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1 Constrained optimization problems

Let f : D 7→ Rd convex and C ⊂ D convex. We consider the constrained minimization problem

inf
x∈C

f(x) .

C is the constraint set. It is often defined as the intersection of sets of the form {hi(x) = 0} and
{gj(x) 6 0}.

Example 1.1. The minimization of a linear function over a compact A ⊂ Rd. Let A ⊂ Rd
compact (non-necessarily convex) and a ∈ Rd 6= 0 then we can reformulate the non-convex
minimization on A as a constrained convex optimization problem on Conv(A)

min
x∈A

{
a>x

}
= min

x∈Conv(A)

{
a>x

}
Lagrangian duality A useful notion to solve constrained optimization problems is Lagrangian
duality. Assume that we are interested in the following constrained optimization problem:

min
x∈D

f(x) such that
{
hi(x) = 0 for i = 1, . . . ,m
gj(x) 6 0 for j = 1, . . . , r

. (P)

We denote by D∗ ⊆ D the set of points that satisfy the constraints. Remark that equality
constraints hi(x) = 0 can be rewritten as inequalities

hi(x) 6 0 and − hi(x) 6 0 .

Contrary to unconstrained optimization problems, canceling the gradient does not necessarily
provide a solution for constrained optimization problems. The basic idea of Lagrangian duality is
to take the constraint D∗ into account in the minimization problem by augmenting the objective
function with a weighted sum of the constraint functions.

Definition 1.1 (Lagrangian). The Lagrangian associated to the optimization problem (P) is the
function L : D × Rm × Rr+ defined by:

L(x, λ, µ) = f(x) + λ>h(x) + µ>g(x) .

Definition 1.2 (Primal function). We define the primal function f̄ : D → R∪{+∞} associated
to (P) by, for all x ∈ D

f̄(x) = sup
λ∈Rm,µ∈Rr

+

L(x, λ, µ) =

{
f(x) if x ∈ D∗
+∞ otherwise .
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With these definitions, we remark that the optimization problem (P) can be re-written by using
the primal function without the constraints

inf
x∈D∗

f(x) = inf
x∈D

f̄(x)

= inf
x∈D

sup
λ∈Rm,µ∈Rr

+

L(x, λ, µ) . (Primal problem)

This optimization problem is thus called the Primal problem.

The Dual problem is obtained by exchanging inf and sup in the primal problem.

sup
λ∈Rm,µ∈Rr

+

f∗(λ, µ) = sup
λ∈Rm,µ∈Rr

+

inf
x∈D
L(x, λ, µ) , (Dual problem)

where f∗ : (λ, µ) 7→ infx∈D L(x, λ, µ) is the dual function. If f is convex this function is concave.
Remark that the dual of the dual is the primal.

The denote by D∗ = {x ∈ D : f̄(x) <∞} the admissibility domain of the primal. Similarly we
denote by C∗ = {(λ, µ) ∈ Rm × Rr+ : f∗(λ, µ) > −∞} the admissibility domain of the dual. If
there is no solution to the optimization problem (P) then D∗ = ∅. If the problem is unbounded
then C∗ = ∅.

Link between the primal and the dual problems If they are not necessarily identical the
primal and the dual problems have strong relationship. For any (λ, µ), f∗(λ, µ) provides a lower
bound on the solution of (P). The dual problem finds the best lower bound.

Proposition 1.1 (Weak duality principle). We have the inequality

d∗ := sup
λ∈Rm,µ∈Rr

+

inf
x∈D
L(x, λ, µ) 6 inf

x∈D
sup

λ∈Rm,µ∈Rr
+

L(x, λ, µ) := p∗ .

Therefore, the solution of the dual problem is always smaller than the solution of the primal.
A good mnemonic to remember this inequality is “the largest dwarf is always smaller than the
smallest giant”.

Definition 1.3 (Dual gap and strong duality). The dual gap of the optimization problem is
the difference between the primal and dual solutions: p∗ − d∗ > 0. We say that there is strong
duality if p∗ = d∗.

If the duality gap is non-zero, the solutions of the primal and the dual problems are not really
related. But when there is no gap, we say that there is strong duality. The two problems are
equivalent (they share the same solutions). In this case, the existence of the solutions are related
with the existence of saddle points of the Lagrangian. It is worth emphasizing that strong duality
does not always holds.

When is there strong duality? Sometimes the dual problem is easier to solve than the
primal problem. It is then useful to know if there is strong duality.

Definition 1.4 (Slater’s condition). There exists a point x0 ∈ D strictly feasible

∃x0 ∈ D such that
{
∀1 6 i 6 m hi(x0) = 0
∀1 6 j 6 r gj(x0) < 0

.
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Theorem 1.2 (Strong duality). If the optimization problem (P) is convex: i.e.,

– f and D are convex,
– the equality constraint functions hi are affine
– the inequality constraint functions gj are convex

and if Slater’s condition holds than there is strong duality (p∗ = d∗).

In this case, we can solve the dual problem to find a solution of the primal problem.

Example 1.2. Let us compute the dual of the following linear programing problem over the set
D = Rd+

min
x>0: Ax=b

c>x ,

where A is a m× d matrix and b ∈ Rm. The constraints can be written as Ax− b = 0. We can
thus define the Lagrangian L : (x, λ) ∈ Rd+ × R 7 → c>x + λ>(b − Ax) and re-write the primal
problem with the Lagrangian

min
x>0: Ax=b

c>x = min
x>0

sup
λ∈Rm

{
c>x+ λ>(b−Ax)

}
= min

x>0
sup
λ∈Rm

{
b>λ+ x>(c−A>λ)

}
.

By Slaters condition (the problem is convex since the objective function is convex and the equality
constraints are affine), there is strong duality. We can thus swap the min and the sup, we get

min
x>0, Ax=b

c>x = sup
λ∈Rm

min
x>0

{
b>λ+ x>(c−A>λ)

}
= sup

λ∈Rm:A>λ6c

{
b>λ

}
.

The latter is the dual formulation of the problem.

Optimality condition Now, we see conditions that play the same role as canceling the
gradients for unconstrained optimization problems. These conditions will be useful to find
equations to compute analytically the solution of (P).

Assume that the functions f , hi and gj are all differentiable. Let x∗ and (λ∗, µ∗) be any primal
and dual solutions and assume that there is strong duality (no duality gap). Then, we have

1. By definition x∗ minimizes L(x, λ∗, µ∗) over x. Therefore, its gradient must be canceled
at x∗, i.e.,

∇f(x∗) +
m∑
i=1

λ∗i∇h(x∗) +
r∑
j=1

µj∇gj(x∗) = 0 (KKT1)

2. Since x∗ ∈ D∗ and (λ∗, µ∗) ∈ C∗ are feasible we have

hi(x
∗) = 0 ∀1 6 i 6 m

gj(x
∗) 6 0 ∀1 6 j 6 r (KKT2)
µ∗j > 0 ∀1 6 j 6 r .

3. The complementary condition holds

µ∗jgj(x
∗) = 0 ∀1 6 j 6 r . (KKT3)

Otherwise, we can improve µ∗ by setting µ∗j = 0 since gj(x∗) 6 0 and (λ∗, µ∗) maximizes
L(x∗, λ, µ) = f(x∗) +

∑
i λihi(x

∗) +
∑

j µjgj(x
∗).
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These conditions (KKT1-3) are called the Karush-Kuhn-Tucker (KKT) conditions. When the
primal problem is convex (see Thm. 1.2) these conditions are also sufficient.

Theorem 1.3. If there is strong duality then

x∗ is a solution of the primal problem
(λ∗, µ∗) is a solution of the dual problem

}
⇔ (KKT) conditions are satisfied.

The KKT conditions play an important role in optimization. In some cases, it is possible to solve
them analytically. Many optimization methods are conceived for solving the KKT conditions.

2 Optimization algorithms for unconstrained convex optimization

In this section we will see two widely used optimization algorithms for the problem of unconstrained
optimization. Gradient descent and Stochastic Gradient descent.

Since the goal of minimizing a function f : Rd → R (d ∈ N) is to find the point x for which the
function has minimum value, the fundamental idea behind gradient descent, consists in starting
from a given x0 ∈ Rd and finding the next point following a descent direction iteratively. In
particular we will consider f to be a convex function.

2.1 Gradient descent

Note that when f is differentiable, the gradient of f , denoted by ∇f(x) determines the direction
of maximum increase of the function in a suitable neighborood of x (and so −∇f determines
the direction of maximum decrease of the function). The gradient descent algorithm then reads
as follows

xt+1 = xt − γt∇f(xt), ∀t = 1, . . . , T

where x0 is denoted starting point and is given (e.g. x0 = 0), and γt is denoted as step-size and
is small enough such that −γt∇f(xt) is still a decrease direction in the neighborhood of xt.

The choice of γt is crucial for the optimization algorithm, indeed a γt that is too big, makes the
algorithm unstable and possibly diverging, since it follows the direction −∇f(xt) outside of the
region where it is a descent direction. On the other hand if γt is too small, the chosen direction
is a descent direction, but each step is very short leading to a larger number of steps required
to arrive to the minimum solution (with a big impact on the total computational complexity).

In the next theorem we show that there exists a step-size that guarantees the convergence of the
solution of the gradient descent algorithm to the minimizer of f and we characterize how fast
gradient descent achieves it.

Convergence of Gradient Descent for strongly convex functions. In this paragraph
we assume that f is strongly convex with gradients that are L-Lipschitz continuous.

Definition 2.1 (L-Lipschitz continuous gradients). Let L > 0. f has L-Lipschitz continuous
gradients if for all x, y ∈ Rd the following holds

‖∇f(x)−∇f(y)‖ 6 L‖x− y‖,

When f is L-Lipschitz, the following holds
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Lemma 2.1. Let L > 0 and f : Rd → R be a convex function with L-Lipschitz continuous
gradients, then

f(y) 6 f(x) +∇f(x)>(y − x) + L‖y − x‖2. (1)

Proof. By the characterization of differentiable convex functions we have seen in the previous
class we have

f(x)− f(y) > ∇f(y)>(x− y),

from which, by reordering the terms

f(y) 6 f(x) +∇f(y)>(y − x).

By adding and subtracting ∇f(x)>(y − x), we have

f(y) 6 f(x) +∇f(x)>(y − x) + (∇f(y)−∇f(x))>(y − x).

Finally, by Cauchy-Schwarz and L-Lipschitzianity of the gradient, we bound the third term of
the right hand side of the equation above as

(∇f(y)−∇f(x))>(y − x) 6 ‖∇f(y)−∇f(x)‖‖y − x‖ 6 L‖x− y‖2.

Remark 2.1. By using a different argument it is possible to prove the tighter result

f(y) 6 f(x) +∇f(x)>(y − x) +
L

2
‖y − x‖2. (2)

We are ready to see that gradient descent satisfies f(xt) < f(xt−1) when γ ∈ (0, 1/L), as proven
in the following lemma

Lemma 2.2 (Gradient descent is a descent algorithm with γt ∈ (0, 1/L)). Let f be convex and
with L-Lipschitz gradients, let x0 ∈ Rd and γt > 0, then

f(xt) 6 f(xt−1)− γt(1− Lγt)‖∇f(xt−1)‖2, ∀ t ∈ N. (3)

In particular if γt ∈ (0, 1/L) we have that γt(1− Lγt) > 0 and so for all t ∈ N,

f(xt) < f(xt−1)

whenever xt−1 is not a global optimum, otherwise xt = xt−1 and f(xt) = f(xt−1).

Proof. Choose γ ∈ (0, 1/L), by applying the lemma above, we have

f(xt) 6 f(xt−1) +∇f(xt−1)(xt − xt−1) + L‖xt−1 − xt‖2,

however xt − xt−1 = −∇f(xt−1), then

f(xt) 6 f(xt−1)− γ(1− Lγ)‖∇f(xt−1)‖2.

To conclude, since f is convex and differentiable, note that x is a global optimum iff ∇f(x) = 0.
By choosing γt ∈ (0, 1/L) we ensure that γ(1 − Lγ) > 0, so if xt−1 is not a global optimum,
then γt(1 − Lγt)‖∇f(xt−1)‖2 > 0, that implies f(xt) < f(xt−1). If xt−1 is a global optimum,
then ∇f(xt−1) = 0, so

xt = xt−1 − γt∇f(xt−1) = xt−1.
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To prove the convergence rate of gradient descent in the case of strongly convex functions, we
recall from previous class, that, when f is µ-strongly convex, we have

f(y) > f(x) +∇f(x)>(y − x) +
µ

2
‖x− y‖2. (4)

We are going to use this property in the next theorem

Theorem 2.3. Let f : Rd → R be a µ-strongly convex function with L-Lipschitz continuous
gradients. Let γ ∈ (0, 1/(2L)) and choose a constant step-size γt = γ for t ∈ N. Denote by x∗

the global optimum of f , let x0 ∈ Rd and T ∈ N, then

‖xT − x∗‖2 6 (1− γµ)T ‖x0 − x∗‖2.

Proof. We have

‖xt − x∗‖2 = ‖xt−1 − γ∇f(xt−1)− x∗‖2 (5)

= ‖xt−1 − x∗‖2 − 2γ∇f(xt−1)>(xt−1 − x∗) + γ2‖∇f(xt−1)‖2. (6)

However by strong convexity of f , reordering Eq. (4) with x = xt−1 and y = x∗, we have

−∇f(xt−1)>(xt−1 − x∗) 6 f(x∗)− f(xt−1)− µ

2
‖xt−1 − x∗‖2. (7)

By substituting the upper bound for −∇f(xt−1)>(xt−1 − x∗) in Eq. (6), we have

‖xt − x∗‖2 6 ‖xt−1 − x∗‖2 − 2γ(f(xt−1)− f(x∗))− γµ‖xt − x∗‖2 + γ2‖∇f(xt−1)‖2

= (1− γµ)‖xt−1 − x∗‖2 − 2γ(f(xt−1)− f(x∗)) + γ2‖∇f(xt−1)‖2.

By using the fact that Gradient descent is a descent algorithm, see Eq. (3), we have

f(x∗) 6 f(xt) 6 f(xt−1)− γ(1− Lγ)‖∇f(xt−1)‖2,

from which
‖∇f(xt−1)‖2 6

1

γ(1− γL)
(f(xt−1)− f(x∗)). (8)

By applying this result above, and noting that (1− γL)−1 6 2 when γ 6 1/(2L) we have

‖xt − x∗‖2 6 (1− γµ)‖xt−1 − x∗‖2 − γ
2− 2Lγ − 1

1− Lγ
(f(xt−1)− f(x∗)).

Note that when γ ∈ (0, 1/(2L)) we have that γ 2−2Lγ−1
1−Lγ > 0, then

‖xt − x∗‖2 6 (1− γµ)‖xt−1 − x∗‖2 − γ
2− 2Lγ − 1

1− Lγ
(f(xt−1)− f(x∗))

6 (1− γµ)‖xt−1 − x∗‖2,

since f(xt−1) > f(x∗) by the fact that x∗ is a global optimum. To conclude, by unrolling the
iteration we have

‖xT − x∗‖2 6 (1− γµ)‖xT−1 − x∗‖2 6 . . . 6 (1− γµ)T ‖x0 − x∗‖2.

Remark 2.2. It is possible to extend the result to γ ∈ (0, 1/L), by using the tighter inequality
(2) in Lemma 2 and the resulting tighter statement in the theorem above.

Corollary 2.4.
(1− γµ)T ‖x0 − x∗‖2 6 e−γµT ‖x0 − x∗‖2

By selecting T = 1
γµ log(‖x0 − x∗‖2/ε), we have

‖xT − x∗‖2 6 ε.
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2.2 Stochastic Gradient Descent

In this section we deal with Stochastic Gradient Descent. This algorithm is useful to find the
global minimum of convex functions of the form

f(x) = Eθ g(x, θ), where Eθ g(x, θ) =

∫
Ω
g(x, θ)dp(θ),

p is a probability distribution over Ω and g : Rd × Ω→ R.
Example 2.1 (Empirical Risk Minimization).

f(x) =
1

n

n∑
i=1

L(x, θi), L(x, θi) = `(x>zi, yi), θi = (zi, yi).

In this context we are not able to evaluate the integral above, but we assume that we are able to
sample some θt from p and to compute the the gradient ∇xg(x, θi). The algorithm is as follows.

xt = xt−1 − γt∇xg(x, θt), where θt ∼ p,

where γt > 0 is a sequence of step-sizes, x0 is given and θt is independently and identically
distributed according to p. Note that, by linearity of the integral ∇f(x) = Eθ∇xg(x, θ), so

Eθtxt = xt−1 − γtEθt∇xg(x, θt)

= xt−1 − γt∇f(xt−1).

Then in expectation stochastic gradient descent seems to behave like gradient descent. Let’s
analyze this property more in detail with the following theorem. First we define the variance of
the of the estimator of the gradient as

σ2(x) = Eθ‖∇f(x)−∇xg(x, θ)‖2.

Theorem 2.5. Assuming that f : Rd → R is µ-strongly convex and with L-Lipschitz continuous
gradients. Let γt = γ for t ∈ N, with γ ∈ (0, 1/(2L)). Assume that there exists σ2 such that
σ2(x) 6 σ2 for all x ∈ Rd, we have that

Eθ1,...,θT ‖xT − x
∗‖2 6 (1− µγ)T ‖x0 − x∗‖2 +

γ

µ
σ2.

Proof. Denote by ζt the random variable ζt = ∇f(xt−1)−∇xg(xt−1, θt). Note that in particular,
that

Eθtζt = 0,

since xt−1 does not depend on θt, moreover Eθt‖ζt‖2 = σ2(xt−1) 6 σ2. Analogously to the proof
for gradient descent we have

Eθ1,...,θt [‖xt − x∗‖2] = Eθ1,...,θt
[
‖xt−1 − x∗ − γt∇f(xt−1) + γtζt‖2

]
= Eθ1,...,θt

[
‖xt−1 − x∗‖2 − 2γt∇f(xt−1)>(xt−1 − x∗) + γ2

t ‖∇f(xt−1)‖2+

+ 2γt(xt−1 − x∗ − γt∇f(xt−1))>ζt + γ2
t ‖ζt‖2

]
= Eθ1,...,θt−1

[
‖xt−1 − x∗‖2 − 2γt∇f(xt−1)>(xt−1 − x∗) + γ2

t ‖∇f(xt−1)‖2+

+ 2γt(xt−1 − x∗ − γt∇f(xt−1))>Eθtζt + γ2
t Eθt‖ζt‖2

]
= Eθ1,...,θt−1

[
‖xt−1 − x∗‖2 − 2γt∇f(xt−1)>(xt−1 − x∗) + γ2

t ‖∇f(xt−1)‖2 + γ2
t Eθt‖ζt‖2

]
6 Eθ1,...,θt−1

[
‖xt−1 − x∗‖2 − 2γt∇f(xt−1)>(xt−1 − x∗) + γ2

t ‖∇f(xt−1)‖2
]

+ γ2
t σ

2.
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Now by the same reasoning we did for the gradient descent algorithm, in particular bounding
−∇f(xt−1)>(xt−1 − x∗) with (7) and ‖∇f(xt−1)‖2 with (8), we obtain

Eθ1,...,θt−1

[
‖xt−1−x∗‖2−2γt∇f(xt−1)>(xt−1−x∗)+γ2

t ‖∇f(xt−1)‖2
]
6 (1−µγt)Eθ1,...,θt−1

[
‖xt−1−x∗‖2

]
,

when γt ∈ (0, 1/(2L)). Finally, by denoting with Rt the quantity

Rt := Eθ1,...,θt [‖xt − x∗‖2],

and R0 := ‖x0 − x∗‖2, we obtain a recursion that is

Rt = (1− µγt)Rt−1 + γ2
t σ

2.

By selecting a fixed step-size γt = γ and unfolding the recursion we obtain

Rt = (1− µγ)tR0 + γ2σ2
t−1∑
j=0

(1− µγ)j .

Now note that
∑t−1

j=0(1− µγ)j 6
∑∞

j=0(1− µγ)j 6 1/(µγ), then

RT 6 (1− µγ)T ‖x0 − x∗‖2 +
γ

µ
σ2.

8


	Constrained optimization problems
	Optimization algorithms for unconstrained convex optimization
	Gradient descent
	Stochastic Gradient Descent


