MAXIMUM-ENTROPY SCATTERING MODELS FOR FINANCIAL TIME SERIES

Roberto Leonarduzzit, Stéphane Mallat*?, Jean-Phillipe Bouchaud® and Gaspar Rochette*

! Ecole Normale Supérieure, PSL, 75005, Paris, France
2 College de France, France
3 Science & Finance, Capital Fund Management, 75009, Paris, France

ABSTRACT

Modeling time series with complex statistical properties such
as heavy-tails, long-range dependence, and temporal asym-
metries remains an open problem. In particular, financial
time series exhibit such properties, and existing models suf-
fer from serious limitations and often rely on high-order
moments. We introduce a wavelet-based maximum entropy
model for such random processes, based on novel scattering
and phase-harmonic moments. We analyze the model’s per-
formance with a synthethic multifractal random process and
real-world financial time series. We show that scattering mo-
ments capture heavy tails and multifractal properties without
estimating high-order moments. Further, we show that addi-
tional phase-harmonic terms capture temporal asymmetries.

Index Terms— Maximum entropy models, scattering
transform, wavelets, financial time series

1. INTRODUCTION

Stochastic process modeling. In a wide range of domains,
such as internet traffic [1], turbulence [2] and medicine [3],
data are characterized by complex statistical properties such
as heavy-tailed distributions, long-range correlations, inter-
mittent time evolutions, and temporal asymmetries. Despite
the prevalence of such data, state-of-the-art stochastic models
often struggle to represent all these types of behavior.
Financial time series. A case study of the above situation
is provided by financial time series, consisting in the evolu-
tion of prices of different assets over time. The development
of accurate models for such time series is a crucial task in
finance, for applications such as the prediction of crises or
the understanding of the mechanisms that control the dynam-
ics of financial markets. However, financial time series are
characterized by the complex statistical properties described
above, which current models fail to characterize completely
and efficiently [4, 5].

Financial models. Initial gaussian models based on brown-
ian motions were unable to capture neither heavy-tails nor the
complex temporal dependence that alternates periods of large
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and small changes (known as “volatility clustering” [5], see
Fig. 1).

The family of GARCH models was introduced to address
these limitations [6, 7] through autoregressive components
of volatility that capture the temporal dependence. Despite
many improvements and variations [8], GARCH models still
suffer from issues such as difficulties to represent the inter-
actions between price changes at different time scales, or to
capture heavy-tailed distributions [5].

Multifractal models were proposed to address these limi-
tations of the GARCH family [5,9]. They are based on pre-
scribing the way in which all moments evolve at different time
scales. Interscale relationships are naturally captured, and the
imposition of high-order moments leads to heavy-tailed dis-
tributions and volatility clustering [5,10,11]. However, multi-
fractal estimators are based on high-order moments and have
a large variance. Also, they are not able to capture temporal
asymmetries.

Modeling challenges. In light of this, the challenge in build-
ing a model for these complex types of data is to include the
following features:

1. Estimators with small variance,
2. Interactions between scales,
3. Intermittent temporal structure,

4. Temporal asymmetries.

Goals and contributions. In this paper, we introduce a max-
imum entropy model with the features described above.

We use second-order moments of nonlinear contractive
representations to bound the variance of estimators. Further,
we capture interscale relationships through wavelet trans-
forms, which provide a separation of scales. We use scatter-
ing coefficients to capture the complex, intermittent temporal
structure related to heavy tails and multifractal properties.
Finally, we introduce wavelet phase harmonics to measure
temporal asymmetries and multiscale phase relationships.

Our results show that our model correctly captures the
heavy tails, multifractal properties and temporal asymmetries
of synthetic multifractal random processes and financial time
series, without relying on high-order moments.



2. STATISTICAL PROPERTIES OF FINANCIAL
TIME SERIES

Notation. Throughout the paper, X denotes a 1D random
process, and x a realization of X with d samples. Further,
(x(t)) = d~1 Y, x(t) denotes the empirical average.
Returns time series. Let c(t) be the price of an asset at
time ¢. The absolute returns at scale ¢ are defined as r(t) =
¢(t) —c(t—0). Here we will make use of the daily returns (i.e.
0 = 1 day) of the S&P 500 index between the years 2000 and
2018, illustrated in Fig. 1. Returns are characterized by com-
plex statistical properties including heavy tails, multifractal
structure, and temporal asymmetries [4, 5].

Heavy tails. It has been empirically shown that the proba-
bility distribution of returns r is nongaussian and decays as a
power law when § is not too large:

P(r) ~r=¢, €))

where 3 < a < 5 [4,12]. Heavy tails mean that the prob-
ability of observing extreme returns is higher than what is
predicted by a normal distribution.

Multifractal structure. Empirical analyses also show that
returns are scale invariant, have nontrivial high-order statis-
tics, and are everywhere irregular with intermittent changes
of regularity [4,5, 11]. Multifractal analysis summarizes these
properties through the so-called scaling function ((q), defined
through the relation

([e(t +a) —2()|) ~a®@, qeR, 2

The function ((¢) quantifies how the moments of different
orders evolve with the scales, and is related to heavy tails,
long-range correlations and volatility clustering [5,9, 13]. In
practice, the increments in (2) are replaced by more robust
quantities such as wavelet leaders [14].

Multifractal random walk.  Multifractal random walk
(MRW) [9, 15] has been proposed to model financial time
series. It is defined as X (t) = B(t)e**®), where B(t) is
a brownian motion and w)y(¢) is a gaussian process with
covariance cov(w(ti),w(ts)) = A2log (T||t1 — to| + 1) if
|t1 — ta] < T, and cov(w(ty), w(tz)) = 0 otherwise. MRW
captures properties such as heavy tails and multifractal struc-
ture; its scaling function is ((q) = (A2 + 1/2)q — A\?¢?/2.
A sample realization of MRW is shown in Fig. 2, and its
statistical properties are shown in Fig. 3 (blue lines).
Temporal asymmetries. Temporal asymmetries in financial
time series arise from causality relationships, whereby eco-
nomic actors anticipate events in the future using informa-
tion from the past. One measure for temporal asymmetries is
the leverage effect, which reflects the tendency for increased
volatility after decreases in price [16]. It can be defined as the
correlation between price change and a measure of the square
volatility [16]:

(r*(t+7)r(t)
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Fig. 1. S&P 500 daily absolute returns time series.

Fig. 2. Single realization of multifractal random walk.

The leverage L(7) has been found to be 0 for 7 < 0, and a
negative exponential for 7 > 0 [16].

Goal. The goal of this contribution is to build models of
stochastic processes that capture properties (1), (2) and (3),
while avoiding the pitfalls of the estimation of high-order mo-
ments.

3. MAXIMUM ENTROPY MODELS

Maximum entropy microcanonical models. We build max-
imum entropy models for X that are conditioned on their
empirical moments. We use an informative representation
{Upz : ¢ € L} that captures the properties of X. We assume
that the empirical moments (U,x) concentrate with high prob-
ability around their expected values E(U, X ) when the num-
ber of samples d is large enough. Given a fixed realization x, a
microcanonical model will estimate a probability distribution
P such that samples & drawn from P satisfy (U,Z) ~ (Ux)
V¢ € L. Under mild assumptions, the maximum entropy dis-
tribution P is uniform [17].

Choice of representation. They key step for the success of a
maximum entropy models is to choose a representation {Uy } ¢
that captures the properties of X, and that can be computed
robustly. To keep the variance of estimates under control, we
measure the second-order variability of nonlinear representa-
tions that are Lipschitz continuous, i.e. such that

[(Uex = Upa')el|< Kl — 2. 4)

The Lipschitz condition (4) ensures that the variance of
second-order moments of U,z is bounded. In Sections 4
and 5 we propose explicit wavelet-based representations Uy
that capture different aspects of X.
Loss function. Let yy = (Uyx) be the empirical mean of
Uy, and let cov(Upz, Upx) = (Upx — pe, Upx — ppr) be the
empirical covariance with respect to mean py. The error be-
tween a generated sample & and the target = is measured by a
the loss function

E(x,2) = Z (cov(Upz, Upz) — COV(UZ:%,U@/Q))Q
(ee)ec
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The set C contains the indices of the informative elements of
the covariance that are used.

Gradient descent algorithm. Samples Z can be efficiently
drawn from the microcanonical model with a gradient descent
algorithm [17]. From an initial white Gaussian noise xg, the
algorithm computes approximations z,, through the iteration

(6)

Ty = Tp—1 — aVE(x,xp_1).

The loss & ensures that (Uyx,) — (Upx). The convergence
properties of this algorithm are studied in [17].

4. SCATTERING MOMENTS

4.1. Scattering representation

Wavelet transform. To analyze long-range-dependent pro-
cesses such as financial time series, it is crucial to separate the
variability at different scales. To that end, we use a wavelet
transform. Let ) be a mother wavelet, a band-pass filter with
J(t)dt = 0 that is well localized in both time and fre-
quency. A dyadic wavelet filter bank is obtained by scaling
¥ at scales 27: ¢;(t) = 277¢(279¢t) for 1 < j < J. Low-
frequency information not captured by wavelets is recovered
by a low-pass filter ¢ ; at scale 27. Wavelet coefficients of 2
are obtained through convolutions x * v; [18].

Scattering moments. Nongaussian processes such as
time series are characterized by well-localized sharp tran-
sitions (see Figs. 1 and 2) that yield sparse wavelet repre-
sentations. These are captured by first-order coefficients
<|‘T * wj1| *¢J> ~ <|{,C *¢j1|>'

First-order moments fail to capture the complex temporal
evolution of wavelet coefficients, which is lost in the average.
This information is recovered by second-order moments that
measure the variability of an iterated wavelet transform (|z x
¥j, | * j,) [18,19]. Thus, scattering moments are

Upx = |zxtj,| %1, withl = (ji,J2), (7)

where 1 < ji < jo < J. Note that U; satisfies (4) with
K = 1[18]. Only diagonal covariances cov(U; z, Ujx) are
informative, and thus C% = {{,¢' : £ = ('}.

4.2. Numerical results

Setup. The daily S&P 500 time series used for simulations
has d = 2'2 samples. 100 realizations of MRW were syn-
thesized with length d = 2'2, and parameters H = 0.5,
A = +0.05 and T = d. Morlet wavelets were used, with
1 voice per octave and J = 9 octaves. The L-BFGS-M algo-
rithm was used to perform the gradient descent, with a toler-
ance € = 10710, Results show averages over 100 reconstruc-
tions from S& P 500 time series, and 1 reconstruction for each
realization of MRW.

Multifractal random walk. Figure 3 (top) shows a recon-
structed realization of MRW. A comparison with Fig. 2 shows
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Fig. 3. MRW: scattering recontruction. Top: example
of reconstruction. Bottom, left to right: multifractal scaling
function ((q), histogram p(x), and leverage correlation L,
for the original MRW data (black) and reconstructions (red).

that the irregular, intermittent temporal structure is satisfacto-
rily captured by scattering moments. Further, Fig. 3 (bottom
row) shows the scaling function (, the histograms p and the
leverage L of the original and reconstructed signals. The esti-
mates for ( and p computed from reconstructions and orig-
inals are remarkably close, suggesting that a second-order
scattering representation captures well the heavy-tailed, mul-
tifractal nature of MRW.

Since the components B and wy in MRW are independent,
its leverage correlation is 0 and provides no information.

Let us emphasize that even though multifractal properties

are defined through high-order moments (see (2)), they are
completely recovered using only second-order scattering mo-
ments, confirming observations in [19].
Financial time series. Figure 4 (top) shows a reconstructed
realization of the S&P 500 daily returns. Comparison with
Fig. 1 again shows that the temporal intermittency and general
shape are correctly reflected. Inspection of the multifractal
properties and histograms in Fig. 4 (bottom left and right, re-
spectively) shows that reconstructions correctly capture both
statistical properties.

However, Fig. 4 (bottom right) shows that the scattering
representation completely fails to recover temporal asymme-
tries quantified by the leverage L: the estimated L is null
for all lags 7. Considering that scattering moments measure
Uz, Ugz) = (||x*1j, | *10j,|?), it becomes clear that they
are unable to capture temporal asymmetries between z(¢) and
x(—t) because the modulus looses all phase information.

5. PHASE HARMONIC MOMENTS

5.1. Phase-harmonic representation

Multiscale phase correlations. To capture temporal asym-
metries, it is necessary to use quantities that preserve their
phase, and to measure their interactions at different scales.
Measuring the correlation (z *1;, z *1);/) does not work: the
Parseval formula reveals that it is small since the supports of
vaj and ﬁj/ barely overlap. These issues can be overcome by
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Fig. 4. Financial time series: scattering recontruction.
Top: example of reconstruction. Bottom, left to right: mul-
tifractal scaling function ((q), histogram p(x), and leverage
correlation LT, for the original S&P 500 data (black) and re-
constructions (red).

resorting to phase harmonics, defined below [20].
Wavelet phase harmonics. Let ¢(z) denote the phase of
z € C. Wavelet phase harmonics are defined as [20]

VE € Z, [xxp;]F = |z xap;lethel@ ), (8)

Wavelet phase harmonics [z x 1;]* have thus the same mod-
ulus than z % );, but their phase has been accelerated by a
factor k.

The Fourier transform of = % v; is centered at frequency
w27 and has a support of size 3;277, where wy and 3, are
the central frequency and bandwidth of the mother wavelet.
The exponent k of [z x ¢;]* accelerates k times the phase of
xx1);, and thus the Fourier transform of [zx1;]" is centered at
frequency kwo2~7. In the particular case k = 0, [z x ¢;]° =
|z % ;| and the Fourier transform is centered at frequency
0. Assuming that the supports of the Fourier transforms of
|z * ;| and p(z * 1;) are ~ 277, then the exponent k
performs k convolutions in the Fourier domain, expanding the
support of the Fourier transform of [z x ¥\]* to ~ k3y277.
Phase-harmonic moments. Phase-harmonic moments are
defined as

Uz = [zxy]" with € = (5, k), ©)

Note that [20] shows that U [S satisfies Lipschitz condition (4).

Correlations (Ufz, U} z) are redundant and highly
sparse. The set C¥ defined by the following conditions
that yield nonzero, nonredundant and informative correla-
tions: i) j arbitrary, k > 1, ¥’ = 1 and j' = kj to correlate
variability at different scales, ii) j > j, k = k' = 0, to
correlate low-frequency envelopes, and iii) j > j’ arbitrary,
kE = 0, ¥ € {1,2,3} to correlate envelopes with coarse
scales. When k or k' are nonzero, these moments retain all
phase information, and are thus able to measure the effects of
temporal asymmetries at different scales.

1<5, < J

5.2. Combined microcanonical model

A phase-harmonic microcanonical model is obtained using
representation (9) in (5) to define the phase-harmonic loss

-5 0 5 -1 0 1 2 -20 0

Fig. 5. Financial time series: mixed recontruction. Top:
example of reconstruction. Bottom, left to right: multifractal
scaling function ((g), histogram p(x), and leverage correla-
tion L, for the original S&P 500 data (black) and reconstruc-
tions (red).

Er. Finally, the mixed loss that combines phase-harmonic
and scattering moments is defined as
SS (]J, 57)
ES (LE, 0)

Sp(.r, f)
SP(SC,O)

E(x, i) = (10)

5.3. Numerical results

Financial time series. Figure 5 (top) shows a reconstructed
realization of S&P daily returns using the combined micro-
canonical model. The temporal intermittency and general ir-
regularity are correctly captured. Fig. 5 (bottom right) further
shows that the addition of phase-harmonic moments improves
estimates of multifractal properties: the functions { for the
original and replicates are almost indistinguishable. The his-
tograms in Fig. 5 (bottom middle) also reproduce the originals
almost exactly.

Figure 5 (bottom right) shows the main benefit of the ad-
dition of phase-harmonic moments: the leverage effect is cor-
rectly captured. The leverage L(7) is found to be 0 for 7 < 0,
and negative for 7 > 0. Further , despite a clear bias, the dy-
namics of the recovered L(7) for 7 > 0 resembles an expo-
nential with a similar time constant as the original. These re-
sults clearly suggest that phase-harmonics moments succeed
in capturing temporal asymmetries in the data.

6. CONCLUSIONS

In this paper, we proposed a stochastic model to represent
intermittent time series with nongaussian heavy-tailed distri-
butions, long-range correlations, and temporal asymmetries.
We showed that it provides a good model for financial time
series such as the S&P 500 daily returns. Our results remark-
ably show that second-order scattering moments are enough
to capture the high-order statistics typical of multifractal pro-
cesses. Further, our results show that phase-harmonic mo-
ments correctly capture the phase relationships lost by scat-
tering moments, and are able to reproduce temporal asymme-
tries such as the leverage effect.
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