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ABSTRACT vides a fast filter bank implementation. The paper
Classification requires building invariant represen.9()ncentr6ltes on translation invariance but general-

tations relatively to groups of deformations that'zatIon to any other group can be found in [4].

preserve signal classes. Recursive interferometry

computes invariants with a cascade of complex 2. RECURSIVE INTERFEROMETRY
wavelet transforms and modulus operators. ThRecursive interferometry maps signal high fre-
resulting representation is stable relatively to elasguencies to lower frequencies, with a cascade of
tic deformations and provides invariant representawavelet transforms and modulus operators, which
tions of stationary processes. It maps signals to gields a progressively more invariant representa-
manifold which preserves signal discriminability. tion.

1. INTRODUCTION 2.1 Wavelet Transform Modulus

A modulus operator applied on a wavelet tranform

Signal classes are usually invariant to certain typ h ¢ te low f nterf
of deformations that may include translations, rolS Shown to compute low frequency Interierences.

: : let transform filters a real multidimensional
tations, scalings or any other group of operatorf‘. wave 2 /mads n .
Classification algorithms must then be invariant'9nalf € L r(].Rh) with afl""rg'lloy ?sz—lwaveIets
relatively to these deformations. The invariance W} i<d<k Which are scaled by
often also applies to elastic deformations which Uxe RS . W F(X) = fx W o(X
define much larger Lie groups. However, build- > Wik () Wik
ing invariants reduces the representation dimerwith _ _
sion, which may affect its ability to discriminate Wik(x) =27 (277x) .

different patterns. It is therefore necessary to cong g computed up to a coarse scafevzhere the re-
struct representations that balance invariance, St?n'aining low frequencies are carried by a low-pass
blI|t¥r€:1ndFd|S(_:r|mt|nab|fI|ty reqw(rjerlnen_ts.t lat filtering f x ;0(X), whereyp(x) is a real low fre-

€ rouner transiorm modulus IS transia Ionquency scaling function. Let(w) be the Fourier

invariant but the representation of high freq.ueniransform off with w € RY. The modulus ofo &
cies is highly not invariant to elastic deformations. —
j.k

Computer vision researchers [2] have introduced®” is written|c|. Singe\N f(w) = f(w) (2 w)
histogram techniques to build local invariants byand f(—w) = f*(w), if for all w e R°
delocalizing high frequency information. This has 1 oN2
lead to efficient local descriptors such as SIFT [3] (1-93) < (2 W)[* + (1)
for classification. However, fully invariant repre- " L Lo
sentation requires using global histograms, which kz ;(|¢k(21w)| + (-2 w)| >/2 =1
may not be sufficiently rich to discriminate pat- =ti=
terns. then the wavelet transform is a complete contract-

This paper follows a harmonic analysis ap-ing mapping
proach to invariant representations. Section 2 in- 1
troduces a recursive interference representation, 2 2, © 2 2

: ; -0)< - <

and analyzes the properties low frequency mterT-r,f|| (1=0) < [[fxthoa "+ Z R L
ferences computed with cascades of wavelet trans-
form modulus. Section 3 studies interference inwith || f||?2= [| f(x)|?dx. We consider complex an-
variance and discriminability, and Section 4 pro-alytic wavelets such thal(w) =0 if i(—w) #0

k=1]=
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for k > 1. At low frequencieslh(w) covers the wherej <Jgivesthe depth of a node andts hor-

domain|w| < 11, with §ix(2pm) =0 for pc Z4, and  izontal position in a left to right order. The wavelet

Ik(w) for k > 1 is mostly non-negligible inside a transform modulus of builds a first tree branch

1 octave frequency annulus< |w| < 27T with K — 1 leaves per level, which carry 1st order
High frequency wavelet -coefficients areinterferences at each scale

mapped to low frequencies with a complex modu-

lus which computes frequency interferences. The, f(x,k) = |f» g;x(x)| for j <Jand 1<k <K

Fourier transform oM, f (x) = |W, x f (x)|? is the

convolution oﬂﬁ,-?f(w) with itself: plus the low signal frequencies at the last level
M f (w) = (2m)~ / Wik f (&)W f (£ — ) dé. [57(x,0) = fxo(x) .

: . . (2)  Each of thek — 1 leaves of depths1 < J are sub-
This convolution measures the correlation betweefjo o mnsed with a second wavelet transform and
frequencies that are apart. In quantum physics, \qq1us operator, which computes second order
where probabilities are calculated as the squargflie ferences located at the leaves of a new tree of
modulus of complex wave functlorE_Qt is 'nter'depthJ.
preted as interferences. Althoughf(w) is The interference tree is progressively con-
non-negligible inside a frequency annulusZ < structed by decomposing the signéid (x, a) at
|| < 27141, (2) shows thaM; « f(w) is a corre-  the leaves of a previously calculated tree, with a
lation measure which is mostly non-zero at lowerwavelet transform modulus up to a scak @n-
frequenciesw| < 27'm. til all the tree leaves are at the depthas illus-

To iterate this mapping and guarantee stabiltrated in Figure 1. The wavelet transform modulus
ity, the squared complex modulus is replaced by af I,f(x,a) up to the level defines a new tree
modulus, which is contracting. Itinvolves a squarevhose leaves are

root operator|W, f(x)| = /Mjxf(x), which is _ .

singular wherWw;  f (x) vanishes. Let us write I f (X, aK M 4K) = I f (L o)« k(X)| forl < j <7,
Wik F (3)]* = Wi F[[PWA(x) (1+ £(x)), and

wherew(x) which is constant over the support bf [ F (% aK> ™) = T f (., o) % Wou(X)

with ||w|| = 1. A series expansion af 1+ € gives

1 The signalsl; f(x,a) are recursive interferences,

(Wi f(X)] = [[Wj k f || w(X) (1-1— EE(X)-I-O(EZ(X)) . computed withp(a) wavelet transforms and mod-
ulus operators. The interference orqn) at a

The lower frequencies ofW,«f(x)| are domi- nodea is the number of non-zero digit @f writ-

nated by the squared modulus interferences terten in base. .

£(x) and theO(g2(x)) higher order terms produce  All tree signalsl;f(x,a) are further filtered

higher frequency harmonics of low amplitude. Aswith the low-pass filterjy j(x) to eliminate high

a result,|W;«f(x)| has a Fourier tranform which frequency harmonics resulting from the last mod-

is also mostly located at the lower frequenciesilus computation:

lw| <27

Lif(x,a)=1;f(.,0)~yp(X).

2.2 RecursiveInterference Tree 100 o) =T ) o, ()
Recursive interferometry computes a progressively If f(x) € L2?[0,1]¢ has a period 1 along the
lower frequency representation by iteratively cal-directions, then interference signaj$ (x, a) have
culating complex wavelet transforms and modulusilso a period 1. Sincgy(2pm) = 0 for p € Z9, at
operators, which produce “interferences of interthe maximum scale’2= 1, all I,f(x, o) are con-
ferences”. stant inx. The tree leaves stores a single value

An interference tree up to a scalé 8 a set Iyf(ar) providing a delocalized information on the
of signalsl; f(x, a) located at the nodes of a tree,whole support off.
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and
15D f —I5f —7.01: || <C| f] (2—2J||T||go+ (4)

3ol -

The error terms depends the maximum transla-
tion amplitude|| 7||.. relatively to the scale*2and
on the size of the elastic deformation measured by
II|01|||». The residual error is reduced by an order
of magnitude with a linearization of the deforma-
, o _ tion in (4). If we neglect the error, then at each
Figure 1:A recursive interference tree computes af'rsbositionx the deformatiorr(x) can be estimated

wavelet transform modulus (in black), and iterativelyby solving a system of linear equations
computes wavelet transform modulus of its leaves (2nd

order in green and 3rd order in red), until all leaves ar& @, LD f(x, a) =15 (x,a) —1(x) . Ol f(x,a) ~ 0.

atthe maxium depth. This system has no solution if the error is not neg-
ligible in (4) because either the elastic deformation
3. INVARIANCE AND amplitude|1| is too large or the scale’ s too
DISCRIMINABILITY small.

L . . If fis 1 periodic then the translation error term
The classification ability of recursive mterferom-z—J”T”w disappears at the maximum scafe-21,

etry relies on its invariance and discriminability anq| is fully invariant to rigid translations. Com-
properties that are reviewed. The norm of interpyting an invariant representation relatively to a

ference signals at a depjfis group is a form of quotient of the signal space by
]2 = Z (., a)]? this group, One must ensure that the resulting di-
) & oA mensionality reduction is not too strong to preserve

) ) the discriminability between signals in the trans-
with [[1;f(.,a)[|> = [[I;f(x,a)?dx An interfer- formed space.
ence tree is computed with a succession of wavelet Suppose that the support ‘6(00) is included
transforms and modulus operators and a final low, —N7T,N7j so thatf belongs to a spac¥y of
pass filtering, which are all contracting operatorsgimensionN. The Fourier transform modulus is
The resulting transform is therefore also contracty yransiation invariant transformation, which maps
Ing-: Vn over a half space of dimensidd/2. How-
<1 ever, the Fourier transform modulus is not stable
LetD,f(x) = f(x—1(x)) be an elastic transla- relatively to elastic deformations. The operalr
tion with T(X) = (Tm(X))m<q € R? for x= (X,)p<q- MapsVy over a more complex non-linear mani-
We consider invertible deformations which satisfyfold. Some properties of this manifold are stud-
ied in [4], in the particular case wherf(w) are
4 191m(X) 2 ) indicator functions of non-overlapping frequency
BT=1 > [Tau <l-awitha>0. pands. It proves that the manifold has a dimen-
pm=1 P sion larger theiNY/2, which means that thi can

The fo"owing theorem [4] proves that at |argebe invertEd over Certain ba||S Of dimenSiNHZ in
scales, a recursive interferometric transform i/n. Continuity relatively to elastic deformations

nearly invariant to such deformations. We writecomes with a much larger dimensionality reduc-

plitude, andr. Of = 5 ,7,0 /9%, dimensionality remains large.
_ Figure 2 gives a simple classification example
Theorem 1 There exists C that does not dependjjystrating the translation invariance and discrim-

on f such that iability over deformable templates. Deformable
3 templates [1] are obtained by applying deforma-
[15D: f — 15| SCHfH(Z 1T lles + I [1O7]]]oo tion operators on deterministic signals. We con-

(3) sider two classe%; and %, whose elements are
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realizations of two random procesdas= f;(x— (@) (b)

11(X)) and Fy(x) = fo(x — 12(X)). The template
signals f; and f, are deformed with two elastic i .
random deformationgy(x) and 1,(x)_satisfying s
ITi(¥)|<a<land(x)|<a<1. Leth=FK+W 0 )
be a noisy realization df with an additive Gaus-
sian white nois&V. Figures 2(a,b) show two real- % = = = @ = = v w w w0 @ @ e
®(f) = f and in Figure 2(d) for a Fourier modulus
®(f) = |f|. In these two cases, the intra class
these distances.
Figure 2(e) gives the distribution of
Gaussian. The distance is larger across classe
(i #i") then within classes & i’), so both classes

izations ofF, andF,. ©) (d) (€)
distance fori = i’ is of the same order as the

|®(F) — ®(F)||? for d(f) = Iof. Recursive in-

can be discriminated by thresholding the distance |
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The  probability distributions of - k
distances across classes wheg i’. Indeed, if
terferences are computed with a one-dimensiona -

|P(R) —d(F)||2 is shown in Figure 2(c) for

(
®(f) = f then the signal representation is not - e
invariant to translation andp(f) = |f| is not o o
stable relatively to elastic deformations. Both .
classes can therefore not be discriminated with -
Gabor wavelety(x) = 8(x)€%*, where 8 is a

on recursive interferences. Figure 2:(a,b): noisy signal§; andr. (c,d,e): distri-
butions of||®(F) — ®(F)|| for i =i’ (full blue curves),
3.1 Stationary Processes I nterferences andi # i’ (dashed red curves) fab(f) = f in (a),

Not all signal classes may be obtained as defofP(f) =f| in (b) and®(f) = lof in (). (f.g): realiza-
mations of a deterministic template signal. In partions of two white noises, andF,. (hi,j): distributions
ticular, realizations of a stationary texture are noP! [|®(F) —®(F)ll asin (c.d.e).
elastic deformations of a single signal. Recursive
interferences map the realizations of a stationaryhe variances?, of |F x ; (x)| satisfies
process to a small ball in the transformed space. o
Discriminating the realizations of two stationary o B e,
processes is thus possible through the Euclidean o2, 02,
distance of their interference representation. 3 3

If F is a zero-mean stationary process themherem, is the mean ofF x ¢ «(x)| and hence
I;F(x,a) remains stationary irx. Indeed, it the first order moment df « (J; i (X).
is computed with a cascade of wavelet trans- If F is a Gaussian process thér, /o7, =
forms which are convolutions and modulus operq — /4. If the correlation ofF decreases suffi-
ators, which both preserve stationarity. lat = ciently quickly then one can show thgF (x, )
E{|F(x) —E{F(x)}|*}. Waveletsignal& «;x(X)  remains nearly Gaussian for eagh If I;F(x, a)
are stationary processes, and (1) implies that thedire interferences of ordes(a), obtained with a

varianceo?, satisfy succession op wavelet convolutions and modu-
, , , lus operators, then the variancg. of |;F(x,a)
(1-9)o° < ZO-Lk <o°. decreases like® (1— m/4)P. If o7, = O(0?), one
J‘,

can derive [4] that

However, the modulus operator reduce these vari-E{||loF — E{loF }||?} B\ e
ances because of the complex phase suppression.  E{[[F[2} =O(N"") with f>0,
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where ag|E{IoF }||> ~ E{||F||?}. It shows that,F  and
remains in a ball whose spread is much smaller

then its distance to 0. Realizations of two stationtj;1f[n, aK+K = |I; f[., a]x Yrk[2n]| for 0< k< K.
ary processes are discriminated by measuring the ' '
distance of their interference transform. If a =0modK and is thus a low-pass filter output

Figures 2(f,g) show the realizations of two dif- then sincé; f[n, a] was already obtained through a
ferent white noise process@@and F,. Their sup- convolution WithL,Uj’o, the next wavelet scale is cal-
ports are defined by two Bernouilli distributions culated with the filtersy[n] whose transfer func-
Prob{(F(n)) = 0} = pi and Prof§(F(n)) # 0} =  tion gk(w) satisfies:

1— pi, with pp = 2p,. Over its support, each R

F(n) is a Gaussian white noise. Fdr(f) = f M (2w) = Gi(w/2) Po(w) -

and®(f) = |f|, Figures 2(h,i) show that the dis-
tribution of ||®(F) — ®(F;)|| are similar within the
same class= i’ and and across classeg i, when
®(f) = f andd(f) = |f|. On the opposit, intra
class and across class distances are well separatgg
by an interference representati®f) = Iof.

Children are then computed with

[ 1f[n,aK] =1 f[.,a]«go[2n]

4. FAST ALGORITHM WITH MODULUS ljeaflm aK+K =l f[., o] xg2ni] for O <k < K.

FILTER BANK The oversampling factor 2 is finally removed

This section describes a fast filter bank algorithn®Y filteringl; f[n, a] with the low-pass filteti o[n]
which computes the recursive interference trang2nd by subsampling the output

form of a multidimensional discrete signgln| of s 2

sizeN, with n = (ny,...,ng). We considerf [n| as liln a] =13 [, a x Yof2n] .

a signal obtained by sampling a 1 period func- At each levelj of the tree, there ari it in-

tion f(x) at intervalsN-¥9. Eachi;f(x,a) has . di
a frequency support mostly concentrated at frec_ilcesa and each signa f[n, a] has 2} samples,

: = L there is a total of 21KI~t coefficients, with
quenciegw| < 27/ rrbut may go beyond, and itis S° theré | AASTS,
thus uniformly sampled at interval$2. We write 2 =N 9 K=2 '_[here ardN coefﬁu_ents. The
[[f[n,a] =1, f(2in,a). filter bank algorithm is implemented witB(N|L —

The discrete wavelet transform dfis com- 1|) operations and hen&@(Nlog, N) at the bottom
puted at scalesiz 2" = N4, The root of the of the tree. IfK > 2 then the 29/KI~* coefficients

tree is at the level and i, f[n,0] — fjn. The &° computed witld(2-¥ KI-1) operations, which

finest scale wavelet transform 6fn] is computed MakesO(N"%/) at the bottom of the tree.
without subsampling, using discrete wavelet filters
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