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Abstract. This paper introduces a combined scattering representation
for texture classification, which is invariant to rotations and stable to de-
formations. A combined scattering is computed with two nested cascades
of wavelet transforms and complex modulus, along spatial and rotation
variables. Results are compared with state-of-the-art algorithms, with a
nearest neighbor classifier.

1 Introduction

Texture classification has many applications from satellite to medical imagery.
In these contexts, textures are typically rotated because of variations of the
observer orientation, and their projection in the image plane undergoes small
deformations due to 3D perspective effects.

Many methods [1] start by computing informative statistics with a first com-
putational layer and then use a second layer to build rotation invariance. Sec-
ond layers are designed with different strategies. Registration or normalization
of rotation (or affine [2]) parameters keeps most of the information but typically
suffers from instabilities, particularly when the texture is deformed. Averag-
ing statistics (LBP[3], RI-LPQ[4]) along rotation is stable but loses all relative
angular distribution of texture components. This angular distribution may be
captured by computing a Fourier transform along the rotation parameter, whose
modulus is rotation invariant, as in LBP-HF[5]. However, high frequency Fourier
coefficients are known to be unstable in presence of deformations.

A texture X(x) is modeled as a realization of a stationary process. A repre-
sentation of the texture X is a deterministic quantity that does not depend on
the realization but only on the law of X (e.g. it’s autocorrelation matrix).
Because of perspective effects, this texture may be deformed by LτX(x) =
X(x − τ(x)) where τ(x) is modeled as an unknown stationary random process
independant of X(x), and it may be rotated by r into rX(x) = X(rx). A repre-
sentation is stable to deformation if a small deformation (i.e. when supx ‖∇τ(x)‖
is small) induces small changes in the representation. It is invariant to rotation
if the representation does not change when X is rotated.

This paper introduces a combined expected scattering representation and a
combined windowed scattering estimator that keep most of the process infor-
mation while being invariant to rotations and stable to deformations. A first
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layer computes statistics of stationary textures that are informative, stable to
deformations and non-rotation invariant. These coefficients are retransformed
through a second layer to achieve rotation invariance while maintaining stability
to deformations and most of the information.

The first layer is obtained by the scattering transform introduced in [6]. Scat-
tering transform computes recursive co-occurence coefficients through a cascade
of wavelet-modulus operators, along a convolutional network [7]. It has been
applied to audio [8] and image [9] classification. The second layer is designed
with a similar algorithm with convolutions computed along the rotation parame-
ter. Angular information is scattered into different paths before being averaged
along the rotation parameter. The resulting decomposition has the stability of
averaging algorithms and the near completness properties of Fourier spectral
approaches.

Expected scattering and windowed scattering are defined in Section 2. The
combined scattering algorithm is presented in Section 3 and summarized in
Figure (1). Section 4 shows the resulting improvements obtained for rota-
tion invariant texture classification on the OUTEX 10 database [10], in com-
parison with state-of-the-art algorithms [3, 4, 5]. Softwares are available at
www.cmap.polytechnique.fr/scattering.

2 Texture and spatial scattering

2.1 Modulus of complex wavelet

The frequency displacement induced by a deformation is proportionnal to the
frequency, making Fourier analysis unstable to deformations at high frequencies
[6]. A wavelet ψ is a complex band-pass filter which is spatially well localized
and thus stable to deformations. Its rotation by r and dilation is written

ψλ(x) = 22jψ(2jr−1x) with λ = 2jr .

The wavelet-modulus coefficients ofX(x) are U [λ]X(x) = |X∗ψλ(x)|. The mean
and variance of such coefficients have been used by many algorithms [11, 12] to
discriminate textures.

2.2 Spatial scattering

The full spatial variability of U [λ]X(x) is not fully captured by its mean and
variance. In [6, 9] this information is recovered by iteratively applying U [λ]
before evaluating the mean. The texture variability information is scattered into
different paths p = (λ1, ...,λm) with the scattering propagator U [p] defined by:

U [p]X(x) = U [λm] . . . U [λ1]X(x) =
∣∣∣∣ . . . ||X ∗ ψλ1 | ∗ ψλ2 | . . .

∣∣ ∗ ψλm(x)
∣∣ .

The expected scattering is defined by

S̄[p]X = E
(
U [p]X(x)

)
= E

(∣∣∣∣ . . . ||X ∗ ψλ1 | ∗ ψλ2 | . . .
∣∣ ∗ ψλm(x)

∣∣
)
.
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It is proved in [6] that an expected scattering S̄ is stable to elastic deformations.
S̄ is estimated from a single realization of X with a windowed scattering SJ ,
which performs a spatial averaging on a domain whose width is proportional to
2J :

SJ [p]X(x) = U [p]X ∗ φJ (x) =
∣∣∣∣ . . . ||X ∗ ψλ1 | ∗ ψλ2 | . . .

∣∣ ∗ ψλm

∣∣ ∗ φJ (x),

where φJ = 2−2Jφ(2−Jx) is an averaging kernel dilated by 2J . It is proved in [6]
that if the autocovariance of X is integrable, then SJ is a consistent estimator
of S̄, and that, for suitable wavelets, SJ preserves the mean square energy of X .

3 Combined scattering for rotation invariance

3.1 Scattering covariance with rotation

Rotation acts on the spatial variable x but also on the wavelet parameter λ:

U [λ](rX)(x) = U [rλ]X(rx).

Taking an expected value proves that

S̄[p](rX) = S̄[rp]X,

where rp = (rλ1, rλ2, ..., rλm) is called the orbit of p along the rotation group
when r varies. To obtain a rotation invariant representation which is stable to
deformations, we apply the same strategy as in Section 2 but along the rotation
parameter.

3.2 Combined scattering

Wavelets ψ̃λ̃(r) along the rotation r are defined as 2π periodic wavelets [6]. For

any function h(p) of a path variable, the 2π periodic convolution with ψ̃λ̃(r) is
defined by:

h! ψ̃λ̃(p) =

∫

r
h(r−1p) ψ̃λ̃(r)dr.

We use ! instead of ∗ to indicate that convolutions are done along rotations.
In practice ! is a periodic convolution defined on a small finite set. Cascading
wavelet-modulus operators Ũ [λ̃]f = |f ! ψ̃λ̃| along rotation parameter scatters
the angle distribution information of the expected scattering along several com-
bined paths (p̃, p) = (λ̃1, . . . , λ̃m̃,λ1, ...,λm) ,

Ũ [p̃, p]X = Ũ [λ̃m̃] . . . Ũ [λ̃1]S̄[p]X =
∣∣∣∣ . . . ||S̄X ! ψ̃λ̃1

|! ψ̃λ̃2
| . . .

∣∣! ψ̃λ̃m̃
[p]

∣∣

and rotation invariance is obtained by a final average along the rotation param-
eter at scale 2L.

˜̄SL[p̃, p]X = (Ũ [p̃, p]X)! φ̃L[p] =
∣∣∣∣ . . . ||S̄X ! ψ̃λ̃1

|! ψ̃λ̃2
| . . .

∣∣! ψ̃λ̃m̃

∣∣! φ̃L[p],
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where 2L is the rotation invariance scale. If 2L = 1 then φ̃L is constant and

the representation is fully rotation invariant. Combined expected scattering ˜̄SL

is defined with an expected value operator E resulting from S̄. It is estimated
from a single realization X , by replacing S̄ by SJ . This yields the combined
windowed scattering:

S̃L,J [p̃, p]X(x) =
∣∣∣∣ . . . |SJX ! ψ̃λ̃1

| . . .
∣∣! ψ̃λ̃m̃

∣∣! φ̃L[p](x) .

X

| . ∗ ψλ1 |

| . ∗ ψλ2 |

E or ∗ φJ

| . ! ψ̃λ̃1
|

| . ! ψ̃λ̃2
|

!φ̃L

m

m̃

S̄ or SJ

˜̄S or S̃

1 2

0
1
2

Fig. 1: Combined scattering architecture. First layer in grey, second layer in
black. Spatial wavelet-modulus operators (grey arrows) are averaged (doted
grey arrows), as in [9]. Outputs of the first layer are reorganized in different
orbits (large black circles) of the action of the rotation on the representation.
A second cascade of wavelet-modulus operators along the orbits (black arrows)
split the angular information in several combined paths that are averaged (doted
black arrows) along the rotation to achieve rotation invariance. Output nodes
are colored with respect to the order of their corresponding paths.

The combined scattering algorithm is summarized in Figure 1. For an image
of size N the total computational complexity is O(N logN) and the resulting
representation is much less than N when N is large. Let mmax and m̃max be the
maximum length of p and p̃. In application, we choose mmax ≤ 2, m̃max ≤ 2 and
we only compute paths p = (2jkrk)k and p̃ = (2j̃k)k for decreasing frequencies

2jk+1 ≤ 2jk and 2j̃k+1 ≤ 2j̃k , because they carry most of the scattering energy.
Let us consider a textured image of N = 22J = 210 = 1024 pixels (J = 5).
For a total of T = 8 rotations, the spatial scattering represents this image
with TJ + T 2J(J − 1)/2 = 680 coefficients. It corresponds to 85 orbits of 8
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coefficients each. The combined scattering keeps almost constant the number of
coefficients representing each orbit. When N = 22J is larger then the scattering
representation TJ + T 2J(J − 1)/2 becomes much smaller than N .

4 Texture Classification

Texture classification experiments are performed on the OUTEX10 database
[10] (rot experiment). It contains 24 different texture classes. Each class has 20
training samples with a single orientation which is normalized to 0◦. There are
24 × 20 × 8 testing samples corresponding to 20 samples in each class that are
rotated by 10◦, 20◦, . . . , 90◦.

A second experiment (rot-tilt) simulates a perspective effect called tilt [13].
It is implemented with a gaussian blur with σ =

√
1.32 − 1 and a subsampling

at intervals 1.3 in the horizontal direction only, for all images in the testing set.
Images in the training set are cropped to keep the same image size in both sets.
Figure 2 shows some training and testing samples from both experiments.

Training set Testing for rot Testing for rot-tilt

Fig. 2: A few samples of the databases used for experiments rot and rot-tilt

A nearest neigbor classifier is applied to the combined scattering S̃0,J rep-
resentation with several choices of maximum path length mmax, m̃max ≤ 2, and
to other state-of-the-art descriptors for rotation invariant texture analysis. L2

distance is used except for LBP-HF where the authors recommand [5] to use
L1. LBP[3] computes histograms of local binary patterns. Bins that correspond
to rotated versions of the same pattern are merged, which leads to a loss of
discriminability. LBP-HF[5] computes a Fourier transform modulus on the rota-
tion parameter of LBP[3]. It thus maintains variability information along angles
while achieving rotation invariance. RI-LPQ[4] computes windowed Fourier co-
efficients over a discrete set of frequencies distributed along circles. The phase
is quantized to obtain a binary word on which a histogram is computed. As
opposed to LBP and LBP-HF, RI-LPQ is robust to image blurring [4].

Results are presented in Table 1. The combined scattering achieves the best
results with or without tilt distortions. The classification accuracy is improved

���

(6$11������SURFHHGLQJV��(XURSHDQ�6\PSRVLXP�RQ�$UWLILFLDO�1HXUDO�1HWZRUNV��&RPSXWDWLRQDO��,QWHOOLJHQFH�
DQG�0DFKLQH�/HDUQLQJ���%UXJHV��%HOJLXP���������$SULO�������L�GRF�FRP�SXEO���,6%1��������������������
$YDLODEOH�IURP�KWWS���ZZZ�L�GRF�FRP�HQ�OLYUH�"*&2, ���������������



rot rot-tilt
LBPriu2/VAR(8,1)+(16,2)+(24,3) (r) 97.7 NC

LBP-HF(8,1)+(16,2)+(24,3) (c ) 96.59 67.50
RI-LPQ (c) 98.26 78.02

S̃0,J , mmax, m̃max = 1, 2 96.72 81.61

S̃0,J , mmax, m̃max = 2, 0 97.73 89.38

S̃0,J , mmax, m̃max = 2, 1 98.62 92.89

S̃0,J , mmax, m̃max = 2, 2 98.75 93.07

Table 1: Classification results (r) is reported from papers, (c) is obtained with
authors’ software [14].

when adding second order paths both in space and in rotation, with mmax =
m̃max = 2. For the rot-tilt experiment, the scattering brings an important
improvement because it is stable to deformation, which is not the case for other
rotation invariant representations [4, 5].

Future work will address more complex geometric invariance such as scaling,
as well as supervised class-specific invariance.
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