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ABSTRACT
This article proposes a first theoretical performance analysis
of the training phase of large dimensional linear echo-state
networks. This analysis is based on advanced methods of ran-
dom matrix theory. The results provide some new insights on
the core features of such networks, thereby helping the prac-
titioner when using them.

Index Terms— Neural networks, ESN, random matrix
theory.

1. INTRODUCTION

In the realm of both artificial and biological neural networks,
one usually differentiates long- and short-term memory net-
works. While the former are inherently based on a dedicated
rewiring of the network during training phase (i.e., the net-
work edges adapt to the input-to-output training by means
of backpropagation) and work in a feed-forward manner, the
latter do not change their connectivity matrix but maintain
past-input information within the network via self-connection
(thereby being recurrent networks rather than feed-forward
networks) so that, for energy conservation reasons (inputs
are continuously fed into the networks), the past-input mem-
ory decays exponentially fast in this case. These networks,
less considered than their feed-forward counterparts, have re-
cently been reinstated by Jaeger [1] under the name of echo-
state networks (ESN), who defends their performance superi-
ority in short-term memory settings [2].

A striking feature of ESN’s is that the (fixed) network con-
nectivity matrix can be chosen as a random matrix and that
choice is even a very satisfactory one. This observation and
intuition from random matrix theory suggests the possibility
for a much expected theoretical analysis of such networks.
The objective of the present article is to lay down such the-
oretical bases to propose a first study of the training perfor-
mance of these networks.

Precisely, we shall consider an echo-state network of n
nodes and will prove that, as both the training sequence length
T and n grow large simultaneously, the mean-square error
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Fig. 1. Echo-state neural network.

performance of the task training procedure tends to be deter-
ministic in the limit, for all well-behaved connectivity ma-
trices W ∈ Rn×n. Then, specifying W to belong to spe-
cific classes of random matrices, we will further show that the
aforementioned deterministic behavior takes on a very simple
expression that exhibits the salient features of the ESN. Many
consequences can be drawn of this analytical formula, some
of which will be discussed here.

2. MAIN RESULTS

2.1. Generic W

Consider a neural network of n nodes having at each time t a
joint state xt ∈ Rn. We assume the following state evolution

xt+1 = Wxt +mut+1 + ηεt+1 (1)

for some initial (say empty) state at large negative t, with
W ∈ Rn×n the connectivity matrix, . . . , u−1, u0, u1, . . . ∈ R
the network (scalar) inputs, m the input-to-network connec-
tivity vector, and ηεt ∈ Rn an additional in-network noise of
amplitude η > 0. A visual representation of such a network
is depicted in Figure 1.

We seek here to evaluate the performance of the so-called
training task consisting in relating the input sequence {ut} to
a pre-determined output sequence r0, . . . , rT−1 from a given
linear combination of the network states x0, . . . , xT−1 for



a duration T . This is traditionally performed using a least-
square regression. Precisely, we shall define

ω ≡

{
X
(
XTX

)−1
r , T ≤ n(

XXT
)−1

Xr , T > n

where r = [r0, . . . , rT−1]T and X = [x0, . . . , xT−1] ∈
Rn×T , and consider XTω as the least-square estimate of r
with mean-square estimation error

Eη(u, r) ≡ 1

T

∥∥r −XTω
∥∥2 . (2)

This quantity is clearly identically zero if T ≤ n and we shall
thus only consider the non-trivial case where T > n.

Our objective is to understand the behavior of Eη(u, r)
defined in (2) in the limit where n, T → ∞, for an arbitrary
(and then for a random) matrix W . The underlying idea be-
hind our approach is that the noise εt, which regularizes the
otherwise unstable network, will tend to concentrate as n, T
grow large, thereby leading to a (much desired) more deter-
ministic behavior of the network as a whole. Considering X
as a random matrix through these εt’s, we shall provide an
asymptotically consistent estimate of Eη(u, r).

To ensure proper conditioning in the large n, T limit, the
following assumption is needed.

Assumption 1 (Large n, T limit) As n, T →∞,

1. limn
n
T = c ∈ [0, 1)

2. lim supn ‖W‖ < 1

3. lim supn ‖AAT‖ <∞

where A = MU , M = [m,Wm, . . . ,WT−1m] ∈ Rn×T
and U = {ui−j}1≤i,j≤T .

Item (2) is a (often too stringent) sufficient condition
to ensure network stability, while Item (3) is merely a not-
too demanding technical conditioning. The aforementioned
matrix U will play a key role in what follows. Note that
its columns constitute delayed versions of the sequence
u−(T−1), . . . , uT−1 and thus can be seen as successive snap-
shots of the (T -step behind) network memory as time elapses.

With Assumption 1 in place, we have our first main result.

Theorem 1 (Asymptotic MSE) Let Assumptions 1 hold and
let r ∈ RT be of O(

√
T ) Euclidean norm. Then, with

Eη(u, r) defined in (2), as n→∞,∣∣∣∣Eη(u, r)− 1

T
rTQ̃r

∣∣∣∣→ 0

almost surely, where Q̃ ≡ (IT +R+ η−2ATR̃−1A)−1, with
(R, R̃) a solution to the implicit system

R = c

{
1

n
tr
(
Si−jR̃−1

)}T
i,j=1

R̃ =

∞∑
q=−∞

1

T
tr
(
Jq(IT +R)−1

)
Sq

and [Jq]ij ≡ δi+q,j and Sq ≡
∑
k≥0W

k+(−q)+(W k+q+)T

(a+ = max(x, 0)).

Sketch of Proof 1 The idea behind the proof consists in ap-
plying the so-called deterministic equivalent method (see e.g.,
[3, Chapter 6]) of random matrix theory on the random ma-
trix 1

TX
TX . That is, defining Q̃γ = ( 1

TX
TX − γIT )−1 for

all γ > 0, the resolvent of 1
TX

TX , the method consists in de-

termining a matrix ¯̃Qγ such that, as n, p→∞, aT(Q̃γ− ¯̃Qγ)b
almost surely vanish for all deterministic and bounded norm
a, b vectors. This is performed via the Gaussian integration-
by-parts and Nash–Poincaré inequality framework devised by
Pastur in [4, Chapter 2]. Once this is achieved, we show
that the aforementioned convergence still holds when γ = 0,
which is valid as long as c < 1. Calling Q̃ the limit of ¯̃Qγ as
γ → 0 provides our final result. The complete details of the
proof are provided in the article [5].

Although seemingly intractable, the form taken by Q̃ is
quite interesting in itself. First, note that R and R̃ only de-
pend on W so that the terms R and MTR̃−1M contain all
the information about the W found in Q̃. The noise level
η2 then trades the need for regularization of Q̃ and the need
for emphasizing the part ATR̃−1A versus IT + R; the for-
mer matrix indeed has its columns living in the span of the
columns of U with weights imposed by the network matrix
MTR̃−1M . Thus, we expect the memory performance of the
ESN to relate strongly to both η2 and the effect ofR and R̃.

An interesting corollary is found when c = 0 (i.e., n/T →
0) in which case one easily shows that R = 0 and R̃ = S0.
And this thus brings the almost sure convergence∣∣∣∣∣Eη(u, r)− 1

T
rT
(
IT +

1

η2
UTDU

)−1
r

∣∣∣∣∣→ 0

withD the matrix with entryDij = mT(W i−1)TS−10 W j−1m
(recall that S0 =

∑
k≥0W

k(W k)T). We recognize here the
diagonal entries of D to be the quantity

Dii = mT(W i−1)T

∑
k≥0

W k(W k)T

−1W i−1m

known in the ESN literature as (the value i of) the Fisher
memory curve [2, 6], an abstract mesure of the ability of the
ESN to maintain an i-step old input in memory.



Having an insight on the couple (R, R̃) for non trivial
values of c is however quite involved, and it is interesting to
consider specific cases where this expression simplifies. In
particular, one may chooseW to be a given snapshot of a ran-
dom matrix model. Since n, p are assumed large, by means of
random matrix identities, this one realization will have an al-
most sure deterministic behavior in the limit, thereby leading
to explicit approximations for Eη(u, r).

We shall consider next two classical random matrix mod-
els for W modelling directed and undirected random graphs.

2.2. Non-Hermitian random W

The first model assumes a non-Hermitian structure for W but
with statistical invariance when (left- or right-) multiplied by
orthogonal matrices. In this case, R merely becomes c

1−cIT

while R̃ is essentially (1 − c)S0 and we have the following
corollary of Theorem 1.

Corollary 1 (Non-Hermitian Random W ) Let the Assump-
tions of Theorem 1 hold and take W to be random with left
and right orthogonal invariance, and m of unit norm inde-
pendent of W . Then∣∣∣∣∣Eη(u, r)− (1− c) 1

T
rT
(
IT +

1

η2
UTDU

)−1
r

∣∣∣∣∣→ 0

almost surely, where D is diagonal with

Dii ≡
1

n
trW i−1(W i−1)TS−10 .

In particular, if W = σZ with Z a random orthogonal and
orthogonally invariant matrix,1 then Dii = (1− σ2)σ2(i−1).

Corollary 1 provides much expected insights on the be-
havior of ESN’s in the case of non-Hermitian random W .
In particular, from the diagonal structure of D and the fact
that the columns of U are delayed versions of the input se-
quence {ut}, the performance of the ESN will depend on the
accuracy of the representation of r as a linear combination of
weighted delays of {ut}. Note interestingly that these delays
satisfy

∑
i≥1Dii = 1, so that the ESN effectively distributes

its memory capacity along the successive delays (in an expo-
nentially decaying manner). The specific choice of the singu-
lar values of W impact these delays.

Figure 2 provides a performance comparison between
Monte Carlo simulations and our theoretical results for the
training of an interpolation task of chaotic data (here the
Mackey–Glass model [7]). An accurate match is observed
between theory and practice with increased precision as n, T
grow large, consistently with our results. Despite the appar-
ent accuracy on this example, it is nonetheless important to
stress that Theorem 1 is only valid for fixed η > 0 and grow-
ing n, T . In particular, the approximation for small η’s may
dramatically fail in some specific cases that we simulated.

1This is often referred to as a Haar matrix.
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Fig. 2. (Normalized) MSE for the Mackey Glass one-step
ahead task, W = σZ for Z Haar, n = 200, T = 400. Error
bars indicate one standard deviation of noise realizations.

2.3. Hermitian random W

A second natural example is to assume that the ESN is now
an undirected graph, so that W is symmetric. In this case,
the matrix R is no longer diagonal but is found to be solu-
tion of a simple fixed-point equation. Precisely, assuming W
Hermitian orthogonally invariant with normalized empirical
eigenvalue distribution (i.e., the measure n−1

∑
i δλi(W ) with

λi(W ) the eigenvalues of W ) converging to µ, we have

Rab = c

∫
t|a−b|µ(dt)∑

q∈Z t
|q| 1
T tr(Jq(IT +R)−1)

for all a, b ∈ {1, . . . , T}. Since R is a Toeplitz matrix with
exponentially decaying first column entries, this equation
only involves a few parameters and is easily solved. An inter-
esting case is when µ is symmetrical (i.e., µ(−t) = µ(t)) in
which case all values of Rab for a − b odd vanish. Figure 3
provides a visual comparison of R when W is a Gaussian
matrix with i.i.d. entries with or without symmetry.

As opposed to the case of non-HermitianW , the ESN out-
put is not merely mapped to a delayed version of past inputs
but a more intricate combination of them. This intuitively in-
duces performance losses when it comes to fulfilling pure de-
lay task. This is confirmed in Figure 4, where ESN’s with or
without Hermitian symmetry are trained on a τ -delay mem-
ory task on the Mackey–Glass dataset. While the performance
decay incurred by increasing τ for the non-symmetric case is
moderate, it is instead dramatic for symmetric matrices. As
such, undirected random graphs are seen to perform poorly
on related simple memory tasks.
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Fig. 3. Upper 9× 9 part ofR for c = 1/2 and σ = 0.9 for W
with i.i.d. zero mean Gaussian entries [left] and W Gaussian
symmetric (Wigner) [right].
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Fig. 4. Performance of a τ -delay task for τ ∈ {1, . . . , 4}
compared for i.i.d.W versus WignerW , σ = .9 and n = 200,
T = 400 (here on the Mackey-Glass dataset).

3. CONCLUDING REMARKS

Several interesting remarks can be drawn from the theoretical
results in Section 2. Consider for instance the scenario where
W = σZ for Z a Haar matrix and in which the sought-for
output r is defined as r =

√
TUTb for some vector b ∈ Rk

and k small. Then, from Corollary 1,

Eη(u, r)

1− c
' bTU

IT +
∑
i≥0

(1− σ2)σ2(i−1)

η2
UT
·,iU·,i

−1 UTb

which can be shown to converge to zero as η → 0 and may,
for every η, be numerically minimized over σ. In particular,
letting bi = αi−1 for some α ∈ (−1, 1), one can show that
σ2 = |α| minimizes Eη(u, r). Thus, the network should (as
one would expect) align as much as possible to the depen-
dence of rt in ut−i for each i. For more general than expo-

nential decaying relations between rt and ut−i, and in par-
ticular to account for heterogeneous memory dynamics, one
may appropriately consider W = diag(σ1Z1, . . . , σLZL) for
different values of σ` and (different sized) independent Haar
Z`, parametrizable upon the application context.

For k not small however, or for more general models of
r as a function of u (especially non linear models), the con-
vergence of Eη(u, r) to zero as η → 0 is not guaranteed. In
this regime of small η’s, our analysis however theoretically
breaks so that the instability shortcomings already observed
by Jaeger in [2] cannot be resolved at this point and remain
an open question. Nonetheless, it clearly appears through our
results that large enough η’s (it can be proved enough to have
η2 � n−

1
2 ) induce system stability.

Generalizations of the present work encompass the exten-
sion to the testing (as opposed to training) performance of
ESN’s (see [5] for preliminary results) along with the chal-
lenging consideration of non-linear activation functions, i.e.,
generalizing (1) to xt+1 = S(Wxt + mut+1 + ηεt+1) for
some (pointwise) sigmoid function S. The theoretical diffi-
culties incurred by the latter may be circumvented by ideas
from mean field dynamics.
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