.3
0.1 104 0.12 ± 3 · 10−2 0.1 ± 1.3 · 10−2 0.1 ± 9 · 10−3 5 N/A N/A

and standard deviation of a chi-squared distribution with p − 1 degrees of
freedom. The resulting p-values for rejecting the true model are of the or-
der of 0.5. As expected, reducing the maximum scattering scale J improves
the estimation of λ2 for high intermittences. It removes large variance coeffi-
cients. However, numerical experiments confirm that the generalized method
of moments is robust to the choice of J , because the inverse covariance Ŵ
in (65) reduces the impact of high variance coefficients.

5.3. Turbulence Energy Dissipation. Turbulent regimes that appear in a
wide variety of experimental situations, are characterized by random fluc-
tuations over a wide range of time and space scales. The main physical pic-
ture behind this complexity was introduced by Richardson and Kolmogorov
[32, 18]: the fluid receives kinetic energy at large scales and dissipates this
energy at small scales where fluctuations are well known to be of intermit-
tent nature. The overall range of scales between injection and dissipation is
called the inertial range and only depends on the Reynolds number. Making
a theory of this “energy cascade” across the inertial range remains of the
famous challenges in classical physics [12].

Normalized scattering moments are computed over dissipative measure-
ments of a turbulent gaz, to analyze their self-similarity and intermittency
properties. The precision of fractional Brownian motion, Lévy stable and
multifractal random measure models are evaluated with a J-test resulting
from scattering moments. This study does not pretend evaluating general
turbulence physical models. However, it shows that one can have confident
model evaluations from data sets, despite intermittency phenomena.

The data we used have been recorded by the group of B. Castaing in
Grenoble in a low temperature gazeous Helium jet which Taylor scale based
Reynolds number is Rλ = 703 [9]. A single probe provides measures of
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velocity temporal variations at a fixed space location that involve both La-
grangian and Eulerian fluctuations. If one supposes the flow homogeneous
and isotropic, the local energy dissipation rate at a given time and location
is given by:

X(~x, t) = 15ν

(
∂v||
∂x

)2

,

where v||(~x, t) is the stream-wise component of velocity and ν stands for the
kinematic viscosity constant. The Taylor frozen-flow hypothesis [12] assumes
that the stream-wise mean velocity V is very large so one can neglect tempo-
ral lagrangian fluctuations. It results that the temporal variations of a field
X(~x0, t), at some fixed location ~x0, correspond to the spatial fluctuations
advected by the mean flow, i.e., X(~x0, t) = X( ~x0 − ~V t, 0). This hypothesis
implies that a surrogate of the dissipation field can be obtained from the
temporal evolution of longitudinal velocity field as:

(70) X(t) ≃
(
∂v||

∂t

)2

;
.

Figure 8-(a) shows a sample of the dissipation field X(t) as a function
of time, estimated from the experimental velocity records. The Kolmogorov
(dissipative) scale η is observed at approximately 22 sample points, whereas
the integral scale is approximately 2L = 211 sample points.

Estimators of normalized scattering moments are computed as ratio of
the first and second order scattering estimators ŜX(j1) and ŜX(j1, j2) in
(53). First order scattering coefficients are renormalized at the finest scale
defined by j1 = 2. The normalized moments S̃X(j1) = SX(j1)/SX(2) and
S̃X(j1, j2) = SX(j1, j2)/SX(j1) are thus estimated by

(71)
̂̃
SX(j1) =

ŜX(j1)

ŜX(2)
and

̂̃
SX(j1, j2) =

ŜX(j1, j2)

ŜX(j1)
.

These estimators are biased because ŜX(j1, j2) and ŜX(j1) are not inde-
pendent but the bias tends to zero as the variance of scattering moment
estimators goes to zero.

First order scattering coefficients are displayed in Figure 8(b). In the
inertial range 21 = 2J0 < 2j1 ≤ 2L = 211 the scaling law of the exponents
is S̃X(j1) ≃ 2−0.25j1 . If 2j1 ≥ 2L then S̃X(j1) ≃ 2−j1/2 because the low
frequencies of a turbulence flow becomes Gaussian and independent beyond
the integral scale.

Figure 8(c) gives normalized second order coefficients log2 S̃X(j1, j1 + l)
as a function of l, for different j1. For j2 = j1 + l > L, the slopes increase
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Fig 8. (a) Realization of dissipation X(t) =
(

∂v
∂t

)2
in a turbulent flow. (b) Estimation

log2
̂̃
SX(j1) as a function of j1, calculated from 4 realizations of 219 samples each. (c)

log2
̂̃
SX(j1, j1 + l) as a function of l, for 2 ≤ j1 ≤ 12. (d) log2

̂̃
SX(j1, j1 + l) in the inertial

range j1 + l < L − 1 = 10. We plot the confidence intervals corresponding to the standard

deviation of the estimated log2
̂̃
SX(j1, j1 + l).

up to −1/2 because beyond the integral scale, wavelet coefficients converge
to Gaussian random processes. Below the integral scale, j2 = j1 + l < L− 1
Figure 8(d) shows that the curves log2 S̃X(j1, j1 + l) with error bars giving
the standard deviations of each estimated values. In this inertial range, the
average slope of all curves is −0.2. This slope is very different from the −1/2
decay of Gaussian processes, which indicate the presence of intermittent
phenomena. Although these curves are similar, one can observe that they
differ significantly compared to the error bars, which indicates the the self-
similarity of turbulence data is violated.

This non-self-similarity is likely to originate from the fact that Taylor
hypothesis does not rigorously hold. A single probe provides measures of
velocity temporal variations at a fixed space location, which involve both
lagrangian and eulerian fluctuations. This point has already been observed
in ref. [11] and discussed in details by Castaing in ref. [8] in order to explain
the behavior of the correlation functions of velocity amplitude variations.
This example illustrates the ability of scattering moments to finely evaluate
self-similarity properties.

Let us study how 3 simple models can be compared to fit the experimen-
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Table 2

Parameter estimation for the turbulence data in Figure 8(a), calculated from Fractional
Brownian Noise measures (FBN), Lévy stable measures (LS), and Multifractal Random

Measures (MRM).

FBN LS MRM

θ̂ H = 0.9 α = 1.98 λ2 = 0.09
χ2

red 28 29 29
p-value < 10−6 < 10−6 < 10−6

tal data. The square of a Fractional Gaussian noise can be considered as a
first model of turbulent dissipative energy. It is calculated as the square of
the “derivative” of a fractional Brownian motion parametrized by the in-
dex θ = H. A second model is computed as the square of the derivative of
an α-stable Lévy process, which is parametrized by θ = α. The third class
of models we consider is standard in the literature for the dissipation field
[12, 26]: they are random cascade models as represented by log-normal the
multifractal random measures, parametrized by the intermittency parameter
θ = λ2. These models are evaluated from scattering moments computed in
the inertial range. Setting J0 = 1 eliminates coefficients below the diffusion
scale. We have N = 4 ·106 data samples, divided into 4 realizations. Within
each realization, since the integral scale is T = 2 · 103, samples are indepen-
dent at a distance larger than T . The maximum scale is set to 2J = 28 but
its modification has a marginal impact on the estimation. The size of the
resulting scattering vector is p = (J − J0 + 1)(J − J0)/2 = 28.

For each model family, Table 2 estimates an optimal parameter θ̂ with the
method of simulated scattering moments presented in Section 5.2. Table 2
also gives the value of the χ2

red goodness of fit test in (66), together with its
p-value. All models are rejected with very high confidence. For nearly the
same number of data values, with integral scales of same size, Table 1 gave
much higher p-values for valid multifractal random measure models of same
intermittency.

The main source of errors of each model clearly appears by analyzing the
normalized scattering moments in Figure 8. Fractional Brownian motions
have first order coefficients which can mimic the decay of the first order
scattering coefficients but their second order coefficients decay with a slope
of −1/2 as opposed to −0.2. Levy stable processes have first and second
order scattering coefficients which decay with a slope of α−1 − 1. To match
the slopes in Figure 8(c,d), respectively equal to −0.25 and −0.2, we would
need that α ≈ 1.2. However, the resulting second order coefficients in Figure
4 have a much larger amplitude than in Figure 8(d). Table 1 estimation
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α = 1.98 is close to 2 and thus has a much lower intermittency, but it
does not match the decay of first and second order coefficients. Multifractal
random measure model misfit comes from their first order coefficients which
remain constant whereas turbulence data coefficients decay with a slope
close to −0.2.

5.4. Financial Time-Series Analysis. Since Mandelbrot’s pioneering work
on the fluctuations of cotton price in the early sixties, it is well known that
market price variations have some form self-similar properties, which are
poorly described by a Brownian motion [24]. Extreme events are more prob-
able than in a Gaussian world and variance fluctuations are well known to
be of intermittent and correlated nature. In the following, we analyze the
normalized scattering moments of two financial time series: high-frequency
Euro-Bund data and intraday S&P 100 index data. We also evaluate frac-
tional Brownian motion, Levy stable and multifractal random walk models
on these data.

Euro-Bund is one of the most actively traded financial asset in the world.
It corresponds to a future contract on an interest rate of the Euro-zone
and it is traded on the Eurex electronic market (in Germany). The typical
number of trades is around 40.000 per day and in this study we have used
800 trading days going from May 2009 May to September 2012. Each trade
occurs at a given price, whose logarithm is notated X(t).

Every single day, the logarithmic returns of the price (i.e., the increments
of X(t)) are computed on rolling 10 second intervals, after preprocessing the
microstructure noise using the technique advocated in [33]. Each day corre-
sponds to 9 hours of trading and hence 3240 increments. Intraday financial
data are subject to strong seasonal intraday effects. Thus, for instance, the
variance is systematically larger at opening and settlement time than at
lunch time. These effects are removed with a standard “deseasonalizing”
algorithm which normalizes the returns by the square root of the intraday
seasonal variance. It is obtained by estimating the variance every 5mn during
the day, with an averaging across days.

Figure 9(a) shows the resulting “deseasonalized” Euro-Bund log-price
X(t) for a particular day. Figure 9(b) shows log2 S̃X(j1) as a function of
j1. The slope is 0.48. Scattering coefficients are computed at scales smaller
than a day, and are averaged in time within a day and across days. Fig-

ure 9(c) shows log2
̂̃
SX(j1, j1 + l) as a function of l for different values of

j1 up to largest available scales. The decay of second order coefficients is

log2
̂̃
SX(j1, j1 + l) ∼ −0.2l for all j2 = j1 + l. Contrarily to turbulence

data, we do not see an integrable scale, beyond which second order co-
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Fig 9. (a) One day of the deseasonalized Euro-Bund log-price X(t). (b) Estimated

log2
̂̃
SX(j1). (c) Estimated log2

̂̃
SX(j1, j1 + l). (d) Estimated log2

̂̃
SX(j1, j1 + l) for

j1 + l < 9.

efficients would have a fast decay of −0.5l. This is not surprising since
the integral scale is known to be larger than few months [5]. Figure 9(d)
gives intra-day second order coefficients j2 = j1 + l < 9. The variance of
̂̃
SX(j1, j1 + l) is indicated with vertical error bars. Observe that the varia-

tions of log2
̂̃
SX(j1, j1 + l) has small variations as a function of j1, which is

a strong indication of self-similarity.
The same scattering computations are performed on S&P 100 index, sam-

pled every 5 minutes from April 8th 1997 to December 17th 2001. It opens
6.5 hours a day, from 9:30am to 4:00pm (i.e., 78 samples every day). The
S&P 100 Index is a stock market index of United States stocks maintained
by Standard & Poor’s. It is a subset of the S&P 500 index. The same pre-
processing is applied as for the Euro-Bund data, but microstructure noise
is non-existent because the data is sampled at a lower frequency. We used
high and low values on each 5mn interval to compute an estimation on the
5mn variance. All days are concatenated and the overnight period has been
preprocessed with the same deseasonalizing algorithm as intraday periods.

Figure 10(a) shows the deseasonalized log price X(t). Panel (b) displays
the estimated first order scattering moments. Each trading day has 78 ≃
26 samples. The deseasonalizing algorithm eliminates opening and closing
artifacts and log2 S̃X(j1) remains regular for j1 close to 6. Figure 10(c) shows
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Fig 10. (a) Three years of the deseasonalized S&P 100 index log-price X(t). (b) Estimated

log2
̂̃
SX(j1). (c) Estimated log2

̂̃
SX(j1, j1 + l) for j1 + l < 9.

Table 3

The left and right parts of the table correspond to Euro-Bund and S&P 100 time series.
The first row gives the estimated parameter value θ̂ for Fractional Brownian

Motion(FBM), Levy stable processes (LS) and Multifractal Random Walks (MRW).

S Euro-Bund S&P

FBM LS MRW FBM LS MRW

θ̂ H = 0.5 α = 1.95 λ2 = 0.03 H = 0.5 α = 1.8 λ2 = 0.08
χ2

red 29 26 23 17 16 10

the estimated second order moments. For j2 = j1 + l = 6 the coefficient
log2 S̃X(j1, j1 + l) is higher than expected, relatively to other coefficients,
which means a higher level of intermittency. As explained in Section 5.1,
large scales 2j1 and 2j2 have coefficients of higher variance.

The method of simulated scattering moments is applied to estimate model
parameters for these financial data. We consider fractional Brownian mo-
tions models with θ = H, Levy stable processes parametrized with θ = α
and multifractal random walks with θ = λ2. For each model family, Table
2 estimates an optimal parameter θ̂ from first and second order scattering
coefficients. They are computed from a total of N = 3 · 106 samples for the
Euro-Bund and N = 105 samples for S&P 100. The maximum scale 2J is
adjusted to J = 8 for the Euro-Bund and J = 6 for the S&P 100 dataset.
We set J0 = 1 to eliminate discretization effects in both cases. For fractional
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Brownian motions, the estimated parameter θ̂ = H = 0.5 corresponds to
a Brownian motion. Brownian motion models explain the power-spectrum
decay of these processes but are known not to be appropriate because they
do not take into account the intermittency behavior of financial markets.
This appears in the second order scattering coefficients of Figure 9(d) and
10(c), which have a much slower decay than Brownian motions. The Levy-
stable parameters α in Table 2 are close to 2 (order 2 moment of financial
time-series are finite). Estimated models of multifractal random walks also
show the existence of intermittency which is larger for the S&P 100 data set
than for the Euro-Bund data.

For each model, Table 2 gives the value of the J-test variable χ2
red com-

puted with (66). Multifractal random walks have the lowest value χ2
red for

the Euro-Bund and S&P 100 data, which means that these models better
fit the data. However, one can not compute a p-value because the empirical
covariance matrix is computed from correlated scattering estimators ŜXk

in (67). Because the integral scale is too large, one cannot fix an interval
∆ providing independent scattering values. One can still verify numerically
that the empirical covariance of ŜXk converges up to a multiplicative factor,
by computing the variations of empirical covariance Ŵ−1

θ,∆ as a function of
∆, and by verifying that

‖Ŵ−1
θ,∆ − ηŴ−1

θ,∆′‖ ≪ ‖Ŵ−1
θ,∆‖

for some η(∆,∆′) ∈ R
+. The ratio between both terms is of the order of

0.05 for the Euro-Bund data.

Appendix A: Proof of Theorem 2.2

Let us first prove (13). If X is a Poisson process then X ⋆ ψj = 2jdX ⋆
ψ̄j where ψ̄(t) =

∫ t
0 ψ(u) du has a support in [−1/2, 1/2], and ψ̄j(t) =

2−jψ̄(2−jt). Since dX(t) =
∑

i δ(t − τi) we get X ⋆ ψj(t) = 2j ∑
i ψ̄j(t− τi).

We write

(72) |X ⋆ ψj(t)| = 2j|dX ⋆ ψ̄j |(t) = 2j(dX ⋆ |ψ̄j |(t) + ej(t)) .

The first term satisfies

(73) E(dX ⋆ |ψ̄j |) = λ‖ψ̄j‖1 = λ‖ψ̄‖1 .

Let us show that E(|ej(t)|) = O(λ22j). Let Nj(t) be the number of events
counted by X(t) in the interval [t− 2j , t+ 2j). We decompose

E(|ej(t)|) = E
(
|ej(t)|

/
Nj(t) ≤ 1

)
Prob(Nj(t) ≤ 1)+E

(
|ej(t)|

/
Nj(t) > 1

)
Prob(Nj(t) > 1) .
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If Nj(t) ≤ 1, since ψ̄j has support [−2j−1, 2j−1], it results that ej(t) = 0,

and hence E
(
|ej(t)|

/
Nj(t) ≤ 1

)
= 0. Since

|ej(t)| ≤ 2(dX ⋆ |ψ̄j |(t)) ≤ 2j+1‖ψ̄‖∞Nj(t) ,

it follows that

(74) E(|ej(t)|) ≤ 2‖ψ̄‖∞2jE
(
Nj(t)

/
Nj(t) > 1

)
Prob(Nj(t) > 1) .

Since Nj(t) is a Poisson random variable of parameter λ2j , we verify that

E
(
Nj(t)

/
Nj(t) > 1

)
Prob(Nj(t) > 1) = λ2j(1 − e−λ2j

) ,

which implies from (74) that

(75) E(|ej(t)|) ≤ 2λ‖ψ̄‖∞(1 − e−λ2j

) = O(λ22j) ,

and, together with (73) and (72) proves (13).
Property (14) is proved by showing that 2−j/2X ⋆ ψj(t) converges to a

Gaussian random process at large scales 2j . The convergence of 2−j/2X ⋆
ψj(t) relies on the use of a central-limit theorem for real dependent random
variables. The extension to the two-dimensional complex random variables is
done by considering arbitrary linear combinations of its real and imaginary
parts. The Cramer-Wold theorem proves that if Xj = 2−j/2X ⋆ ψj(t) =
2−j/2Re(Xj) + i 2−j/2Im(Xj) satisfies

(76) ∀(α, β) ∈ R
2 , αRe(Xj) + βIm(Xj)

l−→
j→∞

αA1 + βA2

then Xj
l−→

j→∞
A1 + iA2. The random variables A1 and A2 are zero-mean

Gaussian random variables if and only if αA1 + βA2 is a centered Gaussian
random variable for all (α, β) ∈ R

2. But

αRe(Xj) + βIm(Xj) = X ⋆ (αRe(ψj) + βIm(ψj)) ,

so the convergence of Xj to a complex Gaussian variable will follow by
showing that 2−j/2X ⋆ ψ̃j → N (0, σ2) for any wavelet of the form ψ̃j =
αRe(ψj) + βIm(ψj).

We thus concentrate in the real case, and we denote the real wavelet ψj

to simplify notations. Assuming j > 0,

X ⋆ ψj(t) = 2jdX ⋆ ψ̄j(t) = 2j
∫ 2j−1

−2j−1
ψ̄j(u− t) dX(u) =

2j−1−1∑

i=−2j−1

Si,j ,
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where Si,j =
∫ i+1
i ψ̄(2−j(u− t))dX(u) are a collection of zero-mean indepen-

dent random variables. We apply the Berk central limit theorem [? ], to this
sum of independent random variables.

Theorem A.1 (Berk Central Limit). For any j ∈ N, let {Si,j}i=1,...,nj

be a sequence of zero mean random variables such that for any i ≤ nj Si,j

is independent of Si+r,j for r ≥ mj. If the following properties are satistied

(i) ∃δ > 0 , limj→∞ n−1
j m

2+2/δ
j = 0

(ii) ∃M > 0 , ∀i, j > 0 , E(|Si,j|2+δ) ≤M
(iii) ∃K > 0 , ∀i, j, l > k > 0 , V ar(

∑k+l
i=k+1 Si,j) ≤ l K

(iv) limj→∞ n−1
j V ar(

∑nj

i=1 Si,j) = σ2 > 0

then

(77) n
−1/2
j

nj∑

i=1

Si,j
l−→

j→∞
N (0, σ2) .

Let us now verify the hypothesis of this central limit theorem, with mj =
1, nj = 2j and δ = 1. Since the variables (Si,j)i are independent, hypothesis
(i) is verified with mj = 1. Moreover, we verify that

E(|Si,j|q) ≤ ‖ψ‖q
∞E(|N0|q)

where N0 is the number of jumps of dX in an interval of length 1. Since it
follows a Poisson distribution of parameter λ, it has finite moments. It results
that hypothesis (ii) is verified for δ = 1. Since the Si,j are independent,
Var(

∑k+l
i=k+1 ui,j) ≤ ‖ψ‖2

∞lE(|N0|2), which verifies hypothesis (iii). Finally,
since dX is a white noise of power spectrum λ

2−j
∑

|i|≤2j

E(|Si,j|2) = 2jE(|dX ⋆ ψ̄j|2) = 2jσ2(dX)‖ψ̄j‖2 = λ ‖ψ̄‖2 .

It verifies the last hypothesis (iv). Applying (A.1) and the Cramer-Wald
theorem proves that 2−j/2X ⋆ψj(t) converges to a complex Gaussian distri-
bution of total variance λ ‖ψ̄‖2. In order to control the limit of first order
moments, we use the following lemma on uniform integrability of sequences
of random variables:

Lemma A.2. ([10], thm 6.1-6.2) Let {Xj}j ∈ N be a sequence of random

variables. If Xj
d→ X∞ and

sup
j

E(|Xj |1+δ) <∞ for δ > 0 ,
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then
lim

j→∞
E(Xj) = E(X∞) .

As a result, for any α ≤ 2, E(|2−j/2X ⋆ψj |α) → E(|Z1 + iZ2|α), where Z1

and Z2 are Gaussian random variables with total variance λ ‖ψ̄‖2. For α = 1,
it results that there exists a constant C, depending only on the wavelet ψ,
such that

lim
j→∞

2−j/2E(|X ⋆ ψj |) = λ1/2 ‖ψ̄‖C .

which proves (14).
The proof of (15) is very similar to the proof of (13). The key property

is that ||X ⋆ ψj1 | ⋆ ψj2| only depends on values of X over an interval of size
2j1 + 2j2 . From (75), it results that
(78)

|X⋆ψj1 |⋆ψj2(t) = 2j1 |dX ⋆ψ̄j1 |⋆ψj2(t)
d
= 2j1(dX ⋆(|ψ̄j1 |⋆ψj2)(t)+ej1 ⋆ψj2) ,

with E(|ej1 ⋆ ψj2 |) = O(λ22j1). As a consequence, (78) and (13) imply that

E(| |X ⋆ ψj1| ⋆ ψj2(t)|) = 2j1(E(|dX ⋆ (|ψ̄j1 | ⋆ ψj2)|(t)) +O(λ22j1)) ,

= 2j1λ‖(|ψ̄j1 | ⋆ ψj2)‖1(1 +O(λ2j1) +O(λ2j2)) .(79)

Using again (13), we conclude that

S̃X(j1, j2) =
E(| |dX ⋆ ψ̄j1| ⋆ ψj2(t)|)

E(|dX ⋆ ψ̄j1 |)

=
‖(|ψ̄| ⋆ ψj2−j1)‖1

‖ψ̄‖1

(
1 +O(λ2j1) +O(λ2j2)

)
,

which proves (15). Finally, in order to prove (16), observe that |X ⋆ ψj | is a
stationary process with lag 2j . As a result, by using the same Central Limit
argument to prove (14), one can verify that 2j2/2(|X⋆ψj1 |⋆ψj2) converges in
distribution towards a Gaussian distribution as j2 → ∞, which yields a decay
on the normalized second order scattering of the form S̃dX(j1, j2) ≃ 2−j2/2

as j2 → ∞. �

Appendix B: Proof of lemma 3.3

Let Yj(t) = 2j/2|dB ⋆ϕ| ⋆ψj(t). To prove that E(|Yj |) converges to a con-
stant, we shall prove that the distribution of Yj is asymptotically Gaussian:

(80) Yj(t)
l−→

j→∞
A = A1 + iA2
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where A1 and A2 are two zero-mean Gaussian distributions of total variance
σ2

1 + σ2
2 = ‖ψ‖2

2

∫
R|dB⋆ϕ|(τ)dτ , which is the first result of Lemma 3.3. We

shall also prove that

(81) lim
j→∞

E(|Yj |2) = E(|A|2).

Using again lemma (A.2), we conclude that

(82) lim
j→∞

E(|Yj |) = E(|A|) > 0 .

and hence finish the proof of Lemma 3.3.
For that purpose, we follow the same strategy as in the proof of (14),

applied to the process Yj = 2j/2|dB ⋆ ϕ| ⋆ ψ̄j(t), where ψ̄j is any linear
combination of real and imaginary parts of ψj .

Let us write ϕ∆ = ϕ1[−∆/2,∆/2]. We shall limit φ to a compact support
by defining {∆j}j≥0 with limj→∞ ∆j = ∞ and decompose

|dB ⋆ ϕ(t)|=|dB ⋆ ϕ∆j
+ dB ⋆ (ϕ− ϕ∆j

)| .

As a result
|dB ⋆ ϕ(t)|=|dB ⋆ ϕ∆j

| + Zj(t)

with E(|Zj |) ≤ E(|dB ⋆ (ϕ − ϕ∆j
)|). Since dB is the Wiener measure, if

θ ∈ L2(R) then

(83) E(|dB ⋆ θ|) ≤ E(|dB ⋆ θ|2)1/2 = ‖θ‖2 ,

so E(|Zj |) ≤ ‖ϕ− ϕ∆j
‖2. It results that

(84) |dB ⋆ ϕ| ⋆ ψ̄j(t)=|dB ⋆ ϕ∆j
| ⋆ ψ̄j(t) + Zj ⋆ ψ̄j(t) ,

and
E(|Zj ⋆ ψ̄j |) ≤ E(|Zj |)‖ψ̄j‖1 ≤ ‖ϕ− ϕ∆j

‖2 ‖ψ̄‖1 .

Since limj→∞ ∆j = ∞, limj→∞ ‖ϕ − ϕ∆j
‖2 = 0 so Zj ⋆ ψ̄j converges to 0

in probability when j increases. So the limits of |dB ⋆ ϕ| ⋆ ψ̄j(t) and |dB ⋆
ϕ∆j

| ⋆ ψ̄j(t) are equal.
We now prove (24) by applying Berk central limit Theorem A.1, to show

that Ȳj = |dB ⋆ ϕ∆j
| ⋆ ψ̄j(t) converges to a normal distribution. Since |dB ⋆

ϕ∆j
| ⋆ ψ̄j(t) is stationary, its distribution can be evaluated at t = 0

|dB ⋆ ϕ∆j
| ⋆ ψ̄j(0) =

∫
|dB ⋆ ϕ∆j

|(u)ψ̄j(−u)du.
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The central-limit theorem is applied by dividing this integral into disjoint
integrals

(85) Si,j = 2j
∫ 2jbi+1,j

2jbi,j

|dB ⋆ ϕ∆j
(u)| ψ̄j(−u)du ,

where for each j ∈ Z, {bi,j}1≤i≤nj
is an increasing sequence of points in

R ∪ {±∞} such that

(86) ∀i ,
∫ bi+1,j

bi,j

|ψ̄(−u)|du = 2−j‖ψ̄‖1 .

Since ψ̄ is C1 and bounded, we verify that nj ≃ 2j . Summing these random
variables gives

(87) 2−j/2
nj∑

i=1

Si,j = 2j/2 |dB ⋆ ϕ∆j
| ⋆ ψ̄j(0) .

We now show that the Si,j satisfy the hypothesis of the Beck central-limit
theorem so that we can apply the convergence result (77) which implies (24).

Let us first prove that Si,j is independent of Si+r,j for r ≥ mj which
satisfies (i). Since ψ̄ is bounded, it results that infi,j 2j |bi,j − bi+1,j| = η > 0.
Since ϕ∆j

has a support of size ∆j and dB is a Wiener Noise, it follows that
|dB ⋆ ϕ∆j

|(u) is independent of |dB ⋆ ϕ∆j
|(u′) for |u− u′| > ∆j and hence

that Si,j is independent of Si+r,j for r ≥ mj = ∆j/η.
To verify (i) let us set δ = 1. Since nj ≃ 2j , if we choose ∆j = 2j/5 then

(88) lim
j→∞

m4
j

nj
≤ η−4 lim

j→∞
2j(4/5−1) = 0 .

We now verify condition (ii) with δ = 1. Since ψ̄j(u) has a zero integral,
one can replace |dX ⋆ ϕ∆j

(u)| by Qj(u) = |dX ⋆ ϕ∆j
|(u)−E(|dX ⋆ ϕ∆j

|) in
the definition (85) of Si,j. It results that

E(|Si,j |3) ≤
∫∫∫

E(Qj(u)Qj(u
′)Qj(u

′′)) 23j |ψ̄j(−u)| |ψ̄j(−u′)| |ψ̄j(−u′′)| du du′ du′′

≤ E(|dB ⋆ ϕ∆j
|3)‖ψ̄‖3

1 = 25/2π−1/2‖ϕ∆j
‖3
2‖ψ̄‖3

1 ≤ 25/2π−1/2‖ϕ‖3
2‖ψ̄‖3

1 .

Let us now verify condition (iii). The sum Ak,l,j =
∑k+l

i=k Si,j is by defini-
tion

Ak,l,j = 2j
∫ 2jbk+l,j

2jbk,j

|dB ⋆ ϕ∆j
(u)| ψ̄j(−u)du =

∫

R

|dB ⋆ ϕ∆j
(u)|hk,l,j(u) du
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with hk,l,j(u) = 2jψ̄j(−u)1[2jbk,j ,2jbk+l,j ](u). It results that

(89) Var(Ak,l,j) ≤ ‖R|dB⋆ϕ∆j
|‖1 ‖hk,l,j‖2

2 .

But, with a change of variable and applying (86) we get

‖hk,l,j‖2
2 =

∫ 2jbk+l,j

2jbk,j

|ψ̄(2−ju)|2 du ≤ ‖ψ̄‖∞
∫ bk+l,j

bk,j

2j |ψ̄(u)| du ≤ ‖ψ̄‖∞ ‖ψ̄‖1 l .

We are now going to bound ‖R|dB⋆ϕ∆j
|‖1 by using the decay ϕ(u) =

O((1 + |u|−2)).

R|dB⋆ϕ∆j
|(∆) = E(|dB ⋆ ϕ∆j

(∆)| |dB ⋆ ϕ∆j
(0)|) − E(|dB ⋆ ϕ∆j

|)2 .

If |∆| > |∆j | then since the support of ϕ∆j
(u) and ϕ∆j

(u − ∆) does not
overlap, |dB ⋆ϕ∆j

(∆)| and |dB ⋆ ϕ∆j
(0)| are independent random variables

so R|dB⋆ϕ∆j
|(∆) = 0. Otherwise, we decompose

|dB ⋆ ϕ∆j
(u)| = |dB ⋆ ϕ∆(u) + dB ⋆ (ϕ∆j

− ϕ∆(u)| .
Since |dB ⋆ ϕ∆(0)| and |dB ⋆ ϕ∆(∆)| are independent random variables,

|R|dB⋆ϕ∆j
|(∆)| ≤ |E(|dB ⋆ ϕ∆|)2 − E(|dB ⋆ ϕ∆j

|)2| +
+2E(|dB ⋆ ϕ∆|)E(|dB ⋆ (ϕ∆j

− ϕ∆)|) + E(|dB ⋆ (ϕ∆j
− ϕ∆)|)2 .

Since E(|dB ⋆ θ|) ≤ E(|dB ⋆ θ|2)1/2 ≤ ‖θ‖2, by applying this to θ = ϕ∆ and
θ = ϕ∆j

− ϕ∆ one can verify that

(90) |R|dB⋆ϕ∆j
|(∆)| ≤ 6‖ϕ‖2 ‖ϕ− ϕ∆‖2 .

Since ϕ(u) = O((1 + |u|)−2) it results that ‖ϕ − ϕ∆‖2 = O((1 + |∆|)−3/2)
so ‖R|dB⋆ϕ∆j

|‖1 is bounded independently of j. Inserting this in (89) proves

the theorem hypothesis (iii).
Let us now verify the hypothesis (iv). It results from (87) that

2−jVar(
∑

i

Si,j) = 2jVar(|dX ⋆ ϕ∆j
| ⋆ ψ̄j) = 2j

∫
R̂|dX⋆ϕ∆j

|(ω)| ̂̄ψ(2jω)|2dω .

We proved (90) that R|dB⋆ϕ∆j
| ∈ L1 but the same inequality is valid for

R|dB⋆ϕ∆| which proves that it is also in L1. It results that R̂|dX⋆ϕ| is contin-

uous. Since ϕ∆j
converges to ϕ in L2 ∩L1 as j → ∞, R̂|dX⋆ϕj |(0) converges

to R̂|dX⋆ϕ|(0). Since 2j | ̂̄ψ(2jω)|2 converges to ‖ψ̄‖2
2δ(ω) when j goes to ∞

lim
j→∞

2−jVar(
∑

i

Si,j) = R̂|dX⋆ϕ|(0)‖ψ̄‖2
2 = σ̄2,
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which proves condition (iv).
We can thus apply Theorem A.1 which proves that 2j/2|dB ⋆ ϕ| ⋆ ψ̄j(t)

converges in distribution to N (0 σ̄2) and hence (24). Finally, by following
the same reasoning used in Theorem 2.2, we apply Lemma A.2 to conclude
that limj→∞ 2j/2E(| |dB ⋆ ϕ| ⋆ ψj |) = C > 0, which proves (25) �.

Appendix C: Various results on the MRM measure

Lemma C.1. The process ωT
l (t) used for the construction of the MRM

dM is an infinitely-divisible process whose two-points characteristic function
reads:
(91)

E
(
ep1ωT

l
(t1)+p2ωT

l
(t2)

)
= e[F (p1)+F (p2)]ρT

l
(0)+[F (p1+p2)−F (p1)−F (p2)]ρT

l
(t2−t1)

where F (−ip) is the cumulant generating function characterizing the in-
finitely divisible law as provided by the Levy-Khintchine formula where the
drift term is chosen such that

(92) F (1) = 0 ,

and where the function ρT
l (τ) is defined by:

(93) ρT
l (τ) =





ln(T/l) + 1 − |τ |/l , if |τ | ≤ l ,
ln(T/|τ |) , if l ≤ |τ | < T ,

0 , otherwise .

Moreover, the function ζ(p) which satisfies (32) (with X = dM where dM
is the associated MRM) is given by

ζ(p) = p− F (p).

The proof of this Lemma is given in [6].
The next Lemma uses an alternative MRM measure considered in Ref. [6]
defined by

dM̃ (t) = lim
l→0

eω̃
T
l

(t)dt

where ω̃T
l is defined exactly as the process ωT

l but only differs by its ρ
function which is replaced by : ρ̃T

l (τ) = ρT
l (τ) + τ

T − 1, for τ ≤ T . One can
then easily show that ω̃T

l is linked with ωT
l by the following cascade property

:

(94) ∀l ≤ a ≤ T, ωT
l (u)

a.s.
= ω̃a

l (u) + ωT
a (u)

where ω̃a
l and ωT

a are independent copies of the processes defined previously.
Moreover, ω̃T

l satisfies both (39) and (39).
We are now ready to state the last Lemma we will need.
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Lemma C.2. Let ωT
l the infinitely divisible process associated with the

MRM dM and ψ be a wavelet of support in [0, 1] such that ‖ψ‖∞ <∞. For
all α such that 0 < α < 1, one has:

(95) ∀l < 2j , (ψj ⋆ e
ωT

l )(t) = e
ωT

2jα
(t)

(
ψj ⋆ e

ω̃2jα

l

)
+ ηl,j(t) ,

where the process ηl,j(t) has a limit process liml→0 ηl,j(t) = ηj(t) which sat-
isfies, in the limit j → −∞,

(96) E(|ηj(t)|) = O(2j
1−α(1+F (2))

2 )

and

(97) E(|ηj(t)|2) = O(2j(3−F (2)−α)) .

Without loss of generality we fix t = 0. Let us consider 0 < α < 1 and l
and j small enough and such that:

l < 2j < 2jα < T

Let us first remark that, for u < 2jα, one has from (91):

(98) E
(
e
p(ωT

2jα
(u)+ωT

2jα
(0))

)
= 2−jαF (2p)TF (2p)eF (2p)(1−u2−jα)

where F (p) = ϕ(−ip) = p− ζ(p). Hence, we have:

E
(
e
2ωT

2jα
(u)

)
= 2−jαF (2)TF (2)eF (2)

E
(
e
ωT

2jα
(u)+ωT

2jα
(0)

)
= 2−jαF (2)TF (2)eF (2)(1−u2−jα) .

One defines ηl,j as:

(99) ηl,j(0) = 2−j
∫
ψ(u2−j)

(
eω

T
l

(u) − e
ω̃2jα

l
(u)+ωT

2jα
(0)

)
du

Using dominated convergence, (94), E(eω̃
2jα

l ) = 1 and the fact that ψ is
a bounded function of support [0, 1] one has:

E(lim
l→0

|ηl,j |) = lim
l→0

E(|ηl,j |)

≤ ||ψ||∞2−j
∫ 2j

0

√
E

[(
e
ωT

2jα
(u) − e

ωT

2jα
(0)

)2
]
du

= ||ψ||∞2−j
∫ 2j

0

√
E

(
e
2ωT

2jα
(0)

+ e
2ωT

2jα
(u) − 2e

ωT

2jα
(u)+ωT

2jα
(0)

)
du

=
√

2||ψ||∞2−
jαF (2)

2 T
F (2)

2 e
F (2)

2

∫ 1

0

(
1 − e−F (2)u2j(1−α)

) 1
2
du

=
j→−∞

O(2j
1−α(1+F (2))

2 )
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which proves (96). In order to bound the second moment, we consider

E(lim
l→0

|ηl,j |2) = lim
l→0

E(|ηl,j |2)

= 2−2j

∫∫ 2j

0

ψ(2−ju)ψ(2−ju′)E(eω̃2jα

l (u)+ω̃2jα

l (u′))E
(
(eωT

2jα (u) − eωT

2jα (0))(eωT

2jα (u′) − eωT

2jα (0))
)
dudu′

≤ 2−2j2−jαF (2)(Te)F (2)

∫∫ 2j

0

|ψ(2−ju)| |ψ(2−ju′)|E(eω̃2jα

l (u)+ω̃2jα

l (u′)) ·

·
∣∣∣e−F (2)|u−u′|2−jα

+ 1 − e−F (2)|u|2−jα − e−F (2)|u′|2−jα
∣∣∣ dudu′

= 2−jαF (2)(Te)F (2

∫∫ 1

0

|ψ(u)||ψ(u′)|E(eω̃2jα

l (2ju)+ω̃2jα

l (2ju′)) ·

·
∣∣∣e−F (2)|u−u′|2j(1−α)

+ 1 − e−F (2)|u|2j(1−α) − e−F (2)|u′|2j(1−α)
∣∣∣ dudu′

=
j→−∞

O(2j(1−α(1+F (2))))E(|eω̃2jα

l (2ju) ⋆ |ψ||2)

= O(2j(1−α(1+F (2))+ζ(2)+αF (2)) = O(2j(3−F (2)−α)) . �

Let us remark that one could obtain a smaller error with a smoother
variant of the ωl. Indeed, as shown in [34] it is possible to choose the way ωl

is regularized at scale l. One can thus define a MRM process using ωl with
a covariance function that is C2 at τ = 0. In that case, in (98), the function
ρl(u) would be proportional to 2−2jαu2 and the error mean absolute value
could be bounded by 2j(1−α−F (2)/2).

Appendix D: Proof of Theorem 4.3

As for the first order, using first (39) and then (40) with s = 2j2−L we
obtain :

|ψj2 ⋆ |ψj1 ⋆ dMl||(t) law
= |ψj2 ⋆ |ψj1 ⋆ dMl||(0)
law
= 2−j2eΩ2j2−L

∣∣∣∣
∫
ψ(−u2−j2)2−j1

∣∣∣∣
∫
ψ(
u− v

2j1
)eω

2j2
l

(v)dv

∣∣∣∣ du
∣∣∣∣ .

Making the changes of variables u′ = u2−j2 and v′ = v2−j1 and using (39),
leads to

|ψj2⋆|ψj1⋆dMl||(t) law
= eΩ2j2−L

∣∣∣∣
∫
ψ(−u)

∣∣∣∣
∫
ψ(2j2−j1u− v)e

ω2j2−j1

2−j1 l
(v)
dv

∣∣∣∣ du
∣∣∣∣ .

Since j2 is fixed, with no loss of generality, in the following we can set j2 = 0.
Using (39), one gets

(100) |ψ ⋆ |ψj1 ⋆ dMl(0)|| law
= eΩ2−L

∣∣∣∣
∫
ψ(−u)

∣∣∣ψj1 ⋆ e
ω1

l (u)
∣∣∣ du

∣∣∣∣ .
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We now use the Lemma C.2 proved in Appendix C with α = 1−2ν
1+F (2)

(ν < 1/2). We get :

(101) E(|ηj1 |) = O(2j1ν) ,

and

ψj1 ⋆ e
ω1

l (u) = 2−j1e
ω1

2j1α
(u)

∫
ψ(
u− v

2j1
)eω̃

2j1α

l
(v)dv + ηj1,l(u)

law
= e

ω1

2j1α
(u)

∫
ψ(u2−j1 − v)e

ω̃1

l2−j1α
(v2j1(1−α))

dv + ηj1,l(u)

law
= e

ω1

2j1α
(u)

∫
ψ(u2−j1 − v)e

ω̃2j1(α−1)

l2−j1
(v)
dv + ηj1,l(u)

→
l→0

e
ω1

2j1α
(u)
ǫ̃2j1(α−1)(2−j1u) + ηj1(u) ,

where we used property (39) for ω̃T
l and we defined the T -dependent noise:

(102) ǫ̃T (t) = lim
l→0

∫
ψ(t− v)e

ω̃T

l2−j1 (v)dv .

If follows that :

lim
l→0

ψ⋆|ψj1⋆dMl(0)| law
= eΩ2−L

∫
ψ(−u)eω

1

2j1α
(u)|ǫ̃2j1(α−1)(2−j1u)|du+

∫
ψ(−u)η̃j1(u)du ,

where

(103) η̃j1(u) = |eω
1

2j1α
(u)
ǫ̃2j1(α−1)(2−j1u) + ηj1(u)| − |ǫ̃2j1(α−1)(2−j1u)| .

Along the same line as in ref [30, 6], it is easy to prove that in the limit
T → ∞:

(104) E(|ǫ̃T (t)|q) ≃ K̃qT
q−ζ(q) ,

where K̃q does not depend on T (thanks to the stationarity of ǫ̃T (t), it does
not depend on t either). Since ζ(1) = 1, let K̃1 = K̃ = E(|ǫ̃T (t)|) and let us
define the centered process: ǭT (t) = |ǫ̃T (t)| − K̃. Let us remark that, when
T → ∞,

(105) E
(
ǭ2T

)
≃ E

(
ǫ̃2T

)
≃ T 2−ζ(2) .

Thus we can write

(106) lim
l→0

ψ ⋆ |ψj1 ⋆ dMl|(0) law
= eΩ2−L (I + II + III) ,
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where

I = K̃

∫
ψ(−u)eω

1

2j1α
(u)
du ,(107)

II =

∫
ψ(−u)eω

1

2j1α ǭ2j1(α−1)(2−j1u)du ,(108)

III =

∫
ψ(−u)η̃j1(u)du .(109)

Since
∫
ψ(u)e

ω1

2j1αdu converges in law, when j1 → −∞, towards ǫ1(t), (where
ǫ1(t) is an independent copy of the process defined in (45)), we have, in the
limit j1 → −∞:

(110) E(|I|) → KK̃ ,

where K = E(|ǫ1(t)|). Thus, since SdM(j1, 0) = E(|I + II + III|),

|SdM(j1, 0) − K̃K| ≤ |E(|I + II|) − E(|I|)| + E(|III|) .

From the Lemma, we know that limj1→−∞ E(|ηj1 |) = 0 and consequently
limj1→−∞ E(|η̃j1 |) = 0 which leads to limj1→−∞ E(|III|) = 0. Moreover

|E(|I + II|) − E(|I|)| ≤ E(|II|) ≤
√

E(|II2|) .

From the expression of II and the fact that ǭ2j1(α−1)(2−j1u) is a 2j1α-dependent
process, we have, when j1 → −∞:

E(|II|2) ≤ ||ψ||2∞
∫ 1

0

∫ 1

0
E

(
e
ω1

2j1α(u)+ω1

2j1α (v)
)

E
(
ǭ2j1(α−1)(2−j1u)ǭ2j1(α−1)(2−j1v)

)
dudv

≤ ||ψ||∞E(ǭ2
2j1(α−1))2

j1αE(e
2ω1

2j1α ) ≃ 2j1(α−F (2) ,

which goes to 0 provided whe choose 1 > α > F (2) . Thus SdM(j1, 0)
converges to K̃K which proves (46).

Appendix E: Sketch of proof of Theorem 4.4

The proof of Theorem 4.4 can be established exactly along the same line
of the proofs of Proposition 4.2 and Theorem 4.3. First let us remark that if
ψ(t) =

∫ t
−∞ ψ(u)du, then a simple integration by parts allows one to show

that:

(111) |Xl ⋆ ψj | = 2j |dXl ⋆ ψj | ,
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where Xl(t) is defined in (47)) and dXl(t) = l
2−ζ(2)

2 eω
2L

l
(t)dB(t). Then, in

order to study the behavior of first and second order scattering moments
of Xl(t), one can adapt the proofs of the MRM case to the MRW case by

replacing eωl(u)du by l
2−ζ(2)

2 eω
2L

l
(u)dB(u).

For the first order moment, the Wiener noise scaling dB(su)
law
= s−1/2dB(u)

and (40), leads to dXsl(su)
law
= eΩss1/2−ζ(2)/2. Thanks to (111), one gets (50).

As far as the second order scattering moment is concerned, a simple adap-
tation of Lemma C.2 allows one to follow the same steps as in Appendix D.
One is lead to the same decomposition as in (106):

(112) lim
l→0

ψ ⋆ |ψj1 ⋆ Xl|(0) law
= eΩ2−L (I + II + III) ,

where

I = K̃ ′2j1
3−ζ(2)

2

∫
ψ(−u)eω

1

2j1α (u)
du ,(113)

II = 2j1

∫
ψ(−u)eω

1

2j1α ǭ2j1(α−1)(2−j1u)du ,(114)

III = 2j1

∫
ψ(−u)η̃′j1(u)du ,(115)

where η′j is the noise term corresponding to ηj in Lemma C.2 and

K̃ ′ = E

(∣∣∣∣liml→0

∫
ψ(u)l

2−ζ(2)
2 eω

1
l
(u)dB(u)

∣∣∣∣
)
.

Since from (104),

E

(∣∣∣∣ lim
j1→−∞

∫
ψ(−u)eω

1

2j1α
(u)
du

∣∣∣∣
)

= K̃ ,

the term E(|I|) behaves, when j1 → −∞ as K̃ ′K̃2
3j1−ζ(2)

2 . The contribution
of the terms II and III can be shown to be negligible following the same ar-
guments as in Appendix D. Since the first order scattering moment behaves

like K̃ ′2j1
3−ζ(2)

2 we obtain (51) with the same constant as in Theorem 4.3.
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