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ABSTRACT

Separating complex audio sources from a single measurement
channel, with no training data, is highly challenging. We in-
troduce a new approach, which relies on the time dynamics
of rigid audio models, based on harmonic templates. The ve-
locity vectors of such models are defined and computed in
a time-frequency scalogram calculated with a wavelet trans-
form. Similarly to rigid object segmentation in videos, mul-
tiple audio sources are discriminated by approximating their
velocity vectors with low-dimensional models. The differ-
ent audio sources are segmented by optimizing a harmonic
template selection, which provides piecewise constant veloc-
ity approximations. Numerical experiments give examples of
blind source separation from single channel audio signals.

Index Terms— Audio source separation, harmonic tem-
plates, velocity, wavelets.

1. INTRODUCTION

Audio signals are usually given in mixtures that need to be
separated to extract the information carried by each of them.
Many works usually consider a setting where several mea-
surement channels are available, which enables the utiliza-
tion of various cues such as spatial information and cross
channel correlations. Performing the separation from a single
measurement channel is considered highly challenging, since
such cues are unavailable, but the human brain has a remark-
able ability to perform it. This task is referred to in literature
as single-channel, cochannel or monaural source separation.

Several approaches have been applied to perform single
channel source separation. Recent methods for this task of-
ten aim for specific settings or mixture types in order to uti-
lize known properties of the mixed signals. Such settings in-
clude speech separation [1, 2], musical sound separation [3,
4], and singing voice separation [5]. More general methods
have been proposed, for example in [6, 7], based on statistical
learning techniques. However, these methods require a prior
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learning stage from a clean training set. Model-based meth-
ods with prior training were also suggested specifically for
speech separation by applying a priori learned models, such as
hidden Markov models [8] and Gaussian mixture models [9],
to the sources in the mixture. These methods can obtain good
separation results, but the requirement to have clean training
data is often hard to meet in realistic settings. Furthermore,
specific speech models, such as the ones used in [8, 9], may
not be applicable in general settings that include non-speech
sources.

In this paper, we aim for a broad framework that fits many
mixture types without utilizing preexisting information about
the signal. Therefore, we consider source separation as an
unsupervised learning task, without relying on clean training
data or prior knowledge about the type of source signals in
the mixture. Several speech segregation methods (e.g., [10])
have been suggested for extracting a target speech signal from
a mixture with various interferences, such as noise or inter-
fering speech. While such methods are indeed suitable for
several interference types, they are based on the existence of
a dominant speaker in the mixture and only aim to extract it.
The proposed method in this paper, on the other hand, treats
the sources in the mixture as equally important and aims to
extract all of them when possible.

Unsupervised single channel blind source separation can
be interpreted as a segregation problem. We need to find a
representation that separates components coming from dif-
ferent sources, and reconstruct separately each source by re-
grouping the components that belong to the same source. Hu-
man processing of auditory and visual have been shown to be
related in psychophysical studies [11]. We apply similar rea-
soning to audio source separation, and we relate our approach
for performing it to object segregation and image segmenta-
tion approaches in computer vision. Segregation is very diffi-
cult over static images, but it is much easier in videos. Indeed,
the velocity vectors of image pixels of a rigid object belong
to a low-dimensional affine space specified by the 3D mo-
tion tensor of the rigid object. Rigid object segmentation thus
amounts to finding low dimensional models that approximate
the velocity of large groups of image pixels [12].



This paper proposes a new approach for audio source
separation based on the time dynamics of rigid audio models.
It relies on the same principle as rigid object segmentation
in video sequences. Like other audio processing methods,
we use a time-frequency representation of the audio signal.
The time evolution of the signal is interpreted as motion,
and frequency bands take the same role as pixel positions
in an image. Therefore, in this representation, an auditory
scene is treated as a one-dimensional equivalent of a (two-
dimensional) image video with changing luminosities, which
correspond to audio amplitude modulations. Each source
in a mixture signal is identified as a moving “rigid” tem-
plate, where the introduced notion of rigidity is obtained by
considering harmonic structures in the signal.

Psychophysical evidences show that audio signals are per-
ceived through projections of harmonic frequency templates,
even though such harmonics may not be present in the sig-
nal [13]. Slow amplitude modulations and pitch frequency
modulations also appear to be important perceptual cues for
discriminating multiple sources. Section 2 introduces har-
monic template audio models, which incorporate variable am-
plitude and frequency pitch modulations. Section 3 shows
that the wavelet transform of these harmonic template models
defines an image where the amplitude and pitch dynamics can
be separated as two components of an audio velocity vector.
A time-frequency velocity equation is derived in Section 4,
which is similar to the optical flow velocity equation in im-
ages [14].

Similarly to computer vision algorithms (e.g., [14]), ve-
locity vectors are computed by projecting the velocity equa-
tion over multiscale wavelets. The source separation is per-
formed by finding low-dimensional models of the audio ve-
locity vectors that result from the rigidity of the harmonic
template models. Section 5 uses the harmonic template model
to find the time-frequency supports of the different sources.
Then, it uses non-overlapping regions of these supports to ex-
plicitly separate and demix overlapping time-frequency com-
ponents, thus reconstructing the time-frequency representa-
tion of each separated source. We concentrate on the sepa-
ration of two audio sources to explain the principles of the
approach. This case captures important classes of applica-
tions, including signal versus background separation. Exam-
ples are shown in Section 6, and more results can be found
in www.di.ens.fr/data/scattering/BSS/.

2. HARMONIC TEMPLATES

Amplitude and pitch frequency modulations are fundamental
perceptual cues for audio source separation [15]. We intro-
duce a harmonic template model, with amplitude and pitch
frequency modulations, whose rate of change is defined by
a velocity vector. These template models are used to locally
approximate audio signals.

In order to formulate a harmonic template model, we first

consider a harmonic excitation that is given by a Dirac comb
with pitch frequency ξ. This excitation is modeled as

e(u) = ξ
2π

∑
n δ
(
u− 2πn

ξ

)
=
∑
k

eikξu,

where the last equality is due to the Fourier transform of a
Dirac comb. Pitch frequency modulations are modeled by a
time-warping θ(t), and the modulated excitation is thus mod-
eled as

eθ(u) = e(θ(u)) =
∑
k

eikξθ(u) .

This time warping modifies the pitch frequency of the ex-
citation, and in a local neighborhood of time t it becomes
ξ(t) = ξθ′(t), thus the modulated excitation in such neigh-
borhood can be written as

eθ(t+ u) =
∑
k

eikξθ(t) × eikξθ′(t)u . (2.1)

We consider pitch changes over log-frequency scales to get
log ξ(t) = log ξ + log θ′(t). Therefore, the resulting pitch
velocity is given by

Vξ(t) =
d log ξ(t)

dt = d log θ′(t)
dt . (2.2)

A harmonic template model is obtained from the mod-
ulated excitation eθ by first convolving it with a filter h(t)
that defines its spectral envelope. Then, the filtered signal is
slowly modulated in amplitude by a(t) to get the template
model

x(t) = a(t) (eθ ? h)(t) . (2.3)

Since audio amplitudes are typically perceived on a logarith-
mic scale, the resulting amplitude velocity is given by

Va(t) =
d log a(t)

dt .

The presented harmonic template model in (2.3) encompasses
both amplitude and pitch modulations in the signal. The au-
dio velocity of this model is defined by the vector V (t) =
(Va(t), Vξ(t)).

Audio signals may not have a harmonic structure with a
well defined pitch, as in unvoiced speech, or inharmonic fre-
quency components. However, psychophysical studies show
that audio signals are often perceived through approximations
with multiple harmonic templates [13]. We shall similarly use
projections on harmonic templates to separate multiple audio
sources by their audio velocity.

3. WAVELET SEPARATION

The time-frequency structures of audio signals are well re-
vealed by Q-constant filter banks, which model the signal
cochlea transformation [16]. This can also be written as a
multiscale wavelet transform, whose modulus defines a time-
frequency representation that is called a scalogram image, and
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Fig. 3.1. Scalograms Ix(t, λ) of two audio segments pro-
duced by a male and a female.

it will be explained in details in this section. We show that a
wavelet transform can partly separate the time-frequency sup-
ports of two different harmonic template models, and charac-
terize the overlap of these time-frequency supports.

A complex wavelet transform is computed with a mod-
ulated wavelet filter ψ(t) = g(t) eit, where g(t) is a low
frequency envelope, such as a Gaussian. Its Fourier trans-
form ĝ(ω) has a bandwidth Q−1. For audio applications, we
choose Q = 32 [17]. It results that ψ̂(ω) = ĝ(ω − 1) has a
support concentrated in [1−Q−1/2, 1+Q−1/2]. The wavelet
transform of a signal x(t) is defined by

Wx(t, λ) = x ? ψλ(t) with ψλ(t) = 2λψ(2λt) .

The dilated wavelet ψλ is a band-pass filter whose Fourier
transform ψ̂λ(ω) = ψ̂(2−λω) has support centered at ω = 2λ.
For an appropriate envelope g(t), one can prove that W has a
stable inverse [17].

The scalogram image gives the energy of x in the neigh-
borhood of the time t and of the frequency 2λ:

Ix(t, λ) = |Wx(t, λ)| = |x ? ψλ(t)| .

Figure 3.1 shows two scalograms Ix(t, λ) having harmonic
structures, with amplitude and pitch frequencies that evolve
in time. These time evolutions will be approximated by local
harmonic template models.

Let us compute the wavelet transform of harmonic tem-
plate model x(t) = a(t) (eθ ? h)(t). The wavelet ψλ has a
time support proportional to Q2−λ. If 2λ is sufficiently large,
then a(t) is approximately constant over this support, and one
can derive that

Wx(t, λ) = x ? ψλ(t) ≈ a(t) (eθ ? ψλ ? h)(t).

We saw in (2.1) that x has harmonics at frequencies ξ(t) =
k ξθ′(t), where k ∈ N is the harmonic index. If Q−12λ ≤
k ξθ′(t) then each wavelet covers at most one harmonic. One
can derive from (2.1) that

Ix(t, λ) ≈ a(t) |ĥ(2λ)| |ψ̂(2−λkξ(t))| . (3.1)

For a fixed t, Ix(t, λ) is a sum of harmonics at frequencies
λ ≈ log(kξ(t)), whose amplitudes are a(t) |ĥ(2λ)|. Since ψ̂
has a bandwidth of Q−1, the harmonic frequency support of
Ix(t, λ) is thus:

Ht =
{
λ : ∃k ∈ N , |1− 2−λ k ξ(t)| ≤ Q−1/2

}
.

This harmonic support is thus defined by the pitch frequency
ξ(t). In Figure 3.1, Q = 32 is sufficiently large to discrimi-
nate the first 15 harmonics of male and female speakers.

Let us now consider an audio mixture

x(t) = x1(t) + x2(t),

where x1 and x2 are locally approximated by harmonic tem-
plate models. The wavelet transform is linear so Wx =
Wx1 + Wx2. We shall recover x1 and x2 by estimating
their wavelet transform Wx1 and Wx2 from Wx. For a
fixed t, we denote by Ht

1 and Ht
2 the frequency supports of

Wx1(t, λ) and Wx2(t, λ). The frequency overlap between
both supports is

Ht
1,2 = Ht

1 ∩Ht
2 .

Over the non-overlapping parts of their supports, we can sim-
ply compute Wx1 and Wx2 with

Wx(t, λ) =

{
Wx1(t, λ) if λ ∈ Ht

1 −Ht
1,2

Wx2(t, λ) if λ ∈ Ht
2 −Ht

1,2

(3.2)

If λ ∈ Ht
1,2 then the separation of Wx1 and Wx2 is more

complex and requires to compute an approximation model of
x1 and x2. We shall compute the harmonic supports Ht

1 and
Ht

2 from the mixture Wx, by calculating the velocity vector
of these supports. Section 5 explains the separation of Wx1
and Wx2 in the overlapping support.

4. AUDIO VELOCITY EQUATION

Similarly to rigid body segmentations in videos, the time-
frequency supports of harmonic templates are segmented by
calculating time-frequency velocity vectors over the scalo-
gram image, with an audio velocity equation that we now
introduce. Different harmonic supports are identified by
computing piecewise constant approximations of these time-
frequency velocities.

We first consider a single harmonic template model
x(t) = a(t) (eθ ? h)(t). The approximation (3.1) shows
that the partial derivatives of Ix(t, λ) satisfy the following
velocity equation

∂Ix(t, λ)

∂t
≈ Ix(t, λ)Va(t) +

∂Ix(t, λ)

∂λ
Vξ(t) (4.1)

with Va = d log a(t)/dt and Vξ = d log θ′(t)/dt. This ve-
locity equation is quite similar to the optical flow equation of
image pixel velocities.



As in image optical flow equations, at each (t, ξ), a sin-
gle audio velocity equation (4.1) relates the two coordinates
of the velocity vector V = (Va, Vξ). Following an algorithm
developed in computer vision [14], one can transform this sin-
gle equation into a system of two equations, by projecting it
over a complex wavelets Ψ(t, λ) defined over the scalogram
image plane (t, λ). This wavelet Ψ(t, λ) is computed as a
separable product of a wavelet along t and a wavelet along λ.
Its support size along t is chosen to be small enough so that
Va(t) and Vξ(t) remain almost constant over this support. As
a result, convolving both sides of (4.1) with Ψ gives:

Ix ?
∂Ψ

∂t
(t, λ) ≈ Va Ix ? Ψ(t, λ)

+ Vξ Ix ?
∂Ψ

∂λ
(t, λ). (4.2)

Since Ψ is complex, the real and imaginary parts of this equa-
tion define a system of two equations with two unknowns,
which yields a unique solution V = (Va, Vξ) when it is not
degenerated.

If x is a pure harmonic template then the solution V (t, λ)
only depends upon t. It is thus constant over the frequency
support Ht of x. However, harmonic templates are only ap-
proximation models, and audio mixtures incorporate several
harmonic templates, instead of a single one. It results that the
computed audio velocity V (t, λ) will depend both on t and λ.

5. SOURCE SEPARATION

For simplicity, we concentrate on audio mixtures x = x1+x2
with only two sources. In principle, the algorithm can be ex-
tended to an arbitrary number of sources. However, when
dealing with mixtures of multiple sources, relying solely on
pitch-based templates may not be sufficient due to significant
overlaps between their time-frequency supports. This issue
can also occur when the mixture consists of sources with sim-
ilar pitch modulations. In such cases, the definition of the
identified templates can be extended by utilizing additional
information, such as formant frequencies, spectral envelopes
or other setting-specific distinguishing characteristics of the
mixed sources. In this paper we focus on analyzing the simple
case of pitch-based harmonic templates, which are sufficient
for many two-sources mixtures, but the main principles of the
presented method can also be extended to more complex tem-
plates that include such information.

We separateWx1 andWx2 fromWx =Wx1+Wx2 by
first estimating their time-frequency harmonic supports Ht

1

and Ht
2. Each harmonic support Ht

j is defined by Ht
j = {λ :

∃k ∈ N, |1 − 2−λ k ξj(t)| ≤ Q−1/2}, where ξj(t) is an un-
known time-varying pitch. These harmonic supports are es-
timated by optimizing a piecewise constant approximation of
the audio velocity vector V (t, λ) from Section 4.

Let V (t, λ) be the velocity vector computed with equa-
tion (4.2). If x1 and x2 can be locally approximated by har-

monic template models, then V (t, λ) is respectively equal to
velocity vectors V1(t) and V2(t), which do not depend upon
λ, over the two non-overlapping supports Ht

1 − Ht
1,2 and

Ht
2−Ht

1,2. For j = 1, 2, we can thus approximate V (t, λ) by
its weighted average V j(t) over Ht

j −Ht
1,2 defined by

V j(t) =

∑
λ∈Htj−Ht1,2

V (t, λ)|Ix ? Ψ(t, λ)|∑
λ∈Htj−Ht1,2

|Ix ? Ψ(t, λ)|
.

This constant velocity vector provides a prediction model of
the scalogram. Indeed, for V j = (V aj , V ξj ), equation (4.2)
implies that Ix ? Ψ(t, λ) can be predicted with a first order
Taylor approximation for all λ ∈ Ht

j −Ht
1,2:

Ix ? Ψ(t+∆,λ) ≈ 2V aj∆ Ix ? Ψ(t, λ+ V ξj∆) . (5.1)

The two harmonic supports Ht
1 and Ht

2, parameterized by
a pitch pair (ξ1, ξ2), are jointly optimized in order to mini-
mize the mean-square error of the scalogram prediction given
by (5.1).

Once the harmonic supports Ht
1 and Ht

2 are optimized,
according to (3.2), we directly derive the values of Wx1 and
Wx2 on the non-overlapping supportsHt

j−Ht
1,2, j = 1, 2. It

remains to estimateWx1 andWx2 fromWx =Wx1+Wx2
in the overlapping support Ht

1,2. For each (t, λ) ∈ Ht
1,2, we

estimate Wx1(t, λ) and Wx2(t, λ) from the parameters of
the harmonic template models. We have already computed
each pitch frequency ξj(t), which defines Ht

j , and we need
to estimate each amplitude modulation aj(t). Applying (3.1)
shows that

aj(t) =
Ixj(t, λ)

|ĥj(2λ)| |ψ̂(2−λkξj(t))|
.

If λj ∈ Ht
j −Ht

1,2 then one can verify that for any λ ∈ Ht
j

Wxj(t, λ) =
Wx(t,λj)

ψ̂(2λj k′ξj)
ψ̂(2λkξj)e

i(k′−k)ξjtzj , (5.2)

where k and k′ are the closest integers to 2λξ−1j and 2λj ξ−1j
correspondingly, and zj = ĥ(2λ)/ĥ(2λj ).

To demix the overlapping coefficients, it remains to iden-
tify the unknown values z1 and z2. These variables are con-
stant in time as long as each source is well approximated by
the harmonic template model. To incorporate model errors,
we replace these constants by time functions z1(t) and z2(t),
and minimize the energy of their time variations∫ (

dz1(t)

dt

)2

+

(
dz2(t)

dt

)2

dt

where the Wxi in (5.2) satisfy

Wx(t, λ) =Wx1(t, λ) +Wx2(t, λ).

This minimization involves the resolution of a linear system
whose solution specifies z1(t) and z2(t). Once we have esti-
mated Wx1 and Wx2, an estimation of x1 and x2 is obtained
by applying the inverse wavelet transform.



6. EXPERIMENTAL RESULTS

Figure 6.1(a) shows the scalogram Ix(t, λ) of a mixture
x = x1 + x2, where x1 is the recording of a male speaker
saying “Come home right away” and x2 is a female speaker
saying “We’ve done our part”. Figure 6.2 gives the esti-
mation of Ix1 and Ix2 obtained with our separation al-
gorithm. It is computed by estimating the harmonic sup-
ports Ht

1 and Ht
2 shown in Figure 6.1(b). The separa-

tion quality can be evaluated by comparing the original
source scalograms in Figure 3.1 with Figure 6.2. The cor-
responding audio reconstructions are available on the web-
site www.di.ens.fr/data/scattering/BSS/, to-
gether with additional examples.

Additional evaluation of the quality of separated sources
was performed using the “BSS eval” toolbox [18], which
computes Source over Interference Ratios (SIR). Table 6
gives the results obtained on several mixture types, includ-
ing the example of Figure 6.1(a), an additional mixture of
two female speakers, a database of 100 male-female speech
mixtures, and four additional mixtures of speech or singing
voice with music or noise. The second column in the table
compares the separated sources to the original signals. The
comparison matches the signals by maximizing the mean
SIR over the two sources. To provide a baseline for these
performances we also compared the mixture signal to the two
original sources. The results of these comparisons appear in
the last column in the table. Despite the difficulty of the task,
the large increase in SIR in all cases shows that an important
improvement is obtained by the separation algorithm.

In order to compare the proposed algorithm to previous
works we chose a representative unsupervised speech sepa-
ration method that was recently suggested in [2] for separat-
ing two speakers. There, it was shown to obtain competitive
results to prominent model-based and speaker-independent
methods. This method follows a standard practice in speech
separation of constructing binary masks on a time-frequency
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Fig. 6.1. (a) Scalogram of a mixture of two signals shown in
Fig. 3.1. (b) This figure shows the harmonic supports Ht

1 and
Ht

2 of each source: Ht
1 is in cyan, Ht

2 is in yellow, and the
overlapping support Ht

1,2 is in dark red.

(a) Male (b) Female
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Fig. 6.2. Separated scalograms computed from the mixture in
Fig. 6.1(a)

Mixture Prop. SIR [2] SIR Mix. SIR
Fig. 6.1(a) 12 & 14 8 & 8 2 & -1

Female & Female 12 & 17 6 & 7 2 & 0
Speech & Trumpet 19 & 9 9 & 4 8 & -5
Singing & Trumpet 17 & 13 8 & 7 -2 & 2
Speech DB (mean) 11 & 7 15 & 11 1 & -1

Singing & Cello 7 0 -3
Speech & Bubbles 11 6 7

Table 6.1. A comparison of the SIR (Source over Interfer-
ence Ratio) values for the proposed method (Prop. SIR), the
method from [2], and the mixture itself, in relation to the orig-
inal signals. For the first four mixtures, both sources can be
approximated by single harmonic templates and both SIR val-
ues are shown. For the database of 100 male-female speech
mixtures, SIR values were computed for both sources and
their means over the entire DB are shown. For the last two
mixtures, only the speech or singing voice can be approxi-
mated and a single SIR is displayed. This is because a cello
contains more than a single harmonic template, due to rever-
berations, and the bubble sound is completely inharmonic.

representation of the mixture, thus essentially assigning each
frequency band at each time frame to one of the sources. Due
to the use of time-frequency binary masks, this method and
other similar ones do not take into account possible overlap-
ping frequency bands. This makes such methods ill-suited
when considering general mixtures, which may include musi-
cal instruments. Indeed, one of the main challenges in musi-
cal source separation is resolving such local frequency over-
laps [19]. There are several musical source separation meth-
ods that deal with such overlaps explicitly (e.g., [19]) or im-
plicitly (e.g., [3]). However, such methods often work under
the assumption that the musical instrument signals consist of
constant-pitch notes. Since human speech and singing voice
do not fit this assumption, such methods would be ill-suited
for mixtures that contain such sources.

The SIR values obtained by the method from [2], using
the implementation provided on its authors website, are pre-



sented in the third column of Table 6, where they can be com-
pared with the results of the proposed method. In most cases,
both methods show an increase in SIR compared to the orig-
inal mixture. In the case of the speech database, the method
from [10] outperforms the proposed method, however this is
to be expected since it is designed specifically for the case of
speech separation, unlike the approach presented in this pa-
per. In all other cases, the proposed method obtains a better
SIR gain than the method from [2].

7. CONCLUSION

This paper introduces the notion of an audio velocity vec-
tor that gives the rates of change of amplitude and pitch
frequency modulations. This velocity vector is computed
with an audio velocity equation defined in a wavelet time-
frequency plane. Complex audio sources are separated by
approximating their audio velocities with rigid harmonic
template models, which amounts to computing piecewise
constant approximations. This approach extends the prin-
ciples of rigid object segmentations in videos. It can be
generalized to other types of signals by defining signal mod-
els that have low dimensional time dynamics. Psychophysical
models indicate that such harmonic template approaches are
also relevant for audio perception [13].

8. REFERENCES

[1] Q. Huang and D. Wang, “Single-channel speech sep-
aration based on long–short frame associated harmonic
model,” Digital Signal Processing, vol. 21, no. 4, pp.
497–507, 2011.

[2] K. Hu and D.L. Wang, “An unsupervised approach
to cochannel speech separation,” IEEE Trans. Audio,
Speech, Language Process., vol. 21, no. 1, pp. 122–131,
2013.

[3] S. Kirbiz and B. Gnsel, “Perceptually enhanced blind
single-channel music source separation by non-negative
matrix factorization,” Digital Signal Processing, vol. 23,
no. 2, pp. 646 – 658, 2013.

[4] T. Virtanen, “Monaural sound source separation by
nonnegative matrix factorization with temporal conti-
nuity and sparseness criteria,” IEEE Trans. Audio,
Speech, Language Process., vol. 15, no. 3, pp. 1066–
1074, March 2007.

[5] P.-S. Huang, S.D. Chen, P. Smaragdis, and
M. Hasegawa-Johnson, “Singing-voice separation
from monaural recordings using robust principal com-
ponent analysis,” in Proc. of ICASSP ’12, 2012, pp.
57–60.

[6] G.-J. Jang and T.-W. Lee, “A maximum likelihood ap-
proach to single-channel source separation,” J. Mach.
Learn. Res., vol. 4, pp. 1365–1392, 2003.

[7] S. Hochreiter and M.C. Mozer, “Monaural separation
and classification of mixed signals: A support-vector re-
gression perspective,” in ICA2001: 3rd International
Conference on ICA and BSS, 2001.

[8] J. Barker, A. Coy, N. Ma, and M. Cooke, “Recent ad-
vances in speech fragment decoding techniques,” in
Proc. of INTERSPEECH ’06, 2006, pp. 85 – 88.

[9] Y. Shao and D.L. Wang, “Sequential organization
of speech in computational auditory scene analysis,”
Speech Commun., vol. 51, no. 8, pp. 657 – 667, 2009.

[10] G. Hu and D.L. Wang, “Monaural speech segrega-
tion based on pitch tracking and amplitude modulation,”
IEEE Trans. Neural Netw., vol. 15, no. 5, pp. 1135–
1150, 2004.

[11] A.S. Bregman, Auditory scene analysis: The perceptual
organization of sound, MIT press, 1994.

[12] T. Li, V. Kallen, D. Singaraju, and R. Vidal, “Projective
factorization of multiple rigid-body motions,” in Proc.
of CVPR ’07, June 2007, pp. 1–6.

[13] S. Shamma and D. Klein, “The case of the missing pitch
templates: How harmonic templates emerge in the early
auditory system,” Jour. of the Acoust. Soc. of America,
vol. 107, no. 5, pp. 2631–2644, 2000.

[14] C.P. Bernard, “Discrete wavelet analysis for fast optic
flow computation,” Applied and Computational Har-
monic Analysis, vol. 11, no. 1, pp. 32–63, 2001.

[15] J. Barker, E. Vincent, N. Ma, H. Christensen, and
P. Green, “Speech separation and recognition chal-
lenge,” Computer Speech & Language, vol. 27, no. 3,
pp. 621 – 633, 2013.

[16] T. Chi, P. Ru, and S.A. Shamma, “Multiresolution spec-
trotemporal analysis of complex sounds,” Jour. of the
Acous. Soc. of Amer., vol. 118, no. 2, pp. 887–906, 2005.

[17] J. Andén and S. Mallat, “Deep scattering spectrum,”
IEEE Trans. Signal Process., to be published, DOI:
10.1109/TSP.2014.2326991.

[18] C. Févotte, R. Gribonval, and E. Vincent, BSS EVAL
toolbox 2.0, 2005.

[19] Y. Li, J. Woodruff, and D.L. Wang, “Monaural musi-
cal sound separation based on pitch and common am-
plitude modulation,” IEEE Trans. Audio, Speech, Lan-
guage Process., vol. 17, no. 7, pp. 1361–1371, 2009.


