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To talk about estimation of ”hidden” parameters, French speaking people and English speaking people
use different terms which can lead to some confusions. Within a supervised framework, English people
would prefer to use the term classification whereas the French use the term discrimination. Within an
unsupervised context, English people would rather use the term clustering, whereas French people would
use classification or classification non-supervisée. In the following we will only use the English terms.

1 K-means

K- means clustering is a method of vector quantization. K-means clustering is an algorithm of alternate
minimization that aims at partitioning n observations into K clusters in which each observation belongs
to the cluster with the nearest mean, serving as a prototype to the cluster (see Figure 1).

Figure 1: Clustering on a 2D point data set with 3 clusters.

1.1 Notations and notion of Distortion

We will use the following notations:

• xi ∈ R
p, i ∈ {1, ..., n} are the observations we want to partition.

• µk ∈ R
p, k ∈ {1, ...,K} are the means where µk is the center of the cluster k. We will denote µ the

associated matrix.
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• zki are indicator variables associated to xi such that zki = 1 if xi belongs to the cluster k, zki = 0
otherwise. z is the matrix which components are equal to zki .

Finally, we define the distortion J(µ, z) by:

J(µ, z) =

n∑

i=1

K∑

k=1

zki ‖xi − µk‖
2.

1.2 Algorithm

The aim of the algorithm is to minimize J(µ, z). To do so we proceed with an alternating minimization :

• Step 0 : We choose a vector µ

• Step 1 : we minimize J with respect to z : zki = 1 if ‖ xi − µk ‖2= mins ‖ xi − µs ‖
2, in other words

we associate to xi the nearest center µk.

• Step 2 : we minimize J with respect to µ : µk =
∑

i
zk
i
xi∑

i
zk
i

.

• Step 3 : we come back to step 1 until convergence.

• The step of minimization with respect to z is equivalent to allocating the xi in the Voronoi cells
which centers are the µk.

• During the step of minimization with respect to µ, µk is obtained by setting to zero the k-th coordinate
of the gradient of J with respect to µ. Indeed we can easily see that :

∇µk
J = −2

∑

i

zki (xi − µk)

1.3 Convergence and Initialization

We can show that this algorithm converges in a finite number of iterations. Therefore the convergence
could be local, thus it introduces the problem of initialization.

A classic method is use of random restarts. It consists in choosing several random vectors µ, computing
the algorithm for each case and finally keeping the partition which minimizes the distortion. Thus we hope
that at least one of the local minimum is close enough to a global minimum.

One other well known method is the K-means++ algorithm, which aims at correcting a major theoretic
shortcomings of the K-means algorithm : the approximation found can be arbitrarily bad with respect to
the objective function compared to the optimal clustering.

The K-means++ algorithm addresses this obstacles by specifying a procedure to initialize the cluster
centers before proceeding with the standard K-means optimization iterations. With the K-means ++
initialization, the algorithm is guaranteed to find a solution that is O(logK) competitive to the optimal
K-means solution.
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The intuition behind this approach is that it is a clever thing to well spread out the K initial cluster
centers. At each iteration of the algorithm we will build a new center. We will repeat the algorithm until
we have K centers. Here are the steps of the algorithm :

• Step 0 : First initiate the algorithm by choosing the first center uniformly at random among the data
points.

• Step 1: For each data point xi of your data set, compute the distance between xi and the nearest
center that has already been chosen. We denote this distance Dµt

(xi) where µt is specified to recall
that we are minimizing over the current chosen centers.

• Step 2: Choose one new data point at random as a new center, but now using a weighted probability
distribution where a point xi is chosen with probability proportional to Dµt

(xi)
2.

• Step 3 : Repeat Step 1 and Step 2 until K centers have been chosen.

We see that we have now built K vectors with respect to our first intuition which was to well spread out
the centers (because we used a well chosen weighted probability). We can now use those vectors as the
initialization of our standard K-means algorithm.

More details can be found on the K-means++ algorithm in [A].

[A] Arthur, D. and Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms.

1.4 Choice of K

It is important to point out that the choice of K is not universal. Indeed, we see that if we increase K, the
distortion J decreases, until it reaches 0 when K = n, that is to say when each data point is the center of
its own center. To address this issue one solution could be to add to J a penalty over K. Usually it takes
the following form :

J(µ, z,K) =
n∑

i=1

K∑

k=1

zki ‖xi − µk‖
2 + λK

But again the choice of the penalty is arbitrary.
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1.5 Other problems

We can also point out that K-means will work pretty well when the width of the different clusters are
similar, for example if we deal with spheres. But clustering by K-means could also be disappointing in
some cases such as the example given in Figure 2.

Figure 2: Example where K- means does not provide a satisfactory clustering result

Using Gaussian mixtures provides a way to avoid this problem.

2 Principal component analysis

Framework: x1, . . . , xN ∈ R
d

Goal: put points on a closest affine subspace

2.1 Analysis view

Find w ∈ R
d such that Var(xTw) is maximal, with ||w|| = 1

With centered data, i.e. 1

N

N∑

n=1

xn = 0, the empirical variance is:

V̂ar(xTw) =
1

N

N∑

n=1

(xTnw)
2 =

1

N
wT (XTX)w

where X ∈ R
N×d is the design matrix. In this case: w is the eigenvector of XTX with largest eigenvalue.

It is not obvious a priori that this is the direction we care about.
If more than one direction is required, one can use deflation:

1. Find w

2. Project xn onto the orthogonal of Vect(w)

3. Start again
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2.2 Synthesis view

min
w

N∑

n=1

d(xn, {λw, λ ∈ R})2 with w ∈ R
D, ||w|| = 1.

Advantage: if one wants more than 1 dimension, replace {λw, λ ∈ R} by any subspace.

Read https://en.wikipedia.org/wiki/Principal_component_analysis up to (and including) Section
7.
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