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Abstract

In this article, we characterize the dynamics and absorption properties of a class
of stochastic differential equations around singular points where both the drift
and diffusion functions vanish. According to the Hölder coefficient α of the dif-
fusion function around the singular point, we identify different regimes: a regime
where the solutions almost surely reach the singular point in finite time, and
regimes of exponential attraction or repulsion from the singular point. Stability
of the absorbing state, large deviations for the absorption time, existence of sta-
tionary or quasi-stationary distributions are discussed. In particular, we show
that quasi-stationary distributions only exist for α < 3/4, and for α ∈ (3/4, 1),
no quasi-stationary distribution is found and numerical simulations tend to show
that the process conditioned on not being absorbed initiates an almost sure ex-
ponential convergence towards the absorbing state (as is demonstrated to be
true for α = 1). These results have several implications in for the understand-
ing of stochastic bifurcations, and we completely unfold two generic situations:
the pitchfork and saddle-node bifurcations, and discuss the Hopf bifurcation in
appendix.
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1. Introduction

A large class of phenomena can be described using non-linear dynamical, in
such distinct domains as economics, physics or biology. Investigating the impact
of noisy perturbations on such systems is of great interest, and is currently an
active field of research. In the last decades, it has been shown in many different
areas that applying noise on a non-linear system can lead to many counter-
intuitive phenomena, such as noise-induced stabilization [2], oscillations [31],
synchronization [28, 18] or transport [30, 13] and stochastic resonance [16, 32].
From a mathematical perspective, understanding the interplay between non-
linearities and noisy perturbations is a great challenge, with many applications,
such as the design of early-warning signals predicting critical transitions [22].
Several tools have been introduced, ranging from Lyapunov functionals, sta-
tionary solutions of Fokker-Planck equations and Feller scale functions (see
e.g. [19, 9] for an extensive account on these concepts), the theory of random
dynamical systems (RDS) [1, 11, 3, 5, 4, 21], stochastic bifurcations and nor-
mal forms [26] the study of moment equations [35, 36] or multiscale stochastic
methods for slow-fast systems [6, 7, 29].

We focus here on the dynamics of stochastic differential equations (SDE)
in which both the drift and the diffusion functions vanish at some particu-
lar absorbing points, also called singular points. Such SDEs arise in several
applications including diffusion approximations of population models in ecol-
ogy [8, 24], neurosciences [27], and mathematical finance [14, 10]. Beyond the
classical multiplicative noise case (geometric Brownian motion), a number of
state-dependent diffusion functions arise involving generally power functions.
The question we address is how the interplay between the drift and the shape of
the diffusion function affects the behavior of the system. In particular, such sys-
tems present an absorbing state, whose qualitative properties will be shown to
tightly depend on the local behavior of the drift and diffusion functions around
this equilibrium. Moreover, the choice of a vanishing diffusion coefficient pro-
vides a framework to study subtle competitions between the drift and the noise,
leading to a rich and generic phenomenology.
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In detail, we analyze a general one dimensional stochastic differential equa-
tion

dxt = f(xt) dt+ γ(xt) dWt

where W =
(
Wt

)
t≥0

is a Brownian motion defined on a complete probability

space (Ω,F ,P) endowed with the natural filtration
(
Ft
)
t

of W . We are inter-
ested in stationary solutions of this equation, defined as the solutions whose
probability distribution is invariant in time. We assume that there exists a
singular point x∗ such that f(x∗) = γ(x∗) = 0. The system has a trivial solution
distributed as a Dirac measure localized at the singular point x∗, the absorbing
state (or absorbing boundary). We shall investigate the stochastic stability of
this absorbing state, probabilities of absorption and the behavior of the system
prior from absorption (or conditioned on not hitting the absorbing boundary).
Possible stationary distributions of the process conditioned on not hitting the
absorbing boundary are called quasi-stationary solutions (see Definition 1 below
for a more rigorous definition, or [8] and references therein). In contrast to the
case of ODEs, there are at least three different notions of stochastic stability:

1. The almost sure exponential stability defined by the property

limsup
t→∞

1

t
log |xt − x∗| < 0 a.s.

for any initial condition x0 ∈ R. The almost sure exponentially instability
defined by the property

liminf
t→∞

1

t
log |xt − x∗| > 0 a.s.

for any initial condition x0 ∈ R (see e.g. [25]). This definition implies a
strong notion of stability close to the usual exponential stability property
of deterministic dynamical systems: almost all trajectories exponentially
fast converge to or diverge from x∗. In our stochastic context, this notion
can appear quite restrictive, and we will hence also discuss a weaker notion
of stability:

2. The stochastic stability (or stability in probability), defined by the prop-
erty that for all µ ∈ (0, 1) and r > 0 there exists δ depending on µ and r
such that

P({|xt − x∗| < r ∀t ≥ 0}) ≥ 1− µ

whenever |x0−x∗| < δ and otherwise it is said to be unstable in probability.
The solution x∗ is stochastically asymptotically stable (or asymptotically
stable in probability) if it is stable in probability and for every µ ∈ (0, 1)
there exists η0 depending on µ such that

P( lim
t→∞

|xt − x∗| = 0) ≥ 1− µ

whenever |x0 − x∗| < η0.
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3. The stability (resp. instability) in the first approximation of a stationary
solution X̄ [19, Chap. 7.1], notion widely used in the RDS theory [1], con-
sists in that the identically zero solution of the linearized equation around
X̄ is almost surely exponentially stable (resp. unstable). This criterion
will be chiefly used when dealing with non-Dirac stationary solutions in
the applications section.

To be more specific, we now consider that x∗ = 0 and assume that f(x) is
a smooth function, which is often the case in applications and a basis of the
deterministic bifurcation theory. In detail, we assume that f(x) = λx + g(x)
where g(x)/x→ 0 when x→ 0 (i.e. f ′(0) = λ), and hence consider the following
class of SDEs on R:

dxt = (λxt + g(xt)) dt+ γ(xt)dWt (1)

with γ(x) ∼ σ|x|α at x = 0. The properties of the absorbing state will be
described as a function of the local behavior of g and γ around 0. This analysis
will allow for instance to have a better understanding of the local and global
behavior of diffusion in double-well potentials as represented in figure 1.

The behavior of the solutions to such one-dimensional singular SDEs has
been intensively studied. In particular, the bifurcations of such systems with
smooth diffusion functions was analyzed in the context of RDS theory in [11, 1,
5]. These methods were developed in the context of Stratonovich SDEs (in which
case the diffusion function appears in the effective drift in the Itô formulation).
The theory did not addressed cases where the diffusion is only Hölder continuous
at the singular point. In another context, mainly using stochastic calculus
theory [34], existence, uniqueness and type of singular points was address in [9],
and the study includes the case of power drift and diffusion functions.

In the present article, we shall consider both stability and absorption prop-
erties for a general class of singular SDEs, and aim at characterizing precisely
the absorption time and global behavior of the solutions. New mathematical
results proved here include almost sure absorption at the singular points and
large deviations estimates of the absorption time, characterizations of possible
stationary distributions, existence or non-existence of quasi-stationary distri-
butions, and dependence of the stability of singular points on the local Hölder
coefficient of the diffusion function. The methodology is also extended to the
case of the generic saddle-node bifurcation for which we completely describe the
behavior as a function of drift and diffusion parameters.

The paper is organized as follows. We start by analyzing in detail in section 2
the behavior of the solution of a general diffusion equation (1). We investigate
the existence, uniqueness and blow up of the solutions. The stochastic stability
of the singular point is characterized and the absorption time at the singular
point is shown to be almost surely finite if and only if α < 1. In that case, we
show that quasi-stationary distributions exist when α < 3

4 . In the case α ≥ 1, we
study the existence of other stationary distributions. Application and extensions
to the stochastic pitchfork and saddle-node bifurcations is discussed in section 3,
and universality properties of these behaviors is characterized.
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noise vanishes at 0

Noise-induced 
stabilization of

the saddle point 

Fluctuations
around the 

stable equilibrium

Figure 1: Stability of a singular saddle point in double-well potential perturbed by power
diffusion coefficient. A particle located at the saddle point remains steady. If a small per-
turbation is applied, two scenarii are possible according to the local behavior of γ(x) (see
theorem 1): either noise brings back the particle to the saddle point (left) or the particle falls
into the well and fluctuates without ever reaching the saddle point (right).

5



2. General Theory

In this section we analyze the behavior of the solutions of a general equa-
tion (1) under a few assumptions on the function g and γ. We assume that g is lo-
cally Lipschitz continuous and γ satisfies, for some Borel function ρ : R+ 7→ R

+

with
∫

0+ dx/ρ(x) = ∞, that |γ(x) − γ(y)|2 ≤ ρ(|x − y|). This imposes in par-
ticular the fact that γ is locally Hölder 1/2. We moreover make the following
assumptions on the behavior of g and γ at 0 and ∞:

(H1). g(x) ∼ µx1+κ at x = 0, for some µ ∈ R and κ > 0

(H2). g(x) ≤ −νx1+β when |x| ≥ A for some A > 0, for ν ∈ R and β > 0.

(H3). γ(x) ∼ σxα at x = 0, for some σ ≥ 0 and α > 0

(H4). At infinity, γ is such that

• if ν > 0, γ2(x) ≤ d |x|1+β for some d > 0

• if ν < 0, γ2(x) ≥ d |x|δ for some d > 0 and δ > 2 + β.

(H5). γ(x) only vanishes at x = 0

Remark. In the above notations, for x < 0, xa shall be understood as −|x|a. Away

from the singular point, we shall assume that the maps f and g are smooth (at least

Lipchitz continuous).

Assumptions (H1) and (H3) describe the behavior of the solutions close
from zero and will govern the stability of the singular point 0. The assump-
tions (H2), (H4) and (H5) are global properties that will be chiefly used for
explosion matters, and existence of stationary distributions. Such assumptions
are generally not necessary in the deterministic case: indeed, in the local un-
folding of a bifurcation, the presence of a non-zero fixed point implies the local
existence of a manifold of fixed points under some non-degeneracy conditions.
However, in the stochastic case, as soon as the singular point (where noise
vanishes) is unstable, the system will visit very regions very remote from the
singular point with positive probability, and these latter conditions will come
into play. We observe that depending on the sign of ν, we are making different
assumptions on γ. When ν > 0, the drift has a contracting effect and prevents
from blowing up, allowing a large class of diffusion coefficients provided that
they do not diverge too fast. In contrast, when ν < 0, the solutions blow up in
finite time in the absence of noise. In that case, a stringent assumption on the
divergence of γ is necessary (see Proposition 1).

The stochastic process distributed as a Dirac at zero (Xt = 0 a.s.) is solution
of the equation whatever the parameters. Studying the stationary solutions and
their stability will make essential use of the differential operator L associated
with Itô’s representation of the diffusion acting on twice differentiable functions
V ∈ C2(R,R):

LV (x) = (λx+ g(x))V ′(x) +
1

2
γ(x)2V ′′(x).
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2.1. Existence and uniqueness of solutions

The first question arising with equation (1) is its well-posedness in this con-
text where the diffusion coefficient is singular: for α < 1, the diffusion coefficient
is not Lipschitz continuous at 0, and for α > 1 it does not satisfy the linear
growth condition generally imposed for the existence and uniqueness. Based on
existing results [34], we prove the following property:

Proposition 1. For any α ∈ [ 1
2 ,∞), there exists a unique strong solution to the

equation (1). Under the assumptions (H2) and (H4), the solution never blows
up in finite time.

Proof. The proof uses classical results of stochastic analysis that can be found
in [34]. We provide a short description of the proof for the sake of completeness.

For α ≥ 1 is very classical. First, both the drift and diffusion functions
are locally Lipschitz continuous, implying strong uniqueness of solutions (see
e.g. [34, Chap. IX.2]). Second, the drift and the diffusion functions are locally
bounded, ensuring the existence of solutions up to an explosion time.

For α < 1, the linear growth condition is clearly satisfied, but the diffusion
coefficient is not Lipschitz at 0. Existence and uniqueness was proved in [34,
theorem IX.3.5] based on the properties of the local time at zero of the diffusion
for α ≥ 1

2 and non-uniqueness of solutions for α < 1
2 .

Explosion properties are investigate through Feller’s test (see [20, Proposi-

tion 5.22.]). The function λx+g(x)+1
γ(x)2 is locally integrable on both the intervals

(−∞, 0) and (0,∞). We consider the interval (0,∞) for instance (the same
principle applies for the interval (−∞, 0)), and for some c > 0, we define the
scale function:

p(x) :=

∫ x

c

exp

(
−2

∫ y

c

λξ + g(ξ)

γ2(ξ)
dξ

)
dy.

The process almost surely never diverges before possibly reaching zero as soon
as p(x) is diverges at ∞. At infinity, we have λξ + g(ξ) ∼ g(ξ) and:

• for ν > 0, we have −2 g(ξ)
γ2(ξ) ≥

2ν
d .

• for ν < 0, we have −2
∫ y
c

g(ξ)
γ2(ξ) ≥

2ν
d(2+β−δ) (y2+β−δ − c2+β−δ).

In both cases, assumption (H4) implies that the integrand is lower bounded at
infinity, hence p(x)→∞ when x→∞. We thus conclude that the process does
not blow up in finite time in these cases, which ends the proof.

2.2. Stability of δ0

We now address the stability of the equilibrium δ0, and prove the following:

Theorem 1. Let us denote by δ0 the stationary solution Xt = 0 a.s. for all t.
We have:
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• For α < 1, δ0 is asymptotically stable in probability whatever λ ∈ R and
σ 6= 0.

• For α = 1, δ0 is:

(i). asymptotically stable in probability for λ < σ2

2 . Moreover, if g(x) =
−µx1+κ for µ, κ > 0 and γ(x) = σ x, the stationary solution δ0 is

almost surely exponentially stable for λ < σ2

2 .

(ii). unstable in probability for λ > σ2

2

• For α > 1, δ0 is :

– stable in probability for λ < 0

– unstable in probability for λ > 0

Remark. The case α ≥ 1 was investigated using tools from RDS theory in the

Stratonovich formalism and speed functions in [1, 11]. Our theorems extends this the-

ory to the case α < 1 and uses Lyapunov functionals and stability theory for stochastic

equations allowing to quantify the exponential speed of convergence.

Proof. The case α = 1 was already understood in the context of stochastic bi-
furcations, and proofs of the result can be found in [2, 25]. The cases α 6= 1
are simple applications of Lyapunov functional theory. The proof proceeds as
follows:
Case α < 1: Let us consider V (x) = xα as a Lyapunov functional for the dy-
namics. This function is clearly C0

2 (R), i.e. it is twice continuously differentiable
except at x = 0. Moreover, we have:

LV (x) = αxα−1(λx+ g(x))− α(1− α)

2
γ(x)2xα−2

Since we assume that α < 1 and g(x)/x → 0 at 0, the leading term close to 0
is of order −α(1− α)/2 σ2x3α−2 which is strictly negative for sufficiently small
x. More precisely, there exists r > 0 such that V ∈ C0

2 (Ur) where Ur is the
open ball of radius r and such that LV < 0 for all x ∈ Ur. Moreover, for any
ε such that 0 < ε < r we have V (r) > 0 and LV < −cε < 0 for all r > x > ε.
Theorem V.4.1 of [19] therefore applies and concludes the proof of the stability
in probability of the solution δ0 whatever the parameters λ ∈ R, σ > 0 and
α ∈ [1/2, 1).

Case α = 1: We start considering the case λ < σ2/2 and define η = 1
2−

λ
σ2 >

0. The Lyapunov function V : x 7→ xη satisfies:

LV (x) = ηxη(λ+
1

2
(η − 1)γ2(x)) + ηxη−1 g(x).

Under assumption (H1) we have x g(x) ∼ µx2+κ, hence is equivalent, close from
zero, to

ηxη
(
λ+

(η − 1)

2

γ2(x)

x2

)
=

1

2
(λ− σ2

2
)ηxη.
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Since (λ−σ2/2) < 0, the same argument as in the case α < 1 ensures asymptotic
stability of δ0 in probability for λ < σ2/2. If we now further assume g(x) =
−µx1+κ and γ(x) = σ x, considering V (x) = x2, we have:

• LV (x) = (2λ+ σ2)x2 − 2µx2+κ ≤ (2λ+ σ2)V (x),

• |V ′(x)σ x|2 = |2σx2|2 = 4σ2V (x)

Using the stochastic stability theorem [25, Theorem 3.3], we deduce that:

limsup
t→∞

1

t
log |X(t)| ≤ −4σ2 − 2(2λ+ σ2)

4
= λ− σ2

2
almost surely.

By definition of the almost sure exponential stability, we conclude that the

solution 0 is almost surely exponentially stable for any λ < σ2

2 .
Let us now deal with the case λ > σ2/2. We define V (x) = − log(x). This

function tends to infinity as x→ 0 and belongs to C0
2 (R). Moreover,

LV (x) = (−λ+
γ(x)2

2x
) +

g(x)

x
.

which is equivalent at zero to −λ + σ2/2 < 0. Hence there exists r > 0 such
that LV ≤ 0 for any x < r, and moreover we have for any ε > 0 and r > x > ε,
V (x) ≥ 0 and LV (x) < −cε < 0. Theorem V.4.2 of [19] applies and ensures
that the solution δ0 is not stable in probability.

Case α > 1: For V (x) = x2 around zero, we have:

LV (x) = 2λx2 + 2xg(x) + γ(x)2

and under the assumption that g(x) ∼ µx1+κ at zero and α > 1, the term LV
is equivalent to 2λx2 and hence locally has the sign of λ. For λ < 0, we can
directly apply theorem V.4.1 of [19]. For λ > 0, we use V (x) = − log(x) again
and conclude that 0 is not stable in probability.

2.3. Absorption time

We know that Xt = 0 a.s. is a stationary solution of the SDE. It is an
absorbing state of the diffusion, i.e. as soon as the solution reaches the singular
point, the solution is almost surely identically stuck at the singular point for
the whole subsequent evolution. We are now interested in the absorption prob-
ability, namely the probability of reaching zero in finite time. We distinguish
between the cases α < 1 and α ≥ 1.

2.3.1. Case α < 1

Proposition 2. Under assumptions (H1)-(H5), the first hitting time τ0 of zero
of the solution of

dxt = (λx+ g(x)) dt+ γ(x)dWt

is almost surely finite for any α < 1 and σ > 0. This is also the case for ν = 0
and λ < 0.
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Proof. In order to establish this property, we use a sufficient condition derived
from Feller’s test for expositions and evidence the almost sure finite exit time
of the interval ]0,∞[. The finiteness of the exit time of ]0,∞[ will readily
imply the finiteness of the hitting time of 0, since the process is almost surely
bounded for all finite time as proved in proposition 1 under the assumptions of
the proposition.

Let us define the interval I = (0,∞), and let c ∈ I arbitrarily chosen. Under
assumption (H5), we have that for all x ∈ I, the diffusion coefficient is always
strictly positive, hence the function (1 + |λx+ g(x)|)/γ(x)2 is locally integrable
on I. The finiteness of the exit time of the process from the interval I can be
established through the analysis of Feller’s scale functions. For convenience, we
introduce the function:

G(x) =

∫ x

c

(λξ + g(ξ))

γ2(ξ)
dξ.

Feller’s scale functions written as a function of G read:
p(x)

def
=
∫ x
c

exp {−2G(y)} dy
m(dx)

def
= 2 exp(2G(x))

γ2(x) dx

v(x)
def
=
∫ x
c

(p(x)− p(y))m(dy)

We prove that (a) limx→∞ p(x) = ∞ and (b) limx→0+ v(x) < ∞. The
property (a) has been addressed in the proof of proposition 1. We hence only
need to prove the property (b) which is slightly more subtle. The function v(x)
is indeed defined as an integral, which is well behaved except possibly at x = 0.
Close to this point, we have:

G(y)−G(z) =

∫ y

z

λξ + g(ξ)

γ2(ξ)
dξ

∼0+

λ

2σ2(1− α)
(y2(1−α) − z2(1−α)) +

µ

σ2φ
(yφ − zφ)

with φ = 2 + κ − 2α and this function is smooth and bounded close to zero.
Let us denote by M the supremum of |G(y)−G(z)| on [0, c], and by F (x, y) the
function defined for 0 < y ≤ x ≤ c:

F (x, y) =

∫ x

y

exp(2(G(y)−G(z))) dz ≤ e2M (x− y).

It is then clear that:

v(x) = 2

∫ x

c

F (x, y)

γ2(y)
dy ≤ 2

∫ x

c

e2M (x− y)

γ2(y)
dy

which is integrable at zero since the integrand is of order x1−2α and hence
integrable at zero under the condition that α < 1. By application of Feller’s
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test for explosion [20, Prop. 5.32 (iii)] we conclude that if S denotes the exit
time of the process from the interval I, we have P(S < ∞) = 1. Moreover,
we have seen in proposition 1 that under the assumptions of the proposition,
the process is almost surely bounded. We hence conclude that necessarily the
process reaches 0 in finite time and is absorbed (this is also a direct consequence
of Feller’s test for explosion [20, Prop. 5.22] under the condition that p(x)→∞
when x→∞ if p(x) > −∞ when x→ 0+, which is a simple consequence of the
above estimates).

Let us now deal with the case ν = 0 and λ < 0, we have G(x) = λx2(1−α) +C
for some constant C. The same reasoning as above ensures that p(x) tends to
infinity as x → ∞. Demonstrating that v(x) is bounded at zero did not use
the fact that ν 6= 0 and hence applies in the present case. We conclude that
P (S <∞) = 1, hence the process almost surely reaches 0 in finite time.

We hence proved that for α < 1, the solutions almost surely hit zero in
finite time, where they stay trapped for the subsequent dynamics, as soon as
the diffusion coefficient σ is nonzero.

When σ = 0, this is never the case: in the case λ < 0, the solutions of
the related ODE converge exponentially fast towards zero but never actually
reach it, and in the case λ > 0, the solutions escape from zero exponentially.
It is hence of interest to analyze the behavior of the system in the small noise
limit. We focus on the case λ > 0 (in which case 0 is unstable in the noiseless
system and a.s. reached in finite time in the stochastic case) and use Freidlin
and Wentzell large deviations theory [15] to analyze in detail the behavior of the
system in the small noise limit. In order to obtain precise quantitative estimates,
we will assume that g(x) = −µx1+κ with κ > 0 and µ > 0 and γ(x) = σ|x|α,
corresponding to a double-well potential. Note that the method developed here
does not depend on the choice of g(x).
Remark. The Freidlin and Wentzell theory [15] was developed for constant diffusion

coefficients. Extensive works have been performed to generalize this result, and for our

purposes, we may cite [33] who showed the validity of Freidlin and Wentzell estimates

for continuous and unbounded coefficients with possibly singular diffusion coefficients,

assuming that the drift λx + g(x) and γ(x)2 Lipschitz-continuous, which is the case

under our current assumptions.

We analyze the properties of the absoption time of the system with initial
condition chosen as the fixed point of the noiseless system:

τ0 := inf

{
t > 0; Xt = 0 | X0 =

(
λ

µ

)1/κ
}

In the case α < 1, one can expect from the large deviation theory that E [τ0]

becomes exponentially large as σ → 0, i.e behaves in the leading order as eV/σ
2

where V is a positive constant. More precisely, we have:

11



Proposition 3. For all 1
2 < α < 1 and λ > 0:

lim
σ→0

σ2 logE [τ0] = λ

(
λ

µ

)2(1−α)/κ [
1

2(1− α)
− 1

2(1− α) + κ

]
> 0

Proof. By application [12, Theorem 5.7.11.], the problem is reduced to compute
at the boundary x = 0 the quasipotential U(x), solution of the Hamilton-Jacobi
equation:

(λx− µx1+κ)U ′(x) +
x2α

2
(U ′(x))2 = 0 (2)

with boundary condition U((λµ )
1
κ ) = 0. That is, one has to compute:

U(x) =

∫ (λµ )
1/κ

x

λu− µu1+κ

u2α
du (3)

Simple algebra yields the expression:

U(0) = λ

(
λ

µ

)2(1−α)/κ [
1

2(1− α)
− 1

2(1− α) + κ

]
(4)

As a consequence, for α < 1 fixed, the aborption time becomes exponentially
large, which explains the transition between the regime σ > 0 (where the system
a.s. hits zero) and σ = 0. A critical boundary of this domain is the point
α = 1: in that case, the system a.s. never hits zero in finite time as shown in
section 2.3.2.

In particular, proposition 3 ensures that the convergence as α → 1− with
λ > 0 fixed displays a super-exponential time behavior:

lim
α→1−

lim
σ→0

σ2 logE [τ0] =∞

Going deeper into the analysis of the above convergence allows to understand
more precisely what happens in the critical parameter region where both α→ 1−

and λ → 0+, in the limit of small noise σ → 0. Such a “blow up” reveals the
following picture around the point (α, λ, σ) = (1, 0, 0) in parameter space:

Corollary 1. Assume that λ→ 0+ and α→ 1− such that

λ

(1− α)
→ c ∈ [0,∞] (5)

Then, one has the following three regimes:

• if c = 0, the absorption time is sub-exponential :

lim
α→1,λ→0

lim
σ→0

σ2 logE [τ0] = 0

12



• if 0 < c <∞, the absorption time is exponential :

lim
α→1,λ→0

lim
σ→0

σ2 logE [τ0] =
c

2µ2(1−α)/κ

• if c =∞, the absorption time is super-exponential :

lim
α→1,λ→0

lim
σ→0

σ2 logE [τ0] =∞

where lim
α→1,λ→0

is constrained by Eq. (5).

Proof. This proposition is a consequence of the analysis of the different asymp-
totic regimes of the critical exponent c∗ obtained in proposition 3:

c∗ = λ

(
λ

µ

)2(1−α)/κ [
1

2(1− α)
− 1

2(1− α) + κ

]
.

The leading term in the considered limit is proportional to λ1+2(1−α)/κ/(1−α).
A series expansion provides the following expression:

c∗ ∼ 1

2µ2(1−α)/κ
(

λ

α− 1
+

2

κ
λ log(λ)) +O(λ log(λ)2(1− α)).

The different regimes identified in the corollary immediately follow from the
analysis of the limits of this exponent as λ → 0+ and α → 1− subject to the
condition (5).

Remark. Note that the regimes do not depend on µ or κ qualitatively and the

property is purely local: as λ goes to zero, the integration range becomes increasingly

small. The property is hence valid for equation (1) with function g(x) equivalent at

zero to −µx1+κ. However, the asymptotic exponential divergence rate quantitatively

depends on the local behavior of the flow close to zero, as observed in the case 0 < c <

∞.

From a dynamical systems viewpoint, this type of solutions corresponds to
a relatively sharp convergence towards the equilibrium. Indeed, the dynamics
stops at the almost sure hitting time of the singular point and the whole sub-
sequent dynamics is deterministic and constant. This will not be the case for
more regular diffusion coefficients (α ≥ 1) as we now show.

2.3.2. For α ≥ 1 the solution a.s. never reaches 0

We now deal with the case α ≥ 1 and show that in contrast to the case α < 1,
even when δ0 is stable in probability or almost surely exponentially stable, the
solutions of the SDE almost surely never reaches zero.

Theorem 2. Let α ≥ 1. Then for any x0 ∈ R we have

P
[
∀t ≥ 0 , xt 6= 0

]
= 1

That is, almost any sample path starting from a non-zero initial condition will
never reach zero.

13



Proof. The result is already known for α = 1 (see e.g. [25]). We extend the
demonstration to our general case. Denote by τ the first hitting time of zero of
the process with initial condition x0 6= 0 at t = 0. Assuming that the conclusion
is false, we can find a pair of constants T > 0 and θ > 1 sufficiently large such
that P (B) > 0 where B is defined as:

B = {τ ≤ T and |x(t)| ≤ θ − 1 for all t ≤ τ}

Moreover, under the assumption α ≥ 1, both the drift and diffusion functions
are locally Lipschitz-continuous, hence there exists a positive constant Kθ such
that:

|λx+ g(x)| ∨ γ(x) ≤ Kθ|x| for all |x| ≤ θ, t ≤ T.
Let now V (x) := |x|−1. We have for 0 < |x| ≤ θ and t ≤ T

LV (x) ≤ Kθ(1 +Kθ)V (x)

Let us now define τε = inf{t ≥ 0; |xt| /∈ (ε, θ)}. This is a stopping time, so
by Itô’s formula and the optimal sampling theorem with the bounded stopping
time τε ∧ T , we have:

E[e−Kθ(1+Kθ)(τε∧T )V (xτε∧T )] = V (x0)+

+E
[ ∫ τε∧T

0

e−Kθ(1+Kθ) s[−Kθ(1 +Kθ)V (xs) + (LV )(xs)] ds
]

≤ |x0|−1

We know that for any ω ∈ B, the time τε is smaller than T and moreover that
xτε = ε by definition of B, hence we have:

|x0|−1 ≥ E[e−Kθ(1+Kθ)(τε∧T )V (xτε∧T )] ≥ E
[
e−Kθ(1+Kθ)T ε−1

1B

]
i.e.

P(B) ≤ ε|x0|−1eKθ(1+Kθ)T

This inequality is true whatever ε (we recall that the definition of B did not
involve ε), hence valid in particular when ε is arbitrarily small, and necessarily
P(B) = 0 which contradicts the definition of B.

2.4. Stationary and quasi-stationary solutions

We are now interested in identifying possible stationary solutions. We al-
ready mentioned that the null stochastic process (distributed as a Dirac delta
measure at 0) is always a stationary solution of the system. Moreover, for α < 1,
we have shown that the process is almost surely absorbed at zero in finite time.
This property prevents from the existence of any stationary solution, and as
far as the permanent dynamics is concerned, it is perfectly characterized by the
absorption property. In order to further describe the behavior of the solutions,
one may wonder how the solutions that did not yet reach zero are distributed.
Stationary solutions of the process conditioned on never hitting zero are called
quasi-stationary distributions:

14



Definition 1. A quasi-stationary distribution p for the process (xt)t≥0 is a

probability measure supported on I = (0,∞) or (−∞, 0) satisfying, for x0
law
= p

and all t ≥ 0

P(xt ∈ A
∣∣ τ0 > t) = p(A) ∀A ∈ Borel (I)

In the case γ(x) = σ|x|α with α < 3/4, we can show that there exists a
quasi-stationary distribution that attracts exponentially fast the conditioned
process. In detail, we have:

Proposition 4. Let us assume that ν > 0, g is differentiable, g′ is bounded at
zero and smaller than Cx2β for some C ∈ R at infinity, that assumptions (H1)-
(H5) hold and α ∈ [1/2, 3/4). The process conditioned on never reaching zero
and with a bounded initial distribution converges exponentially fast towards a
probability measure p± for any positive (resp. negative) initial condition. These
are called quasi-stationary solutions, or Yaglom limit.

Proof. We apply a result due to Cattiaux and collaborators [8] in the domain
of diffusion models in population dynamics. In their article, they consider a
diffusion of type:

dXt = dBt − q(Xt) dt

under a few conditions on q. Our problem can be brought to their framework
changing variables and considering: Xt = x1−α

t /(σ(1−α)). Itô’s formula allows
putting our equations in that form, with

q(x) = − 1

σ
x−αf(x) +

α

2(1− α)

1

x

and where f(x) = λx+ g(x) and Z = (σ(1− α)x)1/(1−α). Under the conditions
that (i) the first hitting time of zero is almost surely finite and (ii) that the con-
ditions: ∆ = − infy∈(0,∞) q

2(y)−q′(y) <∞ and limy→∞ q2(y)−q′(y) =∞, they
show that the spectrum of the Kolmogorov backward equation (for the related
operator L) has a purely discrete spectrum with no zero eigenvalue. Moreover,
they show that a rescaled version of the related eigenfunction is integrable and
exponentially attract all initial conditions under the conditions:∫ 1

0

1

q(y)2 − q′(y) + ∆ + 2
e−G(y) dy <∞ (6)

with G(y) =
∫ x

1
2q(y) dy,∫ ∞

1

e−G(y)dy <∞ ,

∫ 1

0

xe−G(x)/2dx <∞ and

∫ ∞
1

eG(y)

∫ ∞
y

eG(z) dzdy <∞

(7)
In order to apply their result, we demonstrate that all these conditions are

satisfied in our framework. First of all, under the condition α < 1 and ν > 0,
we showed that the process xt solution of (1) almost surely reach zero in finite
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time (proposition 2). This is hence also the case of Xt since (1−α) > 0 in that
case. Moreover, the derivative of the function q(x) reads:

q′(x) = αZ−1f(Z)− f ′(Z)− α

2(1− α)

1

x2
.

Around zero, because of our assumptions on g, we have:

q(x) ∼ α

2(1− α)

1

x
and q′(x) ∼ − α

2(1− α)

1

x2

and hence

q2(x)− q′(x) ∼x→0+

α(2− α)

4(1− α)2

1

x2

which tends to infinity as x→ 0+. At x =∞, we have:

q2(x)− q′(x) ≥ µ2

σ2
(1− ε)Z2(1−α)+2β

for any ε > 0 and hence tends to infinity when x → ∞. In particular, ∆ =
− infy∈(0,∞) q

2(y)− q′(y) <∞
Let G(x) =

∫ x
1

2 q(y) dy. We now show that the condition (6) is satisfied.

At infinity, q(x) is greater or equal to C ′x1+β/(1−α) with C ′ > 0. It is then easy

to show that limx→∞
G(x)
x =∞. Moreover, we have

A := lim
x→0+

(
G(x)− α

1− α
log(x)

)
∈ (−∞,∞).

Therefore, near zero, the integrand involved in the expression of Q(x) is pro-
portional to y2− α

1−α . Under the condition α < 3
4 , condition (6) holds. Showing

that condition (7) is valid is straightforward at this point: G grows at least
linearly at ∞ ensuring that

∫∞
1
e−G(y)dy < ∞. Moreover, around zero, the

function xe−G(x)/2 is of order x1− 1
2

α
1−α which is integrable at zero for α < 4

5 ,
hence in particular for α < 3

4 . The main results of [8] (namely their theorem
5.2, proposition 5.5, corollaries 6.1 and 6.2) apply, and ensure the existence
and uniqueness of a quasi-stationary distribution attracting exponentially fast
the law of the diffusion conditioned on not hitting zero with initial laws having
bounded support.

Remark. The above proposition ensures existence of a quasi-stationary solution
for α < 3/4, using a sufficient condition for existence of such measures, hence does
not preclude existence of quasi-stationary distributions for α ∈ [3/4, 1). Numerical
explorations of such system tend to show that the bound α = 3/4 is actually optimal.
For instance, Figure 2 shows that the solutions to the stochastic subcritical pitchfork
equation:

dxt = (λx− x3) dt+ σxαt dWt (8)

do present invariant distributions of the process conditioned on not hitting zero for
α < 3/4, but for α > 3/4, the distribution does not reach a stationary state but
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Figure 2: Distribution (ordinate truncated for legibility)of the trajectories that did not reach
zero in the subcritical pitchfork model (8) with λ = −0.5, σ = 0.5 different values of α,
computed at 6 times. (a) α = 0.6: stabilization on a quasi-stationary distribution that do not
depend on time, (b) α = 0.85: the repartition varies as a function of time and all trajectories
approach zero, arguing for the non-existence of quasi-stationary distribution. Simulations
were done using a particle method with 100 000 particles, using the Euler-Maruyama scheme
with dt = 0.01.

tends to approach the stable solution δ0 (this is also what happens for α = 1 when no
absorption is present but an a.s. exponential convergence occurs).

Let us now deal with the general case with diffusion coefficient γ(x) and
α ≥ 1. In that case, the process is almost surely never absorbed at zero. Possi-
ble stationary solutions with smooth probability density function p with respect
to Lebesgue’s measure satisfy the forward Kolmogorov (or Fokker-Planck) equa-
tion:

d

dx

(
(λx+ g(x))p(x)− 1

2

d

dx

(
γ(x)2p(x)

))
= 0. (9)

i.e.

(λx+ g(x)− γ′(x)γ(x))p(x)− 1

2
γ(x)2p′(x) = K

for some K ∈ R. If we can find solutions to these equations subject to the
conditions p(x) ≥ 0 for all x ∈ R and

∫
R
p(x) dx = 1 (acceptable solutions), then

these are probability density functions of stationary solutions of the diffusion
equation. For simplicity, we consider that assumption (H5) is valid, i.e. γ(x)
only vanishes at x = 0. In that case, since δ0 is a solution to the SDE (1),
stationary solutions will either have support on R+ or R−. In the case where
the dynamics has additional singular points, the Kolmogorov equation will define
solutions in each interval delimited by the singular points (see section 3.2). The
Kolmogorov equation is a linear ordinary differential equation with constant
source term. The homogeneous solutions (with K = 0) is given by:

p0(x) = Cγ−2(x) exp

(
2

∫ x

1

(
λy

γ(y)2
+

g(y)

γ(y)2
) dy

)

17



defined for x 6= 0. Particular solutions are given by:

pK(x) = γ−2(x)

(
K

∫ x

1

exp

(
−2

∫ y

1

2λz

γ(z)2
+ 2

g(z)

γ(z)2
dz

)
dy + C

)
× exp

(∫ x

1

(
2λy

γ(y)2
+ 2

g(y)

γ(y)2
) dy

)
(10)

We have the following:

Proposition 5. In addition to the stationary distribution δ0, we have:

• For α = 1 and:

– λ < σ2/2 there exists no integrable solution of the Kolmogorov equa-
tion (9)

– λ > σ2/2 there exists two invariant probability distributions Z+p0(x)1x>0

and Z− p0(x)1x<0 (where Z+ and Z− generically denote normaliza-
tion constants) under assumption (H4).

• For α > 1, the same results are found but the bifurcation arises at λ = 0

Remark. In the case α < 1, we already mentioned that no stationary solution can

exist. We can show using the expressions of the solutions to the Kolmogorov equation

that no solution is integrable.

Proof. For α > 1, let us analyze the integrability of p0(x). Around 0, the
function x−2α is not integrable. The leading term of the exponential around
zero is given by λ

σ2(1−α)x
2(1−α), hence diverges at zero. If λ < 0, this term

tends to +∞ and is not integrable, and if λ > 0, the exponential term tends to
zero and the function is hence integrable at 0 and p(0) = 0. For x → ∞, we
distinguish two cases:

• for ν > 0, the leading term of the exponential in the expression of p0(x)
is given by −2νy1+β/γ2(y) ≤ −2ν/d, and therefore the map

ϕ(x) = exp

(
2

∫ x

1

λy + g(y)

γ2(y)
dy

)
has a limit at infinity. For A large enough so that λx+ g(x) < −1 for all
x ≥ A, we have:∫ x

A

1

γ2(y)
exp

(
2

∫ y

1

λz + g(z)

γ2(z)
dz

)
dy

≤
∫ x

A

−2
λy + g(y)

γ2(y)
exp

(
2

∫ y

1

λz + g(z)

γ2(z)
dz

)
dy

which is nothing but an integral of the derivative of φ, hence bounded
on R+ since ϕ is bounded. Therefore, we conclude on the integrability
of p0(x) at infinity, completing the proof that p0 defines a non-trivial
invariant probability distribution.
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• for ν < 0, we have noted that g(x)/γ2(x) is integrable at infinity under
assumption (H4), ensuring that the exponential term is upperbounded,
hence integrability of p0 relies of integrability of γ−2(x) at infinity, which
is always the case under our assumptions.

We hence proved that acceptable solutions related to K = 0 exist for λ > 0 and
no solution existed when λ < 0. Moreover, there is no possible choice of K 6= 0
that can overcome the exponential divergence at zero. Indeed, the only possible
choice of K would be the only constant preventing divergence at zero, i.e.:

p(1) = 2
K

σ2

∫
1

10 exp

(
−2

∫ y

1

2λz

γ(z)2
+ 2

g(z)

γ(z)2
dz

)
dy.

However, the integral term of the righthand side diverges, hence the above
relationship cannot be satisfied and there is no acceptable solution for λ < 0.
Eventually let us remark that for λ > 0, any choice of K prevents integrability
at infinity.

For α = 1, we again analyze the integrability properties of p0(x). Around

x = 0, p0 behaves like x
2λ
σ2

γ(x)2 exp
(

2
∫ x
.

g(y)
γ(y)2 dy

)
. The term in the exponential

behaves like λ
σ2 y

κ. The integrability at zero hence depends on the exponent

−2(1 − λ
σ2 ): p0 is integrable if the exponent is strictly larger than −1, i.e.

2λ/σ2 > 1. In the case 2λ/σ2 < 1, the non-integrability is due to a polynomial
divergence, and hence might be compensated by a suitable choice of K. The
only possible choice of K compensating the divergence at zero would correspond
to:

p(1) = 2K

∫ 0

1

y−2λ/σ2

exp

(
−2

∫ y

1

g(z)

γ(z)2
dz

)
dy,

and here again the integral diverges at zero, and hence there is no such solution.
At infinity, the exact same analysis as done in the case α > 1 applies, and

hence we obtain that p0 is integrable at ∞ under assumption (H4).

2.5. Heuristic discussion

We hence proved that as a function of the value of the coefficient α, the
system can be in one of two substantially different regimes: in the case α < 1
the singular point is always stable, and reached in finite time, and for α > 1 the
stability of the singular point is not affected by the presence of noise and only
depends on the stability of the fixed point in the noiseless system. The case
α = 1 constitutes the transition between these two regimes, and in that case the
stability of the singular point depends both on the eigenvalue of the Jacobian
matrix of the drift at the singular point and on the level of noise.

In order to understand heuristically these stabilization and destabilization
phenomena, let us focus on the behavior of the system in the neighborhood of
the singular point. In the case α > 1, the diffusion coefficient vanishes faster
than the drift coefficient at the singular point, and the system locally behaves as
if there were no noise in the system. In particular, the stability of the singular
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point remains unchanged from that of the noiseless system. On the contrary,
when α < 1, the diffusion coefficient vanishes slower than the drift. When
the system approaches the singular point, it is hence mainly driven by random
fluctuations related to the diffusion coefficient. When the system is brought
away from the singular point, noise increases, and when it is brought towards the
singular point noise decreases. This is at the origin of a ratchet-like phenomenon:
consider to points A and B close of the singular point, A being closer than B.
The time it takes to go from A to B with power diffusion coefficient is way larger
than the time needed to go from B to A. This behavior of the noise close of zero
explains the stability in probability, and acts as a weak drift by ‘stabilizing’ the
solutions when they approach the singular point. The intermediate case α = 1
is precisely the transition where these two effects compensate. When the noise
coefficient is large enough compared to the eigenvalue of the Jacobian matrix at
the singular point, the noise effects described for α < 1 dominate and stabilize
the fixed point, and on the contrary the deterministic phenomena govern the
dynamics similarly to the case α > 1.

3. Applications

The detailed characterization of the solutions of equation (1) has several
implications in applied mathematics. We focus here on generic descriptions of
the dynamics of one-dimensional SDEs in the flavor of bifurcations theory. We
will specifically discuss the behavior of SDEs locally reducible (in a sense that we
make precise) to the pitchfork or saddle-node bifurcation with power diffusion
coefficients.

3.1. Analysis of the stochastic pitchfork bifurcation with Hölder diffusion

In this section we first study the dynamics of an SDE with drift given by
the normal form of the pitchfork bifurcation with Hölder diffusion coefficients,
before addressing the universality of these behaviors. This problem was widely
addressed in the theory of random dynamical system by several authors [11, 1]
in the case of multiplicative noise (α = 1 in our notations). We extend these
results to the cases α 6= 1, and show that actually the multiplicative noise case
is a singular transition case when varying α.

Dynamics of the canonical stochastic pitchfork equation. We consider the su-
percritical stochastic pitchfork bifurcation with power diffusion.

dxt = (λxt − x3
t ) dt+ σ|xt|αdWt (11)

for xt ∈ R, with initial condition X0 at t = 0. In this equation, λ is a real
parameter, σ is a non-negative parameter and α ≥ 1

2 . In the case σ = 0, it is
well known that the solution x = 0 is a stable fixed point for any λ < 0, and
unstable for λ > 0, and two additional stable equilibria ±

√
λ exist in the region

λ > 0 (see e.g. [17]).
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For σ 6= 0, the model clearly satisfies assumptions (H1)-(H5) with ν = −µ =
1 > 0, κ = β = 2, d = σ and δ = α. Moreover, it satisfies the additional as-
sumptions used in proposition 4 since g(x) = −x3 is differentiable with bounded
derivative at zero and divergence at infinity upperbounded by x4. The analysis
of the model is therefore a direct application of section 2.

The problem was widely analyzed in the literature in the case α = 1 (see
e.g. [1, 11]). In this multiplicative noise case, it was proved that:

• for λ < σ2/2, δ0 is almost surely exponentially stable and no additional
stationary solution exist.

• for λ ≥ σ2/2, δ0 is unstable in probability, and two stationary solutions
stable in the first approximation exist.

Therefore, in the multiplicative noise case, stability of zero depends on the level
of noise.

Our analysis shows that this is a singular phenomenon that disappears upon
variation of the Hölder exponent α:

• For α < 1, the fixed point δ0 is stable in probability. Moreover, any
solution almost surely reaches zero in finite time. Quasi-stationary distri-
butions exists for α ∈ (1/2, 3/4).

• for α > 1 and:

– λ < 0, δ0 is stable in probability and no other stationary solution
exist.

– λ > 0, δ0 unstable in probability and stationary solutions exist.

Let us now further describe the dynamics of the non-trivial solutions as a
function of α.

• Case α = 1: It was observed in the literature (see e.g. [1, Chap. 9] for
a comprehensive account) that for any λ > 0, the unstable deterministic
fixed point becomes asymptotically exponentially stable when the noise

parameter σ is large enough. For λ > σ2

2 , two symmetrical stationary

distributions appear. For σ2

2 < λ ≤ σ2 the stationary distribution con-
centrates at zero and has a non increasing density diverging at zero. For
λ ≥ σ2, the probability density function of the stationary distribution
vanishes at zero and has a unique maximum reached for x = ±

√
λ− σ2

(see Figure 3). There is hence a qualitative transition at λ = σ2, or P -
bifurcation. In comparison with the deterministic bifurcation, the loss of
stability is delayed and noise tends to stabilize the saddle point.

• Case α > 1: the deterministic picture is qualitatively and quantitatively
recovered: for λ < 0, δ0 is stable in probability and is the unique station-
ary solution, and for λ > 0, δ0 is unstable in probability, two additional
stationary solutions appear, presumably stable as shown for α = 2. The
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stationary probability density functions for λ > 0 vanish at zero and reach
a maximum at Xm the solution of(

σ2α− λX2−2α +X−2α+4
)

= 0.

The behavior of xm when λ is close to zero follows one of the two regimes:

– for α < 2, Xm ∼
(

λ
ασ2

)1/(2α−2)

. For instance for α = 3
2 we get

Xm = − 3
4 σ

2 + 1
4

√
9σ4 + 16λ

– for α > 2, Xm ∼
√
λ and is insensitive to noise parameters σ and α.

For α = 3 we obtain the explicit form Xm = 1√
6

√
−1+

√
1+12σ2λ
σ

– for α = 2, this maximum can be computed explicitly, and is reached

for x =
√

λ
1+2σ2

Surprisingly, in the limit λ → 0 there is a discontinuity in the behavior
of Xm as a function of α at α = 2. Nevertheless, when λ > 0 this
discontinuity is smoothed out. We conclude that in the case α > 2, the
behavior of the system is close from the one of the deterministic pitchfork
bifurcation and the stationary distribution escapes zero as a square root
of the parameter. But when 1 < α < 2, this is no more the case: the
scaling of distribution peak behaves as λ1/(2α−2), hence much slower than√
λ. As σ is increased, the peak of the stationary distribution gets closer

to zero.

• Case α < 1: the solution δ0 is always stable in probability. This result
can appear relatively surprising at first sight. Indeed, in the deterministic
case, λ is the exponential rate of divergence from the solution 0. However,
adding a (possibly small) diffusion term proportional to |x|α with α < 1
stabilizes δ0 in probability whatever the value of the noise intensity σ 6= 0.
This observation, added to the fact that the solution is not exponentially
asymptotically stable (though stable in probability) raises the question of
how this convergence occurs. Figure 3(b1) presents a typical sample path
of the process. Starting from a positive initial condition, we observe that
the solution is evolving in the half-plane x > 0 and does not show any
absorption clue. However, it suddenly reaches zero where it is absorbed
after that random transient phase. This perfectly illustrates a typical be-
havior of the solutions of the pitchfork equation for α < 1: the absorption
time was shown to be almost surely finite. Moreover, trajectories that did
not hit zero are distributed according to a quasi-stationary distributions
as long as α < 3/4.

Universality properties. Similarly to the analysis of nonlinear dynamical sys-
tems, the analysis of the pitchfork equation reveals universal features of a wide
class of systems. We formally show the universality property of the pitchfork
bifurcation for general SDE on R:

dxt = f(xt, λ) dt+ γ(xt)dWt
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Figure 3: (a) Codimension 2 stochastic bifurcation diagram of the pitchfork bifurcation: or-
ange: zero is stable, blue: zero is unstable, yellow: zero is stable and is reached in finite
time. (b) Sample path trajectories in all 6 regimes for the stochastic pitchfork bifurcation.
Parameters (λ, α, σ): (b1) (10, 0.6, 1) (quasi-stationary distribution plotted in Fig. 2(a)) (b2):
(2, 1, 1.2), (b3): (1, 1.5, 1.2), (b4): (0.5, 1, 1.2), (b5): (−1, 1.5.1.2). In (b2) and (b3) the peak
of the stationary distribution is depicted in dashed black. (c) Representation of stationary
densities for the stochastic pitchfork system with linear noise, as a function of the parameter
λ. Red square: δ0 is stable. Blue and colored surfaces display the probability distribution
pλ(x) of the stable stationary distributions, and the black line represents the maximal value
of the distribution.

with a smooth f (at least three times continuously differentiable). We consider
the dynamics of the system for parameter values λ in a neighborhood of λ0 ∈ R.
Let us assume that:

• there exists ν > 0 and κ > 0 such that for all λ in a neighborhood of λ0,
f(x, λ) ≤ −νx1+κ,

• for any λ, f is an odd function: f(−x, λ) = −f(x, λ)
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• ∂3f
∂x3 (0, λ0) 6= 0

Defining ξt = β(λ)xt with β(λ) =

√
1
6

∣∣∣∂3f
∂x3 (0, λ)

∣∣∣, we have:

dξt =

(
∂f

∂x
(0, λ)ξt + εξ3

t + Ψ(ξt, λ)

)
dt+ β(λ)γ

(
ξt
β(λ)

)
dWt.

where Ψ(x, λ) = O(x5) and ε = sign(∂
3f
∂x3 (0, λ)) which is well defined around

λ = λ0.
Let us now assume that γ(x) ∼ σ|x|α around x = 0 and γ(x) > 0 for x 6= 0.

We can hence apply the results developed in the previous section to characterize
the dynamics of this general system. Pitchfork-like transitions occur at λ = λ0

when:

• α > 1, ∂f
∂x (0, λ0) = 0 and ∂2f

∂x∂λ (0, λ0) 6= 0 or

• α = 1, ∂f
∂x (0, λ0) = σ2

2 and ∂2f
∂x∂λ (0, λ0) 6= 0.

3.2. The stochastic saddle-node bifurcation

Another prominent universal codimension one bifurcation of equilibria in
deterministic ODEs is the saddle-node (or fold) bifurcation. It corresponds to
the normal form ẋ = −x2 + a (sometimes considered x2 − a which is equivalent
to the normal form considered here through a change of time). This dynamical
system has no equilibrium when a < 0 (solutions blows up in finite time) and
two equilibria for a > 0:

√
a which is stable and −

√
a which is unstable. The

system has multiple singular points, and these depends on the bifurcation pa-
rameter. Choices of diffusion functions vanishing only at

√
a or at −

√
a enter

the application domain of the general theory developed in section 2. We will
consider a slightly different case in this section.

Dynamics of a canonical stochastic saddle-node equation. Let us consider now
a case, contrasting with the previous cases treated, where the diffusion function
vanishes at both singular points:

dXt = (−X2
t + a) dt+ σ|X2

t − a|α dWt (12)

For a > 0, there are two stationary distributions corresponding to the equilibria√
a and −

√
a. Denoting y+

t = Xt −
√
a (vanishing at X =

√
a) and y−t =

Xt +
√
a, it is easy to show that these variable satisfy the equations:{
dy+
t = (−2

√
ay+
t − (y+

t )2) dt+ σ| − 2
√
ay+
t − (y+

t )2|α dWt

dy−t = (2
√
ay−t − (y+

t )2) dt+ σ|2
√
ay+
t − (y+

t )2|α dWt

In both case, the drift and diffusion coefficients satisfy the assumptions (H1),
(H2), (H3) and (H4) and obviously assumption (H5) is not valid. Assump-
tions (H1), (H2) and (H4) are trivial since the function corresponding to g(x)
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in the general cases is equal to −x2, hence µ = −ν = −1 < 0 and β = κ = 1.
The diffusion coefficients denoted γ(x) in the general case satisfy for both the
equation on y+ and on y−: γ(x) ∼x→0+ σ(2

√
a)αxα, ensuring that assump-

tion (H3) is satisfied, and γ(x) ∼x→∞ σ|y|2α ensuring that assumption (H4) is
satisfied with d = σ and δ = 2α.

In the deterministic case, for a > 0 and an initial condition smaller than
−
√
a or for any initial condition when a < 0, the solutions blow up in finite

time to −∞, and in usual applications additional, higher order confining terms
prevent the blow up. Interestingly, in the present case, the presence of noise can
prevent blow up as we now show:

Proposition 6. The solutions of the stochastic saddle-node equation (12) are
defined for all times or blow up in finite time under the conditions:

• For 1
2 ≤ α < 1 we have:

– if a < 0 the solutions almost surely blow up in finite time to −∞
– if a > 0, the solutions with initial condition smaller than −

√
a al-

most surely exit the interval (−∞,−
√
a) in finite time for any initial

condition |x| <
√
a, the solution almost surely reaches one of the

boundaries of the interval in finite time. The probability of reaching
−
√
a prior to reaching

√
a is given by

p(
√
a
−

)− p(x)

p(
√
a
−

)− p(−
√
a

+
)

and is plotted in Fig. 4(c).

• for α ≥ 1, the solutions almost surely never blow up, and for a > 0, the
exit time of (−

√
a,
√
a) is almost surely infinite.

Proof. We demonstrate this proposition using Feller’s test for explosion.
Let us start by considering a < 0. The diffusion is then defined on R with

no singular point, and Feller’s scale function reads:

p(x) =

∫ x

c

exp

(
−2

∫ y

c

−(ξ2 + a)1−2α dξ

)
dy.

At infinity, the integrand inside the exponential is equivalent at infinity to
2

2(2α−1)−1y
−2(2α−1)+1. This quantity has a finite limit when α ≥ 1, imply-

ing that p(x) → ±∞ when x → ±∞. Feller’s test implies that the first exit
time of (−∞,∞) is infinite with probability one.

For α < 1, p(x) tends to∞ at∞, and has a finite limit at −∞. This property
ensures that the probability of the process diverge towards −∞ is equal to one.
It remains to prove that the explosion occurs in finite time. To this purpose, we
need to show that the limit of Feller’s scale function v(x) is finite at −∞. This
is the case under the assumption α < 1. Indeed, v(x) is defined as:

v(x) =

∫ x

c

∫ y

c

exp

(
2

∫ y

z

(u2 − a)1−2α

)
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The integral in the argument of the exponential function is equivalent at −∞
to 2

Φ (yΦ − zΦ) which tends to −∞ as a power function, hence the exponential
has moments of any order, and in particular is twice integrable at −∞.

For a > 0, we consider the intervals (−∞,−
√
a) and (

√
a,∞). The above

analysis proved that for α ≥ 1, p(x) tends to ∞ when x → ∞ and towards
a finite value at x → −∞. At ±

√
a, the argument of the exponential term is

equivalent to
∫
x−2α+1 which diverges for α ≥ 1, implying that the exit time

of (−∞,−
√
a), (−

√
a,
√
a) and (

√
a,∞) are all almost surely infinite and that

there is no blow up in finite time. For α < 1, both p(−
√
a
−

) and p(
√
a

+
) are

finite. For c ∈ (−
√
a,
√
a), we have:G(x) =
∫ x
c
−(ξ +

√
a)1−2α(−ξ +

√
a)1−2α dξ

v(x) = 2

∫ x

c

∫ x

y

exp(−2(G(y)−G(z)))

(−x2 + a)2α
dz dy

and using a similar argument as used in the proof of proposition 2, we show that
limx→

√
a− v(x) < ∞, and by symmetry we hence have limx→−

√
a+ v(x) < ∞.

Feller’s test for explosion hence ensures that the first exit time of the interval
(−
√
a,
√
a) is almost surely finite. We hence converge in finite time towards√

a or −
√
a. Moreover, the probability for a trajectory starting with an initial

condition |x| <
√
a to reach

√
a (resp. −

√
a) prior to reaching −

√
a (resp.

√
a),

denoted p+(x) (resp. p−(x)) have the expression:

p−(x) = 1− p+(x) =
p(
√
a
−

)− p(x)

p(
√
a
−

)− p(−
√
a

+
)

This quantity is plotted in Figure 4(c).

Application of the general results of section 2 yield the following:

Proposition 7. For a > 0, the saddle-node equation (12) has two Dirac delta
distributed functions δ√a and δ−

√
a, which enjoy the stability properties:

• for α < 1, both δ√a and δ−
√
a are stable in probability, and the first hitting

time τ of one of the equilibria is almost surely finite.

• for α = 1, the stationary distribution δ√a is always stable in probability.

The stationary distribution δ−
√
a is stable in probability for a > σ−4 and

unstable in probability otherwise.

• for α > 1, the stationary distribution δ√a is stable in probability and δ−
√
a

is unstable in probability.

Proof. This is a direct application of the results of section 2 applied to y+ to
characterize the properties of

√
a and to y− for −

√
a. For instance for the fixed

point −
√
a and α = 1, the fixed point is stable if and only if 2

√
a < 2σ2α i.e.

σ2
√
a > 1. The finite absorption time property is a consequence of proposition 6.
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For α < 1, we know that the trajectories either reach one of the equilibria
or blow up in finite time, which describe perfectly the permanent regime of the
saddle-node bifurcation. We are now interested in stationary distributions of the
saddle-node equation distinct from δ√a and δ−

√
a. Since the system presents two

singular points, the results of proposition 5, based on integrability properties on
R

+ or R− of the solutions of the Kolmogorov equation, do not directly apply.
However, a similar approach allows to demonstrate the following:

Proposition 8. Stationary distributions of the saddle-node equation (12) dis-
tinct from δ√a and δ−

√
a (when a > 0) enjoy the following classification:

• For α = 1 and 0 < a < σ−4, the system has a stationary distribution,
stable in the first approximation, charging only the interval (−∞,−

√
a)

that undergoes a P-bifurcation at σ2
√
a = 1

2 . On (−
√
a,∞), any solution

converges almost surely exponentially towards
√
a (see Figure 4).

• For α = 1 and a < 0, there exists a unique distribution charging the whole
real line.

• For α > 1, the system has no additional stationary solution.

Proof. In the case α = 1, the Kolmogorov equation has the solution:

p0(x) ∝
∣∣x+

√
a
∣∣−2+ 1

σ2
√
a
∣∣x−√a∣∣−2− 1

σ2
√
a

For a > 0, this function is integrable at
√
a if and only if −2− 1

σ2
√
a
> −1 which

is not possible. At −
√
a, this function is integrable when −2 + 1

σ2
√
a
> 1 i.e.

σ2
√
a < 1 (i.e. when −

√
a is unstable). Eventually, this function is integrable at

infinity whatever the parameters, since it behaves like x−4. Hence there exists
a unique stationary distribution charging (−∞,−

√
a). In both the interval

(−
√
a,
√
a) and (

√
a,∞) the only stationary distribution is δ√a which is stable.

The additional stationary distribution on (−∞,−
√
a) reads:

p0(x) = Z
(
−x−

√
a
)−2+ 1

σ2
√
a
(
−x+

√
a
)−2− 1

σ2
√
a =: Z q0(x)

Denoting Φ = 1
σ2
√
a
, we give the following closed form primitives related:

∫
q0(x) dx = −(−

√
a− x)−1+Φ(

√
a− x)−1−Φ a(2Φ2 − 1)− 2

√
aΦx+ x2

4a3/2Φ(Φ2 − 1)∫
x q0(x) dx = (−

√
a− x)−1+Φ(

√
a− x)−1−Φ−2

√
aΦx+ a+ x2

4a(Φ2 − 1)∫
x2 q0(x) dx = −(−

√
a− x)−1+Φ(

√
a− x)−1−Φ−2

√
aΦx+ a+ (2Φ2 − 1)x2

4
√
aΦ(Φ2 − 1)

Using these formulae, it is straightforward to obtain the normalization constant
of p0 on (−∞,−

√
a):

Z = 4a3/2Φ(Φ2 − 1)
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The expectation m is equal to:

m = Z

∫ −√a
−∞

xq0(x) dx = −Φ
√
a = − 1

σ2
,

and the second moment:

s = Z

∫ −√a
−∞

x2q0(x) dx = (2Φ2 − 1)a

Eventually, let us analyze the shape of the obtained stationary distribution. The
differential of the distribution reads:

p′0(x) = p0(x)

(
−2− Φ

x−
√
a

+
−2 + Φ

x+
√
a

)
.

This quantity is always negative for Φ < 2, the density is decreasing and more-
over in that case it is clear that the distribution diverges at −

√
a. For Φ > 2,

the distribution vanishes at zero, takes its maximum at x∗ = −Φ
√
a

2 = − 1
2σ2

and goes back to zero.
Let us now address the stability in the first approximation for this distribu-

tion. The linearized equation reads:

dvt = −2Xtvt dt+ 2σXtvtdWt

Integrating the linearized equation as previously done, we obtain that the Lya-
punov exponent of the linearized equation reads:

l = −2E[Xt]− 2σ2
E[X2

t ] =
2(−1 + σ4 a)

σ2

and since we consider the case σ2
√
a < 1, the Lyapunov exponent is strictly

negative, implying almost sure exponential stability of zero for the linearized
equation, hence stochastic linear stability of p0(x).

For a < 0, the solutions of the Kolmogorov equation are given by:

p0(x) =
K

(x2 − a)2
exp

(
−2

arctan(x/
√
−a)

σ2
√
−a

)
and the definition interval of possible stationary distributions is R. In order for
p0 to define a probability distribution, we need this function to be integrable at
±∞, which is always the case. The obtained stationary distribution reaches its
maximum again for x = − 1

2σ2 .
For α > 1, the solution of the Kolmogorov equation reads:

p(x) =
1

(a− x2)2α
exp

(
2

σ2

∫ x

·
(−y2 + a)1−2α dy

)
At −

√
a, the exponential term diverges since it behaves as (x+

√
a)1−2α, hence

the solution is never integrable at zero. It is easy at this point to show that
there is no integrable solution to the Kolmogorov equation.
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Remark. For α < 1 one could be interested in the existence of quasi-stationary so-

lutions. An additional difficulty arises from the fact that the solutions can be attracted

in finite time towards different solutions: ±
√
a whatever α < 1, and −∞ for α < 3

4
.

Moreover, in the saddle-node bifurcation case as studied here, the diffusion coefficient

is exactly equal to a power function. Therefore, for α < 1, blow up in finite time as

well as absorption at ±
√
a can occur are not a consequence of the results of [8], are

not in the scope of the present manuscript and require new mathematical developments

that will be addressed elsewhere.

The above result characterize the dynamics relatively exhaustively for α = 1,
except for a > σ−4 and x0 ∈ (−

√
a,
√
a). In that case, both singular points are

stable, and can be reached by the solution. Therefore for such initial conditions,
there is a competition between the possible attractors, and the relative stability
of one singular point compared to the other will determine the probability, given
an initial condition x0, to converge towards this equilibrium. This quantity is
plotted in Figure 4(c). We observe, as one can expect, that the attractivity of√
a is stronger than that of −

√
a: the probability of converging towards

√
a is

never less than 0.4 even for initial conditions very close from −
√
a, and goes

relatively fast towards 1 as the initial condition is chosen closer from
√
a.

Universality properties. Let us now discuss the universality of this bifurcation.
We consider a general one-dimensional diffusion equation:

dxt = f(xt, λ) dt+ g(xt)dWt

with f a smooth function such that f(0, 0) = ∂f
∂x (0, 0) = 0 and ∂f

∂λ (0, 0) 6= 0.
Following the reduction to a normal form of Kuznetsov [23], we use a Taylor
expansion of f :

f(x, λ) = f0(λ) + f1(λ)x+ f2(λ)x2 + h(x)

where h(x)/x3 is bounded at x = 0. We perform a shift of coordinates by
defining a new variable ξ = x+ δ and obtain:

dξt =
(

[f0(λ)− f1(λ)δ] + f2(λ)δ2 +O(δ3)]

+ [f1(λ)− 2f2(λ)δ +O(δ2)]ξ

+ [f2(λ) +O(δ)]ξ2 +O(ξ3)
)
dt+ g(ξ − δ)dWt

Using the inverse function theorem under the assumption that ∂f
∂λ (0, 0) 6= 0, we

deduce that there exists a smooth function δ(λ) =
f ′1(0)
2f2(0)λ + O(λ2) such that

the term [f1(λ) − 2f2(λ)δ + O(δ2)] vanishes for all λ in a neighborhood of 0.
This δ(λ) identified, we can apply the inverse function theorem to find locally
an inverse to the constant term of the Taylor development seen as a function of
λ. This inverse function, λ(µ), yields the system to the SDE:

dξt = (µ+ b(µ)ξ2
t +O(ξ3)) dt+ g(ξ − δ(λ(µ)))dWt
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Figure 4: Behaviors of the stochastic saddle-node system with α = 1. The bifurcation diagram
as a function of a is at the center of the figure, and displays the singular points in blue
lines, their stability marked by the type of curve: plain: stable, dashed: unstable. Stationary
distributions are encoded in color in the interval a ≤ σ−4. Two typical stationary distributions
are plotted in Figs. (e) and (f): one for a ≤ 1/4σ4 where the pdf has a peak at x = −σ−2/2,
and for a > σ−4/4 where the distribution diverges at zero. The P-bifurcation between these
behaviors is noted P. (a) corresponds to a typical trajectory for a = 0.4 < σ−4/4 with σ = 0.8.
(b),(c) and (d) correspond to a > σ−4 and different initial conditions: (c): frequency of the
trajectories converging towards +

√
a as a function of the initial condition in [−

√
a,
√
a], (b)

and (d) are typical trajectories for initial condition in (
√

(a),∞) or (−∞,−
√
a) respectively

(a = 4 and σ = 0.8).

with b(0) = f2(0) 6= 0. The final reduction involves a scaling of the variable:
zt = |b(µ)|ξt, yielding the SDE:

dzt =
(
β + εz2

t +O(z3
t )
)
dt+ g

( zt
|b(µ)|

− δ(λ(µ))
)
dWt
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where ε has the sign of S(3)(0). The stability and bifurcations of the whole
system is hence reduced to the local analysis of the behavior of g close of the
equilibria.

Appendix A. The stochastic Hopf bifurcation with complex noise.

The stochastic Hopf bifurcation with multiplicative noise (α = 1) was inves-
tigated with RDS theory in [5]. The method uses smoothness of the diffusion
coefficient to characterize the changes in stability in a general case, and applies
to characterize invariance measures in one specific case of the Hopf bifurcation.
Here, we use our general results in a more general Hopf bifurcation model, and
characterize emerging oscillations, in cases with arbitrary α ≥ 1/2. The Hopf
bifurcation for smooth dynamical system is topologically equivalent to the two
dimensional normal form:

dx

dt
= β x− y + εx(x2 + y2) ;

dy

dt
= β y + x+ εy(x2 + y2)

where β is the bifurcation parameter and ε = ±1 governs the type of bifurcation.
It can be conveniently written in complex form for zt = xt + i yt with i2 = −1:

dz

dt
= (β + i + ε|z(t)|2) z(t).

The trivial solution (x = 0, y = 0) is always solution of the equations. It is
exponentially stable for any β < 0 and exponentially unstable for any β > 0. If
ε = −1, the system presents stable oscillations for β > 0 and the bifurcation is
termed supercritical, and supercritical otherwise.

We study in this section the stochastic Hopf bifurcation with multiplicative
noise. For simplicity, we will consider that the stochastic perturbations are
driven by a single Brownian motion Wt. Let σ∗ = σ + iµ be a noise parameter,
the stochastic Hopf normal form equation reads (in complex form):

dZt = (β + i+ ε|Zt|2)Zt dt+ σ∗|Zt|α−1Zt dWt,

which corresponds for Zt = Xt + iYt to the bidimensional system:{
dXt = (β Xt − Yt + εXt (X2

t + Y 2
t )) dt+ (σXt − µYt)|Zt|α−1 dWt

dYt = (β Yt +Xt + εYt (X2
t + Y 2

t )) dt+ (µXt + σ Yt)|Zt|α−1 dWt

(A.1)

where β and ε correspond to the parameters of the Hopf bifurcation and µ and
σ to the amplitude of the stochastic perturbation.

The deterministic process Zt = 0 corresponding to Xt = 0, Yt = 0 for all
t ≥ 0 is solution of (A.1) and is univocally defined by the fact that the modulus

of Zt is null. We denote by Rt = |Zt| =
√
X2
t + Y 2

t this variable, and by θt the
argument of Zt.
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Lemma 1. The modulus of the variable Rt = |Zt| and the argument θt satisfy
the equations:{

dRt =
(
βRt + µ2

2 R
2α−1
t + εR3

t

)
dt+ σ Rαt dWt

dθt = (−σµR2α−2
t + 1) dt+ µRα−1

t dWt

Proof. Let (Xt, Yt) be a solution of the Hopf equations (A.1). We apply Itô

formula to the variable Rt =
√
X2
t + Y 2

t :

dRt =
1

Rt
(XtdXt + YtdYt) +

1

2R3
t

(
Y 2
t d〈X〉t +X2

t d〈Y 〉t + 2Xt Ytd〈X,Y 〉t
)

=
{ 1

Rt

(
β X2

t −Xt Yt + εX2
t (X2

t + Y 2
t ) + β Y 2

t +Xt Yt + εY 2
t (X2

t + Y 2
t )

)
+
R2α−2
t

2R3
t

(
Y 2
t (σXt − µYt)2 +X2

t (σ Yt + µXt)
2 − 2Xt Yt (σXt − µYt) (σ Yt + µXt)

)}
dt

+
Rα−1
t

Rt

{
Xt (σXt − µYt) + Yt (σ Yt + µXt)

}
dWt

=
{ 1

Rt
(βR2

t + εR4
t ) +

1

2R3
t

µ2R4+2α−2
t

}
dt+

1

Rt
σ R2+α−1

t dWt

=

(
βRt +

µ2

2
R2α−1
t + εR3

t

)
dt+ σ Rαt dWt

The argument θt is given by θt = arctan(Yt/Xt). Applying Itô’s formula again
yields:

dθt = (1− σµR2(α−1)
t ) dt+ µRα−1

t dWt

which ends the proof of the lemma.

It is important to note that the equation on the modulus is uncoupled of
the phase equation on θt. The modulus of (Xt, Yt) is therefore solution of a
stochastic differential equation of type bifurcation (1). Moreover, when α = 1,
the equations take the simpler form:{

dRt =
(

(β + µ2

2 )Rt + εR3
t

)
dt+ σ Rt dWt

dθt = (1− σµ) dt+ µdWt

and hence the variable Rt is solution of a stochastic pitchfork bifurcation. From
the results of section 3.1, it is not hard to establish the following:

Theorem 1. The null solution of the supercritical Hopf equations is almost

surely exponentially stable if β < σ2−µ2

2 and asymptotically stochastically unsta-

ble if β > σ2−µ2

2 . In that case, there exists a new stochastically stable stationary
solution with distribution:

pR(x) =
2σ1− 2λ

σ2

Γ
(
− 1

2 + λ
σ2

)x−2(1− λ
σ2

)e−x
2/σ2

1x≥0.
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The null solution of the subcritical Hopf equations is almost surely exponentially

unstable if β > σ2−µ2

2 . It is asymptotically stochastically unstable if β > −σ
2+µ2

2

and stochastically stable if β < −σ
2+µ2

2 .

We observe in the purely imaginary noise case (σ = 0), Rt satisfies the deter-

ministic pitchfork bifurcation equation. For β > µ2

2 , Rt =
√
β − µ2

2 is the only

attractive solution: the solution of the stochastic Hopf bifurcation asymptoti-
cally lives on the circle. Its rotates on this circle with a stochastic phase given
by a Brownian motion multiplied by µ and a deterministic pulsation equal to
1 (see Fig. A.5). When µ = 0, the phase equation is deterministic: the system

rotates with pulsation 1. When β ∈ ( 2σ2−µ2

2 , σ
2−µ2

2 ), the stationary modulus
of the solution has a distribution peaked at zero and no actual oscillation can

be observed. When β > 2σ2−µ2

2 , the stationary modulus of the solution has a

maximum at R∗ =
√
β − 2σ2−µ2

2 and the distribution is null at zero: solutions

hence correspond to perfectly periodic oscillations with random amplitude.
For σ 6= 0, the modulus Rt is a.s. exponentially attracted towards 0 when

β < σ2−µ2

2 . Therefore, as the imaginary part of the noise, σ, is increased,

the fixed point gains stability. For β ∈ (σ
2−µ2

2 , 2σ2−µ2

2 ), the fixed point zero
is unstable and solutions do not converge towards the fixed point zero. The
distribution of the moduli Rt converge towards the stationary distribution pR(x)
heavily charging zero, and solutions stay close from the fixed point with random

stochastic variations. As soon as β > 2σ2−µ2

2 , the solutions have radii centered

at R∗ :=
√
β − 2σ2−µ2

2 and present stochastic oscillations with a deterministic

pulsation (−1 + σµ) and random phase given by a Brownian motion scaled by
µ. Interestingly, when σµ crosses 1, the direction of the oscillation changes: for
σµ < 1, the oscillation is counter clockwise, and for σµ > 0, the oscillation is
clockwise. This bifurcation is illustrated in Figure A.6. In the case σµ = 1,
the pulsation is null and the phase is given by µWt: it has a probability 1/2 to
rotate clockwise and 1/2 to rotate counterclockwise, and changes the sense of
rotation. The rotation number is equal to zero.

We observe in the purely imaginary noise case (σ = 0), Rt satisfies the

deterministic pitchfork bifurcation equation. For β > µ2

2 , Rt =
√
β + µ2

2 is

the only attractive solution: the solution of the stochastic Hopf bifurcation
asymptotically lives on a deterministic circle. Its rotates on this circle with a
stochastic phase given by a Brownian motion multiplied by µ and a deterministic
pulsation equal to 1 (see Figure A.7).

Let us eventually note the symmetrical effects of the real and imaginary
values of the noise parameter: for fixed β, σ tends to stabilize 0, whereas µ has
the effect of destabilizing 0. These two effects compensate each other, and when
choosing σ = µ, the loss of stability of zero arises at β = 0 precisely as it is the
case of the deterministic bifurcation. However, cycles appear for β > σ2/2 in
that case, and hence we observe a systematic delay in the apparition of cycles
for σ 6= 0.
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Figure A.5: Simulations of sample path trajectories of (Xt, Yt) for the stochastic Hopf bi-
furcation with α = 1, µ = 0 and σ = 1 for different values of β (deterministic phase case).

(A):β = 0.3 < σ2

2
: zero is a.s. exponentially stable; (A1): trajectories (blue: Xt, red: Yt),

(A2): phase plane, (A3): phase θt is deterministic equal to t: the solutions rotate with pul-

sation one. This is true of all three cases (A), (B) and (C). (B): β = 0.7 ∈ [σ
2

2
, σ2]: Zero is

unstable and the stationary modulus distribution is peaked at zero; (B1): trajectories, (B2):
phase plane, (B3): distribution of the modulus Rt. (C): β = 4 > σ2: zero is unstable and the
distribution of the modulus has a peak around R∗ > 0 (C3): the trajectories display perfectly
periodic oscillations (C1, C2) with random modulus, a highly regular behavior for a stochastic
system.

We hence conclude that though obviously perturbed by the presence of noise,
the global behavior observed in the stochastic Hopf bifurcation with linear noise
resembles the deterministic picture: as β is increased, a limit cycle appears,
around which the solutions stochastically rotate. The picture will be relatively
different in the nonlinear noise case α 6= 1. In that case we prove the following:
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Figure A.6: Noise-induced inversion of the rotation pulsation: α = 1, β = 4, µ = 1 for different
values of σ. Blue: phase (θt) as a function of time and black: deterministic pulsation 1− σµ.
(a) counter-clockwise rotation, (b): no rotation, trajectories appear stochastic and the phase
is a Brownian motion, and (c): clockwise rotation.
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Figure A.7: Simulations of sample path trajectories of (Xt, Yt) for the stochastic Hopf bifur-
cation with α = 1, σ = 0 and µ = 2 (deterministic modulus case) for different values of β.

(A):β = −2 < −µ
2

2
: zero is a.s. exponentially stable; (A1): trajectories (blue: Xt, red: Yt,

black: Rts), (A2): phase plane, (A3): argument θt in blue, deterministic drift in black. (B):

β = 0 > −µ
2

2
: the modulus converges to a constant value

√
µ2/2 =

√
2; (B1): trajectories,

(B2): phase plane, (B3): Argument θt (blue), deterministic drift (black).

Proposition 9. In the case of the supercritical (ε = −1) stochastic Hopf bifur-
cation, we have:
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• For α < 1, the fixed point 0 is:

– stable in probability for |µ| < |σ|
– unstable in probability for µ > σ

Moreover, any solution reaches zero in finite time.

• For α > 1, the fixed point 0 is:

– stable in probability for β < −µ
2

2

– unstable in probability otherwise. Two additional stationary solutions
exist in that case.

The solutions almost surely never reach zero.

Remark. Let us emphasize the fact that the case α < 1 is substantially different from

the general case: indeed, we had seen that the singular point was always stochastically

stable. Surprisingly here the stability of zero depends on the relative values of the real

and imaginary parts of the noise.

Proof. The case α > 1 falls in the general analysis developed in section 2.

Indeed, the diffusion is of the form of equation (1) with g(x) = µ2

2 x
2α−1 − x3

which clearly satisfies assumptions (H1) and (H2). The general analysis hence
applies and directly leads to the conclusion of the proposition.

In the case α < 1, the equation was not covered in the general analysis,

since the drift includes a term µ2

2 x
2α−1 and 2α − 1 < 1. However, the same

principles may be applied to that case. First of all, existence and uniqueness
of solutions is proved using the same arguments, and the a.s. boundedness of
the process as well. Hence there exist a unique solution to the stochastic Hopf
bifurcation process with α < 1, which is almost surely bounded for all times.
The stability of zero is investigated as follows. For µ > σ, the Lyapunov function
V (x) = −log(x) is C2

0 around zero, positive, diverges at zero, and

LV (x) =

(
−µ

2

2
+
σ2

2

)
x2α−2 + o(x2α−2)

and is hence negative around zero, proving that zero is unstable for µ > σ in
probability.

For µ < σ, we define the Lyapunov function V (x) = xγ with γ = σ2−µ2

2σ2 > 0.
This function is C2

0 and we have:

LV (x) = γ

(
µ2

2
+ (γ − 1)

σ2

2

)
x2α−2+γ + o(x2α−2+γ)

= γ
µ2 − σ2

4
x2α−2+γ + o(x2α−2+γ)

and hence is negative close of zero. Using the same techniques as in the general
theory, it is easy to conclude that the singular point is unstable in probability.
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In order to prove that the solutions almost surely hit zero in finite time, we
proceed as in the proof of proposition 2. We know that the process is almost
surely bounded, and analyze Feller’s scale functions. It is clear that p(x)→∞ as
x→∞ following the proof of proposition 2: the proof only uses the higher order
term −x3. We hence need to ensure that limx→0+ v(x) < ∞. This property is
related to fine properties of the scale functions close from zero, which is now
governed by the term µ2/2 x2α−1. We hence have, around 0:

G(x) =
µ2

2σ2
log(x) +

λ

σ

x2−2α

2(1− α)
− x2(2−α)

2(2− α)σ2

and therefore we can obtain the explicit expression of p(x):

p(x) =

∫ x

c

y−
µ2

σ2 exp

(
− λ

σ2(1− α)
y2−2α +

2y4−2α

(4− 2α)σ2

)
dy

More importantly, in order to characterize v, we consider the term G(y)−G(z)

which is equivalent close from 0 to: G(y) − G(z) ∼0+
µ2

2σ2 log(yz ). This implies
that: ∫ x

y

exp(2G(y)−G(z)) dz ∼0+

∫ x

y

exp

(
µ2

σ2
log(

y

z
)

)
dz

∼ 1

1− µ2/σ2

((y
x

)µ2/σ2

− 1

)
and hence:

v(x) ∼ 2

σ2
(

x2

µ2/σ2 + 1
− x)

This function will hence remain bounded as x → ∞, ensuring using Feller’s
test for explosion that the first exit time of the interval (0,∞) is almost surely
bounded. The almost sure boundedness of the process allows concluding that
the probability first hitting time of zero is almost surely finite, which ends the
proof.

Therefore, similarly to the case of the stochastic pitchfork bifurcation, we
observed that for α > 1, the noise does not affect the stability of 0 and the
loss of stability precisely appears for β = 0 as in the deterministic case. The
behavior of the system beyond the bifurcation point depends on the shape of the
stationary distribution, and in that case again the solution reaches a maximum
for a positive value, reproducing qualitatively the behavior of the deterministic
pitchfork bifurcation.

For α < 1, the almost sure absorption at zero of the solution persists. How-
ever, the stochastic stability of the fixed point zero now depends on the relative
values of µ and σ. This distinction is not fundamental as long as we are con-
cerned with sample path properties, and similarly to the general case, almost
any sample path will eventually be absorbed at zero in finite time.
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Let us eventually remark that the universality properties of this normal form
are harder to obtain than in the case of the pitchfork and the saddle-node bi-
furcation, first because we are in higher dimensions, but also because generic
reduction to normal form involves nonlinear changes of parameters, which was
neither the case in the fold nor in the pitchfork bifurcation (see [23]). In our
stochastic context, such nonlinear changes of coordinates do not have the same
effect as in the deterministic case because of the stochastic terms affecting the
drift through the Itô formula. Let us however give an idea of the kind of cal-
culations possible to identify stochastic Hopf bifurcations. To this end, let us
consider a two-dimensional system:

dXt = F (Xt) dt+G(Xt)dWt

where G(x) is precisely of the complex noise form considered above. The mod-
ulus of the solution Rt satisfies the SDE:

dRt =
1

Rt

(
X1
t F

1(Xt) +X2
t F

2(Xt) +
µ2

2
Rt

)
dt+(X1

tG
1(Xt)+X2

tG
2(Xt))dWt

where X1, F 1 and G1 represent the first component of the vector field. The
question that now arises is whether this system can be reduced to a pitchfork
equation with possibly higher order terms, which can be checked in a case-by-
case basis.

Example 1. Let us consider a Wilson and Cowan neural network composed of
an excitatory and an inhibitory population. The network equations in that case
read: {

dν1
t = (−ν1

t + S(gν1
t )− S(gν2

t )) + (σν1
t − µν2

t )|νt|α−1dWt

dν2
t = (−ν2

t + S(gν1
t ) + S(gν2

t )) + (σν2
t + µν1

t )|νt|α−1dWt

(A.2)

with S(x) = tanh(g x) and |νt| is the modulus of (ν1, ν2). In the deterministic
case, it is straightforward to show that the system undergoes a Hopf bifurcation
at g = 1. Let us now consider the equation satisfied by the modulus ρt = |νt|.
Using Itô’s formula we obtain:

dρt =
(

(−1 + g)ρt + µ2/2ρ2α−1
t + g(ν1

t , ν
2
t )
)
dt+ σραt dWt

with

g(x, y) = − g
3

3ρ
(x4 + y4 + x3y + xy3) +O(ρ4)

= − g
3

3ρ
((x+ y)4 − 2x2y2) +O(ρ4) ≤ −g

3

12
ρ3 +O(ρ4)

The argument satisfies the equation:

dθt =
(
g − σµρ2α−2 +O(ρ2

t )
)
dt+ µρα−1dWt

The dynamics of the system can hence be analyzed using the above analysis:
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• α = 1, zero is stable in probability when (−1 + g + µ2/2) ≤ σ2/2 and
unstable otherwise. At this point, a stochastic Hopf bifurcation arises, and
oscillations appear, with pulsation locally equivalent to g− µσ (with order
two corrections in ρ) and stochastic phase given by a Brownian motion
multiplied by µ. The oscillation orientation bifurcation takes place for
g = µσ.

• For α > 1 zero is stable if and only if (−1 + g + µ2/2) ≤ 0.

• For α < 1, the fixed point is stable in probability if |µ| < |σ| and unstable
otherwise. The first hitting time of the singular point is almost surely
finite in both cases.

These results are illustrated in Fig. A.8
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Figure A.8: Dynamics of the Wilson and Cowan two-populations system (A.2). (a) and (d)
correspond to α < 1: for |µ| < |σ|, the singular point is stable (d) and unstable otherwise
(a). The other figures correspond to α = 1 and illustrate the change of rotation orientation
bifurcation at σµ = g. All the figures correspond to g = 1.
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