
Kernel methods

Alessandro Rudi

March 17, 2022

To learn more about the topic of this lecture, please look at the following documents:

• http://cbio.ensmp.fr/~jvert/svn/kernelcourse/slides/master/master.pdf

• http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture4_introToRKHS.pdf

• http://www.di.ens.fr/~fbach/rasma_fbach.pdf

• https://francisbach.com/cursed-kernels/

In this course, we often focused on prediction methods which are linear, that is, the input data are vectors
(i.e., x ∈ Rd) and the prediction function is linear: f(x) = w>x for w ∈ Rd. In this situation, given data
(xi, yi), i = 1, . . . , n, the vector w is obtained by minimizing

L̂(w) =
1

n

n∑
i=1

`(yi, w
>xi) + λΩ(w).

Classical examples are logistic regression or least-squares regression.

These methods look at first sight of limited practical significance, because:

• Input data may not be vectors.

• Relevant prediction functions may not be linear.

The goal of kernel methods is to go beyond theses limitations while keeping the good aspects. The
underlying principle is to replace x by any function ϕ(x) ∈ Rd, explicitly ou implicitly, and consider linear
predictions in Φ(x), i.e., f(x) = w>ϕ(x). We call ϕ(x) the “feature” associated to x.

Examples
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1. Linear regression. ϕ(x) = x and x ∈ Rd in this way we have linear models, as expected, indeed

f(x) = w>x =
d∑
j=1

wjxj ,

2. Polynomial regression of degree r. when x ∈ R. In this case we have ϕ(x) ∈ Rr defined as ϕ(x) =
(1, x, x2, . . . , xr) leading to general polynomials of degree at most r,

f(x) = w>ϕ(x) =

r∑
j=1

wj(ϕ(x))j =

r∑
j=1

wjx
j .

3. Polynomial multivariate regression of degree r. By considering x ∈ Rd and

ϕ(x) =
(
xα1
1 · · ·x

αd
d

)∑d
i=1 αi=r

.

In this situation, p =
(
d+r−1
r

)
(number of k-combinations with repetitions from a set with cardinality

d), can be too big for an explicit representation to be feasible.

4. Generic set of functions. Let φ1, . . . φr : Rd → R be a set of functions of interest (e. g. a subset of
the fourier basis), then we define ϕ(x) ∈ Rr as ϕ(x) = (φ1(x), . . . , φr(x)) and so

f(x) = w>ϕ(x) =

r∑
j=1

wjφj(x)

1 Representer theorem

The question is if there exists an easier representation for w in terms of the observed feature maps
ϕ(x1), . . . , ϕ(xn), given a dataset x1, . . . , xn ∈ Rd. I.e., we want to know if it is possible to character-
ize the minimum ŵ of

L̂(w) =
1

n

n∑
i=1

`(yi, w
>ϕ(xi)) + λw>w

in the form of ŵ =
∑n

i=1 αiϕ(xi), with αi ∈ R for i = 1, . . . , n. The following theorem guarantees such

characterization under basic properties of L̂.

Theorem 1 (Representer theorem, 1971).
Let ϕ : X → Rd. Let (x1, . . . , xn) ∈ Xn, and assume Ψ : Rn+1 → R strictly increasing with respect to the
last variable, then the minimum of

L̂(w) := Ψ(w>ϕ(x1), ..., w
>ϕ(xn), w>w),

is attained for w =
∑n

i=1 αiϕ(xi) with α ∈ Rn.

2



Proof Let w ∈ Rd, and FD = {
∑n

i=1 αiϕ(xi) | α ∈ Rn}. Let wD ∈ FD and w⊥ ∈ F⊥D such that
w = wD + w⊥, then ∀i, w>ϕ(xi) = w>Dϕ(xi) + w>⊥ϕ(xi) with w>⊥ϕ(xi) = 0.

From Pythagoreas theorem, we get: w>w = w>Dw
2
D + w>⊥w⊥. Therefore we have:

Ψ(w>ϕ(x1), ..., w
>ϕ(xn), w>w) =Ψ(w>Dϕ(x1), ..., w

>
Dϕ(xn), w>DwD + w>⊥w⊥)

≥Ψ(w>Dϕ(x1), ..., w
>
Dϕ(xn), w>DwD).

Thus
inf
w∈Rd

Ψ(w>ϕ(x1), ..., w
>ϕ(xn), w>w) = inf

w∈FD
Ψ(w>ϕ(x1), ..., w

>ϕ(xn), w>w).

Corollary 1 For λ > 0, minw∈Rd
1
n

∑
`(yi, w

>ϕ(xi)) + λ
2w
>w is attained at w =

∑n
i=1 αiϕ(xi).

• It is important to note that there is no assumption on ` (no convexity).

• This result is extendable to Hilbert spaces (RKHS) (see next section).

1.1 Finite dimensional representation of the learning problem

Since by representer theorem we know that the minimum of L̂ is of the form w =
∑n

i=1 αiϕ(xi) we can
directly optimize this characterization, i.e. we can then write:

min
w∈Rr

1

n

∑
`(yi, w

>ϕ(xi)) +
λ

2
w>w = min

α∈Rn
1

n

∑
`(yi, (Kα)i) +

λ

2
α>Kα.

where K is a n× n matrix with values

Kij = ϕ(xi)
>ϕ(xj).

Indeed

ϕ(xi)
>w =

n∑
j=1

αjϕ(xi)
>ϕ(xj) = (Kα)i,

moreover

‖w‖2 = w>w =
n∑

i,j=1

αiαjϕ(xi)
>ϕ(xj) = α>Kα.

Finally we have a closed form representation also for the function evaluation. Define the kernel function
k(x, x′) = ϕ(x)>ϕ(x′), we have

f(x) = w>ϕ(x) =
n∑
i=1

αiϕ(xi)
>ϕ(x) =

n∑
i=1

αik(xi, x).

Remark: Kernel Trick. The whole learning problem can be written in terms of the kernel k, indeed f
depends only on k, L̂ depends on K and Kij = k(xi, xj). Then we have the so called kernel trick, i.e. we
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don’t need to compute explicitly the features ϕ to be able to represent and solve the learning problem, we
need just to be able to compute their inner product.

Example: Power of the kernel trick, infinite dimensional feature maps. Consider X = (−1, 1)
and the feature map

ϕ(x) = (1, x, x2, . . . ).

The resulting model space would have the form

f(x) =
∑
j∈N

wjx
j ,

with
∑

j∈Nw
2
j <∞, corresponding to the set of the analytic functions on (−1, 1), that is a very rich space.

In particular it is dense in the space of continuous functions. However it is not possible to compute ϕ(x)
explicitly since it is infinite dimensional. The kernel trick provides an elegant way to compute the solution
of the learning problem in closed form, indeed the inner product can be computed in closed form in O(1),

k(x, x′) = ϕ(x)>ϕ(x′) =
∑
j∈N

xjx′j =
1

1− xx′
.

The kernel trick allows to:

• replace Rd by Rn; this is interesting when d is very large.

• separate the representation problem (design a kernel on a set X) and algorithms and analysis (which
only use the kernel matrix K).

2 Kernels

Since the learning problem is completely defined in terms of the kernel function, the explicit knowledge of
the feature map is not required anymore. In particular given a function k : X × X → R, to use it in a
learning problem, we need to be sure that it is a positive definite kernel, i.e., that there exists a feature
map ϕ such that

k(x, x′) = ϕ(x)>ϕ(x′), ∀ x, x′ ∈ X.

Kernel functions admits many characterizations

• Characterization in terms of positive-definitness: k is a positive definite kernel if and only if
the kernel matrix K ispositive semi-definite (i.e. all their eigenvalues are non-negative) for all n ∈ N
and x1, . . . , xn ∈ X.

Theorem 2 (Aronszajn, 1950)
k is a positive definite kernel if and only if there exists a Hilbert space F, and ϕ : X → F such that
∀x, y, k(x, y) = 〈ϕ(x), ϕ(y)〉.

• F is called the “feature space”, and ϕ the “feature map”.
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• Simple properties (to be done as exercises): the sum and product of kernels are kernels. What are
their associated feature space and feature map?

• Linear kernel: k(x, y) = x>y

• Polynomial kernel: the kernel k(x, y) = (x>y)r can be expanded as:

k(x, y) = (

d∑
i=1

xiyi)
r =

∑
α1+...+αp=r

(
r

α1, ..., αp

)
(x1y1)

α1 ...(xpyp)
αp︸ ︷︷ ︸

(x
α1
1 ...x

αp
p )(y

α1
1 ...y

αp
p )

We have: Φ(x) = {
(

r
α1,...,αp

) 1
2xα1

1 ...x
αp
p }. Exercise: how can we go beyond homogeneous polynomials?

• Translation-invariant kernels on [0, 1]. k(x, y) = q(x − y) where q is 1-periodic. k is a positive
definite kernel if and only if the Fourier series of q is non-negative (using the complex representation),
i.e.,

k(x, y) = ν0 +
∑
m∈N

2νm cos 2πmx cos 2πmy + 2νm sin 2πmx sin 2πmy

with ν > 0.

The (infinite-dimensional) feature vector is composed of ν
1/2
0 , and of

√
2νm cos 2πmx and

√
2νm sin 2πmx,

for m > 1.

If f(x) can be written f(x) = Φ(x)>w, then

‖w‖2 =
( ∫ 1

0
f(x)

)2
+
∑
m>1

2

νm

( ∫ 1

0
f(x) cos 2πmx

)2
+

2

νm

( ∫ 1

0
f(x) sin 2πmx

)2
.

For νm = 1
m2s , m > 1, this norm is equal to

‖w‖2 =
( ∫ 1

0
f(x)

)2
+

1

(2π)2s

∫ 2

0
|f (s)(x)|2dx

and the kernel has an analytical expression k(x, y) = ν0 + (−1)s−1 (2π)
2s

(2s)! B2s({x − y}), where B2s is
Bernoulli’s polynomial.

• Translation-invariant kernels on Rd: X = Rd, k(x, y) = q(x− y) with q : Rd → R.

Theorem 3 (Böchner): k is positive definite ⇔ q is the Fourier transform of a non-negative Borel
measure ⇐ q ∈ L1 and its Fourier transform is non-negative.

Proof (partial) First we recall that the Fourier transform f̂ of a function f is defined as

f̂(ω) =

∫
eiωxf(x)dx
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Let x1, ...xn ∈ Rd, let α1, .., αn ∈ R, you know that q(x) =
∫
e−iωxq̂(ω)dω

K is p.d. ≡ α>Kα ≥ 0∀α ∈ Rn ≡
∑

αsαjk(xs, xj) =
∑

αsαjq(xs − xj)

=
∑

αsαj

∫
e−iω

>(xs−xj)q̂(ω)dω

=

∫
(
∑

αsαje
−iω>xse−iω

>xj )q̂(ω)dω

=

∫
|
∑

αse
−iω>xs |2q̂(ω)dω ≥ 0.

Construction of the norm. Intuitive (non-rigorous) reasoning: if q is in L1, then q̂(ω) exists and,
with dµ(ω) = q̂(ω)dω, we have an explicit representation of

k(x, y) =

∫ 〈√
q̂(ω) exp−iω

>x,
√
q̂(ω) exp−iω

>x〉dω =

∫ 〈
ϕω(x), ϕω(y)〉dω = 〈ϕ(x), ϕ(y)〉.

If we consider f(x) =
∫
ϕω(x)wωdω, then wω = f̂(ω)/

√
q̂(ω), and the squared norm of w is equal to∫ |f̂(w)|2

q̂(w) dw, where f̂ denotes the Fourier transform of f .

Examples: Exponential kernel exp(−α|x− y|) and Gaussian kernel exp(−α|x− y|2).

• Many applications of the kernel trick!

– Exercise: show that on X = R+, k(x, y) = min(x, y) and k(x, y) = xy
x+y are positive definite

kernels.

• Non vectorial data (sequences, graphes, images).

– Exercise: for X the set of all subsets of a given set V , show that k(A,B) = |A∩B|
|A∪B| is a positive

definite kernel.

– Examples of kernels on sequences

3 Ridge regression (mostly as an exercise)

We consider the optimization problem:

min
w∈Rd

1

2n
‖y − Φw‖22 +

λ

2
‖w‖22.

with Φ ∈ Rn×r = (ϕ(x1)
>, . . . , ϕ(xn)>) and y ∈ Rn = (y1, . . . , yn). We can solve it in two ways (done as

an execise):
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1. Direct : minw∈Rd
1
2n‖y − Φw‖22 + λ

2‖w‖
2
2

2. With representer theorem : minα∈Rn
1
2n ||y −Kα||

2
2 + λ

2α
>Kα

1. Using the representer theorem:

gradient with respect to α : 1
nK(Kα−y)+λKα = 0⇔ (K2+nλK)α = Ky⇔ K((K+nλI)α−y) = 0.

If Kis non invertible, the solution is not unique : α = (K+nλI)−1y+Ker(K). However the prediction
is unique : Kα = K(K + nλI)−1y.

2. Direct method: minimizing with respect to w

gradient w.r.t. w : 1
nΦ>(Φw − y)

This leads to w = ( 1
nΦ>Φ + λI)−1 1

nΦ>y ⇔ Φf = Φ( 1
nΦ>Φ + λI)−1 1

nΦ>y.

By noting that K = ΦΦ>, we get :

kernel︷ ︸︸ ︷
ΦΦ>(ΦΦ>︸ ︷︷ ︸

n×n

+nλI)−1y =

direc︷ ︸︸ ︷
Φ(Φ>Φ︸ ︷︷ ︸

d×d

+nλI)−1Φ>y

This is simply:

Lemma 1 (matrix inversion lemma) ∀A matrix, (AA> + I)−1A = A(A>A+ I)−1

There is thus an “equivalence” betweeen this lemma and the representer theorem.

4 Complexity of linear algebra computations

If K ∈ Rn×n and L ∈ Rn×n are two matrices

• computing KL has complexity O(n3)

• computing K−1has complexity O(n3)

• computing Ky has complexity O(n2)

• Solving K−1y has complexity O(n3)

• Decomposing K in eigenvalues / eigenvectors O(n3)

• Largest eigenvector: O(n2)

Low-rank approximation

• Eigenvector basis (complexity O(n2r))

• Orthogonal projection on first r columns: O(nr2)
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