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1 Beyond Empirical Risk Minimization: Local Averages

In this lecture we start from a different characterization of the target function f∗. We have seen
that it is defined globally as f∗ : X → Y satisfying

R(f∗) = inf
f :X→Y

R(f),

(the infimum is over the measurable functions from X to Y ) that is

f∗ ∈ arg min
f :X→Y

R(f).

Assume without loss of generality that

f∗ = arg min
f :X→Y

R(f). (1)

We can provide a pointwise characterization of f∗ as follows

Theorem 1. When Y is a compact set and ` is continuous, then

f∗(x) = arg min
y′∈Y

E[`(y′, y) | x], (2)

almost everywhere, where E[q(y) | x] denotes the conditional expectation of q(y) given x, with
q : Y → R.

Proof. We sketch the proof as follows. Denote by f̃ the function in Eq. 2. Note that by definition

E[`(f̃(x), y) | x] = inf
y′∈Y

E[`(y′, y) | x],

almost everywhere. Then, by noting that for any function f : X → Y

E[`(f(x), y) | x] ≥ inf
y′∈Y

E[`(y′, y) | x] = E[`(f̃(x), y) | x],
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we have for any f : X → Y

R(f̃) = E[`(f̃(x), y)] = Ex[E[`(f̃(x), y) | x]] = Ex[ inf
y′∈Y

E[`(y′, y) | x]] (3)

≤ Ex[ inf
y′∈Y

E[`(y′, y) | x]] ≤ Ex[E[`(f̃(x), y) | x]] = R(f). (4)

So R(f̃) = inff :X→Y R(f). To conclude the proof we need to prove that f̃ is measurable, which is
rather technical and out of the scope of the lecture (see [1]).

2 Learning via Local Averages

While the characterization in Eq. (1) suggested approaches like empirical risk minimization (we
have seen it in the previous lecture), the characterization in terms of Eq. (2) gave rise to the so
called local average methods. Denoting by ρ(y|x) the conditional probability of y given x, and by
ρ̂(y|x) an estimator for ρ(y|x), local averages estimators are of the form

f̂(x) = arg min
y′∈Y

∫
`(y′, y)dρ̂(y|x).

To study the excess risk for this estimator we perform the following analysis. Denote by E(y′, x)
the function E(y′, x) =

∫
`(y′, y)dρ(y|x) and by Ê(y′, x) the function Ê(y′, x) =

∫
`(y′, y)dρ̂(y|x),

then

R(f̂)−R(f∗) = Ex
[
E(f̂(x), x)− E(f∗(x), x)

]
= Ex

[
E(f̂(x), x)− Ê(f̂(x), x)

]
+ Ex

[
Ê(f̂(x), x)− E(f∗(x), x)

]
.

Now note that

Ex
[
E(f̂(x), x)− Ê(f̂(x), x)

]
≤ Ex

[
sup
y′∈Y
|E(y′, x)− Ê(y′, x)|

]
.

Moreover, since Ê(f̂(x), x) = infy′∈Y Ê(y′, x) and E(f∗(x), x) = infy′∈Y E(y′, x), then

Ex
[
Ê(f̂(x), x)− E(f∗(x), x)

]
= Ex

[
inf
y′∈Y

Ê(y′, x)− inf
y′∈Y

E(y′, x)

]
≤ Ex

[
sup
y′∈Y
|E(y′, x)− Ê(y′, x)|

]
.

So finally

R(f̂)−R(f∗) ≤ 2Ex

[
sup
y′∈Y
|E(y′, x)− Ê(y′, x)|

]
.

3 Estimators for the conditional expectation

Assume here to have X ⊆ Rd, that Y ⊂ R and that ρ(y|x), ρ(y, x), ρ(x) are probability densities.
We characterize ρ(y|x) as

ρ(y|x) =
ρ(y, x)

ρ(x)
.
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Usually estimators for the conditional probability have the following form

ρ̂(y|x) =
ρ̂(y, x)

ρ̂(x)
,

where ρ̂(y, x) and ρ̂(x) are estimators for ρ(y, x) and ρ(x). Now we introduce some methods to
estimate probability densities.

3.1 Density estimation

A classical way to estimate probability density is to approximate it via convolutions of the empirical
distribution. Let q be a probability density (i.e. q(x) = e−‖x‖

2
) and τ−dqτ (x) = q(x/τ), for τ > 0.

Let moreover x1, . . . , xn sampled i.i.d. from ρ. We define the estimator as

ρ̂(x) =
1

n

n∑
i=1

qτ (x− xi).

By denoting by ρ̂n the probability ρ̃n = 1
n

∑n
i=1 δxi (where δ is the Dirac’s delta) and by ? the

convolution operator (i.e. (f ? g)(x) =
∫
f(y)g(x− y)dy) we have

ρ ≈ ρ ? qτ ≈ ρ̃n ? qτ = ρ̂(x).

In particular

Lemma 1. Let |ρ(x)− ρ(y)| ≤ C‖x− y‖ for any x, y, then

|ρ(x)− (ρ ? qτ )(x)| ≤ CTτ,

where T :=
∫
‖z‖q(z)dz. (The integrals are assumed on Rd).

Proof. Since
∫
qτ (x− y)dy =

∫
qτ (y)dy = 1, we have

|ρ(x)− (ρ ? qτ )(x)| = |τ−d
∫

(ρ(x)− ρ(y))q((x− y)/τ)dy| ≤ τ−d
∫
|ρ(x)− ρ(y)|q((x− y)/τ)dy

≤ Cτ−d+1

∫
‖x− y‖/τ q((x− y)/τ)dy = Cτ−d+1

∫
‖u/τ‖q(u/τ)du = Cτ

∫
‖z‖q(z)dz,

where the last step is due to the change of variable u/τ ∈ Rd 7→ z ∈ Rd.

Lemma 2. For any v ∈ X, we have

E|(ρ ? qτ )(v)− 1

n

n∑
i=1

qτ (v − xi)|2 ≤
Qτ−d

n
,

where Q = maxt q(t).

Proof. Define the random variable z = qτ (v−x), with x distributed according to ρ. Now note that

Ez =

∫
qτ (v − x)dρ(x) =

∫
qτ (v − x)ρ(x)dx = ρ ? qτ .
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Let z1, . . . , zn defined as zi = qτ (v − xi), since x1, . . . , xn are independently and identically dis-
tributed according to ρ, then z1, . . . , zn are independent copies of z and

E| 1
n

n∑
i=1

(zi − Ez)|2 =
1

n
E(z1 − Ez)2

Now

E(z − Ez)2 ≤ Ez2 =

∫
qτ (v − x)2ρ(x)dx ≤ (max

t
qτ (t))

∫
qτ (v − x)ρ(x)dx = max

t
qτ (t) = τ−d max

t
q(t).

Finally

Theorem 2. Let ρ such that |ρ(x)− ρ(y)| ≤ C‖x− y‖, then for any v ∈ XE

∣∣∣∣∣ρ(v)− 1

n

n∑
i=1

qτ (v − xi)

∣∣∣∣∣
2
1/2

≤ CT τ +

√
Qτ−d

n
.

Proof. The result is obtained combining the two lemmas above

The estimator for ρ(x, y) can be derived in the same way, using (x1, y1), . . . , (xn, yn) ∈ Rd′ with
d′ = d+ p where d is the dimension of the euclidian space containing X and p the dimension of the
space containing Y .

4 k-Nearest Neighbours

We would like to classify objects, described with vectors x in Rd, among L+1 classes Y := {0, . . . , L}
in an automatic fashion. To do so, we have at hand a labelled data set of n data points (xi, yi) ∈
Rd ×Y for 1 ≤ i ≤ n. The data is assumed to be the realization of i.i.d. random variables (Xi, Yi)
following a distribution ν. The goal of this lesson is to build a classifier, i.e., a function

g : Rd → Y

which minimizes the probability of mistakes: P(X,Y )∼ν
{
g(X) 6= Y

}
. The latter can be rewritten as

the expected risk R(g) := E(X,Y )∼ν
[
1g(X)6=Y

]
of the 0-1 loss.

The k-nearest neighbor classifier works as follows. Given a new input x ∈ Rd, it looks at the k
nearest points xi in the data set Dn = (xi, yi) and predicts a majority vote among them. The
k-nearest neighbor classifier is quite popular because it is simple to code and to understand; it has
nice theoretical guarantees as soon as k is appropriately chosen and performs reasonably well in
low dimensional spaces. In this notes, we will investigate the following questions:

– consistency: does k-NN has the smallest possible probability of error when the number of
data grows?

– how to choose k?
There are plenty of other possible interesting questions. How should we choose the metric (in-
variance properties,. . . )? Can we get improved performance by using different weights between
neighbors (see Kernel methods)? Is it possible to improve the computational complexity (by re-
ducing the data size or keeping some data in memory,...). These questions are however beyond the
scope of these lecture notes and we refer the interested reader to the book [3].
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K = 3

Figure 1: k-nearest neighbors with two classes (orange and blue) and k = 3. The new input (i.e.,
the black point) is classified as blue which corresponds to the majority class among its three nearest
neighbors.

Assumptions and notation For simplicity, we assume the binary case: L = 1 and Y = {0, 1}.
For each l ∈ {0, 1}, we denote by µl the law of X given Y = l under ν and pl the marginal
distribution of Y :

µl = X | {Y = l} and pl = P(X,Y )∼ν{Y = l} .

We also assume that µl is absolutely continuous with respect to Lebesgue measure on Rd. We
denote by fl its density. And for each x ∈ Rd, we denote by

η(x) := P(X,Y )∼ν
{
Y = 1|X = x

}
. (5)

In the following except when stated otherwise the expectation and probability are according to
(X,Y ) ∼ ν. For clarity, we will omit the subscript (X,Y ) ∼ ν in E and P. In some cases, if
the classifier is random, for instance because it was build on the random data set (Xi, Yi) the
expectation might also be taken with respect to the classifier itself. But it will be explicited.

Lemma 3. For any classifier g : Rd → Y, R(g) = E(X,Y )∼ν
[
η(X)1g(X)=0 + (1− η(X))1g(X)=1

]
.

Proof.

R(g) = E
[
1g(X)6=Y

]
= E

[
E
[
1g(X)6=Y |X

]]
= E

[
E
[
1g(X)6=Y |X,Y = 1

]
P{Y = 1|X}+ E

[
1g(X)6=Y |X,Y = 0

]
P{Y = 0|X}

]
= E

[
E
[
1g(X)6=1|X,Y = 1

]
η(X) + E

[
1g(X)6=0|X,Y = 0

]
(1− η(X))

]
= E

[
1g(X)=0η(X) + 1g(X)=1(1− η(X))

]
.

4.1 The (optimal) Bayes classifier

It is worth to notice that a random classifier sampling g(X) = 0 and g(X) = 1 with probability
1/2 has an expected risk 1/2. Hence, we will only focus on non-trivial classifiers that outperform
this expected error. If the function η was known, one could define the Bayes classifier as follows:

g∗(x) =

{
1 if η(x) ≥ 1/2
0 otherwise
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Lemma 4. The risk of the Bayes classifier is

R∗ := R(g∗) = E
[

min{η(X), 1− η(X)}
]
.

Furthermore, for any classifier g we have

R(g)−R∗ = E
[∣∣2η(X)− 1

∣∣1g(X)6=g∗(X)

]
≥ 0.

The above lemma implies that the Bayes classifier is optimal and R∗ = ming:Rd 7→{0,1}R(g). The
goal of this lesson is to build a classifier that gets close to R∗. We call such estimator consistent.

Definition 1 (Consistency). We say that an estimator ĝn is consistent if

E(Xi,Yi)∼ν
[
R(ĝn)

]
−→

n→+∞
R∗.

Proof. Applying Lemma 3, we get from the definition of g∗

R∗ = E
[
η(X)1g∗(X)=0 + (1− η(X))1g∗(X)=1

]
= E

[
η(X)1η(x)<1/2 + (1− η(X))1η(X)≥1/2

]
= E

[
min{η(X), 1− η(X)}

]
, .

Furthermore, let g : Rd → Y, then

R(g)−R∗ = E
[
η(X)(1g(X)=0 − 1g∗(X)=0) + (1− η(X))(1g∗(X)=1 − 1g∗(X)=1)

]
= E

[
(2η(X)− 1)(1g(X)=0 − 1g∗(X)=0)

]
= E

[
(2η(X)− 1)1g(X)6=g∗(X)sign(1− 21g∗(X)=0)

]
But sign(1− 21g∗(X)=0) = sign(1− 21η(X)≤1/2) = sign(2η(X)− 1) which concludes the proof.

Therefore, if η was known, one could compute the optimal classifier g∗. However, η is unknown
and one should thus estimate it.

4.2 Plug-in estimator

Let η̂n be an estimator of η, i.e., η̂n is a function of the observation Dn = (Xi, Yi)1≤i≤n which takes
values in the functions from Rd to [0, 1]. We will omit in the following the dependence of η̂n in the
data Dn. From η̂n, we can build the plug-in estimator as follows:

ĝn(x) =

{
1 if η̂n(x) ≥ 1/2
0 otherwise

. (6)

Hopefully, if η̂n is close enough to η the estimator ĝn will be also close to g∗ and will have a small
risk. This is formalized be the following Lemma.

Lemma 5. If ĝn is defined in (6), then R(ĝn)−R∗ ≤ 2E(X,Y )∼ν
[∣∣η(X)− η̂n(X)

∣∣ ∣∣Dn

]
.
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Proof. From Lemma 4, we have

R(ĝn)−R∗ = 2E
[∣∣η(X)− 1/2

∣∣1ĝn(X)6=g∗(X)|Dn

]

To prove the Lemma it suffices to show that for all x ∈ Rd
∣∣η(x)−1/2

∣∣1ĝn(x)6=g∗(x) ≤ |η(x)− η̂n(x)|.
Let x ∈ Rd. We can assume that 1ĝn(x)6=g∗(x) 6= 0 which implies that η̂n(x) − 1/2 and η(x) − 1/2
have opposite sign. In particular this yields

|η(x)− 1/2| ≤ |η(x)− 1/2|+ |1/2− η̂n(x)| = |η(x)− η̂n(x)|

which concludes the proof.

The above Lemma shows first, if η̂n = η, then the plug-in classifier ĝn is the Bayes optimal classifier.
Second, if η̂ ≈ η, then ĝn is close to g∗. Therefore, if we could build from the data an estimator η̂n
of η such that for all x ∈ Rd

E(Xi,Yi)∼ν
[
|η(x)− η̂n(x)|

]
−→

n→+∞
0

then the associated plugin classifier ĝn would be consistent (see Definition 1). The reverse if not
true: estimating η is harder then estimating g∗. We will show that this is the case for the k-nearest
neighbors if the number of neighbors grows appropriately. This is not the case for fixed numbers
of neighbors.

5 The k-nearest neighbors classifier (kNN)

The kNN classifiers classifies a new input x with the majority class among its k-nearest neighbors
(see Figure 1). More formally, we denote by X(i)(x) the i-th nearest neighbor of x ∈ Rd (using the

Euclidean distance) among the inputs Xi, 1 ≤ i ≤ n. We have for all x ∈ Rd∥∥x−X(1)(x)
∥∥ ≤ ∥∥x−X(2)(x)

∥∥ ≤ · · · ≤ ∥∥x−X(n)(x)
∥∥

and X(i)(x) ∈ {X1, . . . , Xn} for all 1 ≤ i ≤ n. We denote by Yi(x) the class associated with Xi(x).
We can then define

η̂kn(x) =
1

k

k∑
i=1

Y(i)(x) =
1

k

n∑
i=1

Y(i)1Xi∈{X(1)(x),...,X(k)k(x)}

and ĝkn the kNN classifier is the plugin estimator defined in (6). We denote by

RkNN := lim
n→∞

E(Xi,Yi)∼ν
[
R(ĝkn)

]
the asymptic risk of the k-nearest neighbor classifier.
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Figure 2: [left] Risk of the 1-nearest neighbor and optimal risk according to η. [right] The risk of
the 1-nearest neighbor lies in the dotted area in-between the blue curve (optimal risk) and the red
curve (upper-bound of Theorem 3).

5.1 The nearest neighbor classifier

Theorem 3 (Inconsistency of the 1-nearest neighbor). The asymptotic risk of the 1-nearest neighbor
satisfies R∗ ≤ RkNN = E

[
2η(X)(1− η(X))

]
≤ 2R∗(1−R∗) .

Sketch of proof of Theorem 3. We do not provide the complete proof here but only a sketch with
the main idea. We refer the curious reader to [3] for the rigorous argument. Let (X,Y ) ∼ ν be
some new input. From (5), knowing X the label Y follows a Bernoulli distribution with parameter
η(X). When the number n of data points increases the nearest neighbor of X gets closer to X (this
has to be made rigorous since X is a random variable). Thus by continuity of η, given X when
n→∞, we also have Y(1)(X) ∼ B(η(X)). Therefore,

lim
n→∞

E(Xi,Yi)∼ν
[
R(ĝ1n)

]
= P

{
Y(1)(X) 6= Y

}
where Y(1)(X), Y ∼ B(η(X)) are independent given X. The probability of error is thus

P
{
Y(1)(X) 6= Y

}
= E(X,Y )∼ν

[
P
{
Y(1)(X) 6= Y

∣∣X}]
= E(X,Y )∼ν

[
P{Y = 1, Y(1)(X) 6= 1|X

}
+ P

{
Y 6= 1, Y(1)(x) = 1|X

}]
= E(X,Y )∼ν

[
P{Y = 1|X}P

{
Y(1)(x) 6= 1|X

}
+ P

{
Y 6= 1|X}P{Y(1)(x) = 1|X

}]
= E(X,Y )∼ν

[
2η(X)

(
1− η(X)

)]
.

This concludes the first equality of the Theorem. As for the second, denotingR(X) := min{η(X), 1−
η(X)}, we have

E
[
η(X)

(
1− η(X)

)]
= E

[
R(X)(1−R(X)

] Concavity
≤ E[R(X)]

(
1− E[R(X)]

)
= R∗(1−R∗) .
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The 1-nearest neighbor is therefore not consistent as shown in Figure 2 as soon as the optimal risk
is not trivial: R∗ /∈ {0, 1/2}. This result was first proved by [2] with assumptions on ν and η and
by [4] without any assumption. It is worth to stress that this result is completely distribution free
(independent of ν and η). The smoothness of ν and η does not matter for the limit, it only changes
the rate of convergence.

5.2 Inconsistency of the k-NN classifier (fixed k)

Therefore, a single neighbor is not sufficient to approach the optimal risk R∗. Actually, we could
prove a similar result for any fixed number of neighbors. It is convenient to let k be odd to avoid
ties. We refer to [3] for the proof.

Theorem 4. Let k ≥ 1 be odd and fixed. Then, the asymptotic risk of the k-nearest neighbor
satisfies

RkNN = EX

 k∑
j=0

(
k

j

)
η(X)j(1− η(X))k−j

(
η(X)1j<k/2 + (1− η(X))1j>k/2

)
= R∗ + E

[∣∣2η(X)− 1
∣∣P{Binomial(k,min{η(X), 1− η(X)}) > k

2

∣∣∣X}] .
Sketch of proof of Theorem 4. Similarly to Theorem 3, we only provide an idea of the proof. Let
(X,Y ) ∼ ν be a new data point. When the number of data goes to infinity, the nearest neighbors
X(1)(X), . . . , X(k)(X) of X get closer to X (to be proved rigorously) and given X their labels
Y(1)(X), . . . , Y(k)(X) are i.i.d. Bernoulli random variables with parameter η(X). The k-NN classifier
predicts

ĝkn =

{
1 if Y(1)(X) + · · ·+ Y(k)(X) > k

2

0 if Y(1)(X) + · · ·+ Y(k)(X) < k
2

.

The asymptotic probability of error of the k-NN classifier is thus

RkNN = lim
n→∞

P
{
ĝkn 6= Y

}
= P

{
Y(1)(X) + · · ·+ Y(k)(X) <

k

2
, Y = 1

}
+ P

{
Y(1)(X) + · · ·+ Y(k)(X) >

k

2
, Y = 0

}
= EX

[
P{Y = 1|X}︸ ︷︷ ︸

η(X)

P
{
Y(1)(X) + · · ·+ Y(k)(X)︸ ︷︷ ︸

Binomial(k,η(X))

>
k

2
|X
}

+ P{Y = 0|X}︸ ︷︷ ︸
1−η(X)

P
{
Y(1)(X) + · · ·+ Y(k)(X)︸ ︷︷ ︸

Binomial(k,η(X))

<
k

2

}]
,

where given X, Y(1)(X) + · · ·+ Y(k)(X), Y are i.i.d. independent Bernoulli random variables with
parameter η(X). This proves the first equality.

RkNN = EX
[
α(η(X))

]
where

α(p) := pP
{

Binomial(k, p) <
k

2

}
+ (1− p)P

{
Binomial(k, p) >

k

2

}
.
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If p < 1/2, then p < 1− p and

α(p) = p
(

1− P
{

Binomial(k, p) >
k

2

})
+ (1− p)P

{
Binomial(k, p) >

k

2

}
= p+ (1− 2p)P

{
Binomial(k, p) >

k

2

}
.

Following the same calculation for p > 1/2 yields

α(p) = min{p, 1− p}+ |2p− 1|P
{

Binomial
(
k,min{p, 1− p}

)
>
k

2

}
which concludes the proof using that R∗ = EX

[
min{η(X), 1− η(X)}

]
.

The previous Theorem may provide nice inequalities on RkNN as shown by the next corollary.

Corollary 1. We have R∗ ≤ · · · ≤ R5NN ≤ R3NN ≤ R1NN ≤ 2R∗(1−R∗). Furthermore, let k ≥ 1
be odd and fixed. Then, the asymptotic risk of the k-NN classifier satisfies

RkNN ≤ R∗ +
1√
ke
.

Proof. The first inequalities are because P
{

Binomial
(
k, p
)
> k

2

}
decreases in k for p < 1/2. Let

0 ≤ p ≤ 1/2 and B ∼ Binomial(k, p). Then,

(1− 2p)P
{
B >

k

2

}
= (1− 2p)P

{
B − kp
k

>
1

2
− p
}

(∗)
≤ (1− 2p)e−2k(1/2−p)

2

≤ sup
0≤u≤1

ue−ku
2/2

=
1√
ke
,

where (∗) is by the Okamoto-Hoeffding inequality that we recall below (see [3, Thm 8.1]).

Lemma 6 (Okamoto-Hoeffding inequality). Let X1, . . . , Xn be independant bounded random vari-
ables such that Xi ∈ [ai, bi] almost surely. Then, for all ε > 0

P {Sn − E[Sn] ≥ ε} ≤ e
−2ε2∑n

i=1
(bi−ai)

2
,

where Sn =
∑n

i=1Xi.

Therefore the asymptotic error of the k-NN classifier decreases with k but is not consistent: for
any fixed k, it does not converge to the optimal risk R∗. The idea is thus to make k →∞ with n.
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5.3 Consistent nearest neighbors making k →∞

Theorem 5 (Stone 1964). If k(n) → ∞ and k(n)
n → 0 then the k(n)-NN classifier is universally

consistent: for all distribution ν, we have

Rk(n)NN := lim
n→∞

E(Xi,Yi)∼ν
[
R(ĝkn)

]
= R∗ .

Historically, this is the first universally consistent algorithm. The proof is not trivial and comes
from a more general result (Stone’s Theorem) on “Weighted Average Plug-in” classifiers (WAP).

Definition 2 (Weighted Average Plug-in classifier (WAP)). Let Dn = {(X1, Y1), . . . , (Xn, Yn)}, a
WAP classifier is a plug-in estimator ĝn associated to an estimator of the form

η̂n(x) =

n∑
i=1

wn,i(x)Yi

where the weights wn,i(x) = wn,i(x,X1, . . . , Xn) are non negative and sum to one.

This is the case of the k-NN classifier which satisfies

wn,i(x) =

{
1
k if Xi is a kNN of x
0 otherwise

.

Theorem 6 (Stone 1977). Let (gn)n≥0 a WAP such that for all distribution ν the weights wn,i
satisfy

a) it exists c > 0 s.t. for all non-negative measurable function f with E[f(X)] <∞,

E

[
n∑
i=1

wn,i(X)f(Xi)

]
≤ cE

[
f(X)

]
;

b) for all a > 0, E
[∑n

i=1wn,i(X)1‖Xi−X‖>a
]
−→

n→+∞
0

c) E
[

max1≤i≤nwn,i(X)
]
−→

n→+∞
0

Let us make some remarks about the conditions:
a) is a technical condition
b) says that the weights of points outside of a ball around X should vanish to zero. Only the

Xi in a smaller and smaller neighborhood of X should contribute.
c) says that no point should have a too important weight. The number of points in the local

neighborhood of X should increase to ∞.

Proof of Theorem 6. From Lemma 5 together with Cauchy-Schwarz, it suffices to show that E
[
(η(X)−

η̂n(X))2
]
−→

n→+∞
0. Let us introduce

η̃n(x) :=

n∑
i=1

wn,i(x) η(Xi)︸ ︷︷ ︸
instead of Yi in η̂n
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in which we replaced Yi in η̂n with η(Xi) which we recall:

η̂n(x) =
n∑
i=1

wn,i(x)Yi and η(x) =
n∑
i=1

wn,i(x)η(x) .

Using (a+ b)2 ≤ 2a2 + 2b2, we have

E
[
(η(X)− η̂n(X))2

]
≤ 2E

[
(η(X)− η̃n(X))2

]︸ ︷︷ ︸
(1)

+2E
[
(η̃n(X)− η̂n(X))2

]︸ ︷︷ ︸
(2)

.

We will upper-bound (1) and (2) independently.

(1) For simplicity, to bound this term we assume η to be absolutely continuous: let ε > 0, it
exists a > 0 such that ‖x− x′‖ ≤ a⇒ (η(x)− η(x′))2 ≤ ε. Then,

(1) = E
[( n∑

i=1

wn,i(X)
(
η(X)− η(Xi)

))2]
Jensen
≤ E

[ n∑
i=1

wn,i(X)
(
η(X)− η(Xi)

)2]

= E
[ n∑
i=1

wn,i(X)
(
η(X)− η(Xi)

)2
1‖Xi−X‖≤ε

]
+ E

[ n∑
i=1

wn,i(X)
(
η(X)− η(Xi)

)2
1‖Xi−X‖≥ε

]

≤ ε+ E
[ n∑
i=1

wn,i(X)
(
η(X)− η(Xi)

)2
1‖Xi−X‖≥ε

]

≤ ε+ E
[ n∑
i=1

wn,i(X)1‖Xi−X‖≥ε

]
︸ ︷︷ ︸
−→

n→+∞
0 from Assumption (b)

.

Therefore (1) converges to 0 as n→∞. If η is not absolutely continuous, the result still holds
using Assumption (a) but the proof is harder (see [3], p99).
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(2) For the second term, using that E[η(Xi)] = Yi, only the diagonal terms in the sum remain

(2) = E
[( n∑

i=1

wn,i(X)
(
Yi − η(Xi)

))2]

=
n∑
i=1

∑
j 6=i

wn,i(X)wn,j(X)E
[(
Yi − η(Xi)

)(
Yj − η(Xj)

)]
︸ ︷︷ ︸

=0

+E
[ n∑
i=1

wn,i(X)2
(
Yi − η(Xi)

)2]

= E
[ n∑
i=1

wn,i(X)2
(
Yi − η(Xi)

)2]

≤ E
[ n∑
i=1

wn,i(X)2
]

≤ E
[ n∑
i=1

wn,i(X)︸ ︷︷ ︸
=1

max
1≤j≤n

wn,i(X)

]

≤ E
[

max
1≤j≤n

wn,i(X)

]
−→

n→+∞
0 from Assumption (c) .

Let us now conclude with the proof of the consistency of the k nearest neighbors when k →∞.

Proof of Theorem 5. First, we recall the definition of the weights wn,i(x) for the kNN classifier:

wn,i(x) =
1Xi∈X(1)(x),...,X(k)(x)

k
=

{
1
k if Xi belong to the k nearest neighbors of x
0 otherwise

.

It suffices to show that they satisfy the three assumptions of Theorem 6 (Stone’s theorem):
c) for all x, max1≤i≤nwn,i(x) = 1

k(n) −→n→+∞
0 so that assumption (c) holds.

b) let a > 0, recall that X(k)(x) is the k-th nearest neighbor of x. We use that almost surely the
distance of the k-nearest neighbor of X with X goes to zero when k/n→ 0:‖X−X(k)‖ −→

n→+∞
0

when k
n → 0 (see [3] for details). This yields P{‖X −X(k)(X)‖ > a} → 0 which entails

E
[ n∑
i=1

wn,i(X)1‖Xi−X‖>a

]

≤ E

[
n∑
i=1

wn,i(X)1‖Xi−X‖>a1‖Xi−X(k)(X)‖>a

]
+ E

[
n∑
i=1

wn,i(X)1‖Xi−X‖>a1‖Xi−X(k)(X)‖<a

]
≤ 0 + P

{
‖Xi −X(k)(X)‖ < a

}
→ 0

a) Technical. See [3], Lemma 5.3.

13



Conclusion

The k-nearest neighbors are universally consistent if k → ∞ and k/n → 0. Stone’s theorem is
actually more general and applies to other rules such as histograms.
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