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In this lecture we start from a different characterization of the target function f∗. We have seen
that it is defined globally as f∗ : X → Y satisfying

R(f∗) = inf
f :X→Y

R(f),

(the infimum is over the measurable functions from X to Y ) that is

f∗ ∈ arg min
f :X→Y

R(f).

We recall that the expected risk corresponds to

R(f) = E[`(f(x), y)].

Assume without loss of generality that

f∗ = arg min
f :X→Y

R(f). (1)

We can provide a pointwise characterization of f∗ as follows

Theorem 1. When Y is a compact set and ` is continuous, then

f∗(x) = arg min
y′∈Y

E[`(y′, y) | x], (2)

almost everywhere, where E[q(y) | x] denotes the conditional expectation of q(y) given x, with
q : Y → R:

E[`(y′, Y ) | x] =

∫
`(y′, Y )dρ(Y |x).

Proof. We sketch the proof as follows. Denote by f̃ the function in Eq. 2. Note that by definition

E[`(f̃(x), y) | x] = inf
y′∈Y

E[`(y′, y) | x],

almost everywhere. Then, by noting that for any function f : X → Y

E[`(f(x), y) | x] ≥ inf
y′∈Y

E[`(y′, y) | x] = E[`(f̃(x), y) | x],
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we have for any f : X → Y

R(f̃) = E[`(f̃(x), y)] = Ex[E[`(f̃(x), y) | x]] = Ex[ inf
y′∈Y

E[`(y′, y) | x]] (3)

≤ Ex[ inf
y′∈Y

E[`(y′, y) | x]] ≤ Ex[E[`(f(x), y) | x]] = R(f). (4)

So R(f̃) = inff :X→Y R(f). To conclude the proof we need to prove that f̃ is measurable, which is
rather technical and out of the scope of the lecture (see [1]).

1 Learning via Local Averages

While the characterization in Eq. (1) suggested approaches like empirical risk minimization (we
have seen it in the previous lecture), the characterization in terms of Eq. (2) gave rise to the so
called local average methods. Denoting by ρ(y|x) the conditional probability of y given x, and by
ρ̂(y|x) an estimator for ρ(y|x), local averages estimators are of the form

f̂(x) = arg min
y′∈Y

∫
`(y′, y)dρ̂(y|x).

To study the excess risk for this estimator we perform the following analysis. Denote by E(y′, x)
the function E(y′, x) =

∫
`(y′, y)dρ(y|x) and by Ê(y′, x) the function Ê(y′, x) =

∫
`(y′, y)dρ̂(y|x),

then

R(f̂)−R(f∗) = Ex
[
E(f̂(x), x)− E(f∗(x), x)

]
= Ex

[
E(f̂(x), x)− Ê(f̂(x), x)

]
+ Ex

[
Ê(f̂(x), x)− E(f∗(x), x)

]
.

Now note that

Ex
[
E(f̂(x), x)− Ê(f̂(x), x)

]
≤ Ex

[
sup
y′∈Y
|E(y′, x)− Ê(y′, x)|

]
.

Moreover, since Ê(f̂(x), x) = infy′∈Y Ê(y′, x) and E(f∗(x), x) = infy′∈Y E(y′, x), then

Ex
[
Ê(f̂(x), x)− E(f∗(x), x)

]
= Ex

[
inf
y′∈Y

Ê(y′, x)− inf
y′∈Y

E(y′, x)

]
≤ Ex

[
sup
y′∈Y
|E(y′, x)− Ê(y′, x)|

]
.

So finally

R(f̂)−R(f∗) ≤ 2Ex

[
sup
y′∈Y
|E(y′, x)− Ê(y′, x)|

]
.

2 Density estimation

A classical way to estimate probability density is to approximate it via convolutions of the empirical
distribution. Let q be a probability density (i.e. q(x) = e−‖x‖

2
) and τ−dqτ (x) = q(x/τ), for τ > 0.

Let moreover x1, . . . , xn sampled i.i.d. from ρ. We define the estimator as

ρ̂(x) =
1

n

n∑
i=1

qτ (x− xi).
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By denoting by ρ̂n the probability ρ̃n = 1
n

∑n
i=1 δxi (where δ is the Dirac’s delta) and by ? the

convolution operator (i.e. (f ? g)(x) =
∫
f(y)g(x− y)dy) we have

ρ ≈ ρ ? qτ ≈ ρ̃n ? qτ = ρ̂(x).

In particular

Lemma 1 (Bias). Let |ρ(x)− ρ(y)| ≤ C‖x− y‖ for any x, y, then for any v ∈ Rd

sup
x
|ρ(x)− (ρ ? qτ )(x)| ≤ CTτ,

where T :=
∫
‖z‖q(z)dz. (The integrals are assumed on Rd).

Proof. Since
∫
qτ (x− y)dy =

∫
qτ (y)dy = 1, we have ρ(x) =

∫
ρ(x)qτ (x− y)dy and so

|ρ(x)− (ρ ? qτ )(x)| = |τ−d
∫

(ρ(x)− ρ(y))q((x− y)/τ)dy| ≤ τ−d
∫
|ρ(x)− ρ(y)|q((x− y)/τ)dy

≤ Cτ−d+1

∫
‖x− y‖/τ q((x− y)/τ)dy = Cτ−d+1

∫
‖u/τ‖q(u/τ)du = Cτ

∫
‖z‖q(z)dz,

where the last step is due to the change of variable u/τ ∈ Rd 7→ z ∈ Rd.

Lemma 2 (Variance). For any v ∈ X, we have, for any v ∈ Rd

E|(ρ ? qτ )(v)− ρ̂(v)|2 ≤ Qτ−d

n
,

where Q = maxt q(t) maxt ρ(t).

Proof. Define the random variable z = qτ (v−x), with x distributed according to ρ. Now note that

Ez =

∫
qτ (v − x)dρ(x) =

∫
qτ (v − x)ρ(x)dx = ρ ? qτ .

Let z1, . . . , zn defined as zi = qτ (v − xi), since x1, . . . , xn are independently and identically dis-
tributed according to ρ, then z1, . . . , zn are independent copies of z and

E| 1
n

n∑
i=1

(zi − Ez)|2 =
1

n
E(z1 − Ez)2

Now

E(z − Ez)2 ≤ Ez2 =

∫
qτ (v − x)2ρ(x)dx ≤ (max

t
qτ (t))

∫
qτ (v − x)ρ(x)dx

= (max
t
qτ (t))(qτ ? ρ)(v).

To conclude note that qτ ? ρ ≤ maxt ρ(t).

Finally
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Theorem 2. Let ρ such that |ρ(x)− ρ(y)| ≤ C‖x− y‖, then for any v ∈ Rd

(
EvED |ρ(v)− ρ̂(v)|2

)1/2
≤ CT τ +

√
Qτ−d

n
.

Proof. The result is obtained combining the two lemmas above

Finally the result is obtained by optimizing τ to minimize the trade off between bias and variance.

By choosing τ = n−
1

2+d we obtain for any v ∈ Rd

E |ρ(v)− ρ̂(v)|2 ≤ (CT +
√
Q)2 n−

2
2+d .

3 Digression. Controlling the supremum of a non-discrete set of
random variables

Note that the result above is in expectation with respect to the observed points x1, . . . , xn. Here
we provide the tools to study the problem in high probability. To this aim we need to use some
results from last class, in particular Lemma 2 that allows us to control the supremum of random
variables, and the Bernstein inequality to control bounded random variables, in Lemma 4 from last
class. We first introduce the concept of covering. The result we are going to obtain can be used
to control the excess risk of an estimator when F is not discrete but continuous (compare with the
last exercise of the previous class).

Definition 1 (Coverings of a set and covering numbers). Given a metric space S equipped with
metric d and a compact subset X, we say that the set of points C(X, d, ε) is an ε-covering of X if

X ⊆
⋃

x∈C(X,d,ε)

Bε(x, d),

where Bε(x, d) = {z ∈ S | d(x, z) ≤ ε}. We denote with covering number N (X, ε, d) the number

N (X, ε, d) = min{|C(X, d, ε)| | C(X, d, ε) is an ε-covering of X}.

Example. (Covering numbers of [−R,R]d with the ‖ · ‖∞ metric) Let X = [−R,R]d, with d ∈ N
and let ‖ · ‖∞ the `∞ metric defined as

‖x‖∞ = max
j∈{1,...,d}

|xj |,

for x ∈ Rd. The ε-ball Bε(x0, ‖x‖∞) corresponds to a cube of side 2ε as follows

Bε(x0, ‖x‖∞) = [x0 − ε, x0 + ε]d.

Note that we can cover X with at most dRε e
d cubes of sides 2ε, by disposing them on a grid of step

2ε. Then

N ([−R,R]d, ‖ · ‖∞, ε) ≤ d
R

ε
ed.

More generally it is possible to prove the following theorem that holds for any metric space.
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Theorem 3. Let R ≥ ε > 0. Let X be a subset of RD such that X ⊆ BR(x0, d) with x0 ∈ RD, R > 0
and d a metric for RD. Then there exists a covering C(X, d, ε) with covering numbers

N (X, ‖ · ‖, ε) ≤
(

6R

ε

)D
.

Now we are able to state the concentration result

Theorem 4. Let σ,B > 0. Let F be a compact set with respect to the metric d and for any θ ∈ F
let z1

θ , . . . , z
n
θ be real independent random variables, such that

Eziθ = 0, E|ziθ|2 ≤ σ2, |ziθ| ≤ B,

for any i = 1, . . . , n. Moreover assume that there exists L > 0, such that for any θ, θ′ ∈ F we have

|zθ − zθ′ | ≤ Ld(θ, θ′),

Then the following holds for any t > 0

P

(
sup
θ∈F

∣∣∣∣∣ 1n
n∑
i=1

ziθ

∣∣∣∣∣ > Lε+ t

)
≤ N (F , d, ε)e−

t2n/2

σ2+Bt .

Proof. Let C(F , d, ε) be covering of F with cardinalityN (F , d, ε). Denote by uθ the random variable

uθ =

∣∣∣∣∣ 1n
n∑
i=1

ziθ

∣∣∣∣∣ .
Since

F =
⋃

θ̄∈C(F ,d,ε)

Bε(θ̄, d) ∩ F ,

then we have
sup
θ∈F

uθ = sup
θ̄∈C(F ,d,ε)

sup
θ∈Bε(θ̄,d)∩F

uθ ≤ sup
θ̄∈C(F ,d,ε)

sup
θ∈Bε(θ̄,d)

uθ.

Now note that for any θ̄ ∈ F and any θ ∈ Bε(θ̄, d), by construction and the Lipschitzianity of z,
we have

uθ =

∣∣∣∣∣ 1n
n∑
i=1

(ziθ − ziθ̄) +
1

n

n∑
i=1

ziθ̄

∣∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣ziθ − ziθ̄∣∣+ uθ̄ ≤ Ld(θ, θ̄) + uθ̄ ≤ Lε+ uθ̄.

Then
sup
θ∈F

uθ ≤ sup
θ̄∈C(F ,d,ε)

sup
θ∈Bε(θ̄,d)

uθ ≤ sup
θ̄∈C(F ,d,ε)

sup
θ∈Bε(θ̄,d)

uθ̄ + Lε = sup
θ̄∈C(F ,d,ε)

uθ̄ + Lε.

Now we can use the bound on the supremum of a discrete set of random variables in Lemma 2 from
previous class obtaining for t > 0,

P( sup
θ̄∈C(F ,d,ε)

uθ̄ > t) ≤
∑

θ̄∈C(F ,d,ε)

P(uθ̄ > t).
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Moreover since we have a bound on the absolute value and the variance of the random variables zi
θ̄

for any θ̄, then we can use Bernstein inequality from Lemma 4 of previous class, obtaining

P(uθ̄ > t) ≤ e−
t2n/2

σ2+Bt .

Then, we obtain ∑
θ̄∈C(F ,d,ε)

P(uθ̄ > t) ≤ N (F , d, ε)e−
t2n/2

σ2+Bt ,

and so, by Lemma 1 of the previous class

P(sup
θ∈F

uθ > Lε+ t) ≤ P( sup
θ̄∈C(F ,d,ε)

uθ̄ > t) ≤
∑

θ̄∈C(F ,d,ε)

P(uθ̄ > t) ≤ N (F , d, ε)e−
t2/2

σ2+Bt .

4 Consistency of density estimation

We are now using the theorem above to derive a proper consistency analysis for density estimation.
The goal is to obtain a bound for the error of the estimator ρ̂ of the form

sup
v∈X
|ρ̂(v)− ρ(v)|,

that holds in high probability. As we did in Section 2 we split the error in bias and variance

sup
v∈X
|ρ̂(v)− (ρ ? qτ )(v)| ≤ sup

v∈X
|ρ̂(v)− ρ(v)| + sup

v∈X
|ρ̂(v)− (ρ ? qτ )(v)|.

The bias is controlled by Lemma 1. For the variance we are going to apply Thm. 4. Let X =
[−R,R]d with R > 0, Let x1, . . . , xn be the sampled independently from ρ. Define the random
variable ziv with v ∈ X as

ziv = qτ (v − xi)− (ρ ? qτ )(v).

In particular note, that since xi is sampled from ρ, we have

Eqτ (v − xi) =

∫
qτ (v − xi)ρ(x)dx = ρ ? qτ .

Then by definition

ρ̂(v)− (ρ ? qτ )(v) =
1

n

n∑
i=1

ziv.

Moreover
Eziv = 0,

by construction, and we have

sup
v∈X
|ziv| ≤ sup

v∈X
|qτ (v − xi)|+ sup

v∈X

∫
qτ (v − x)ρ(x)dx ≤ 2 sup

z∈Rd
qτ (z) ≤ Qτ−d,
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moreover analogously to Lemma 2

E|ziv|2 =

∫
(q(v − x)− (ρ ? qτ )(v))2ρ(x) ≤

∫
q(v − x)2ρ(x) ≤ Qτ−d.

To apply the theorem of previous section we assume that q is Lipschitz with constant L. Then

|qτ (z)− qτ (z′)| = τ−d|q(z/τ)− q(z′/τ)| ≤ τ−d−1‖z − z′‖,

so we have

|ziv − ziv′ | ≤ |qτ (v − xi)− qτ (v′ − xi)|+
∫
|qτ (v − x)− qτ (v′ − x)|ρ(x)dx ≤ 2Lτ−d−1‖v − v′‖.

Now we are ready to apply the Thm 4,

P
(

sup
v∈X
|ρ̂(v)− (ρ ? qτ )(v)| > 2Lε+ t

)
≤ N (X, ‖ · ‖, ε)e−

t2n

Qτ−d(1+t) .

Considering that N ([−R,R]d, ‖ · ‖, ε) ≤ (6R
ε )d by Thm. 3 and rewriting t in terms to a given

confidence level δ, we have t2

1+t = Qt−d(log 1
δ + d log 6R

ε ) that implies

P

sup
v∈X
|ρ̂(v)− (ρ ? qτ )(v)| > 2Lε+

Qt−d(log 1
δ + d log 6R

ε )

n
+

√
Qt−d(log 1

δ + d log 6R
ε )

n

 ≤ δ.
In particular we can choose ε to minimize the bound in the equation above. Choosing ε = 1/n we
have

P

sup
v∈X
|ρ̂(v)− (ρ ? qτ )(v)| >

2L+Qt−d(log 1
δ + d log 6Rn)

n
+

√
Qt−d(log 1

δ + d log(6Rn))

n

 ≤ δ.
To conclude the analysis we combine this result with the bias term in Lemma 1 and we select

τ = n−
1

2+d as before, obtaining

P
(

sup
v∈X
|ρ̂(v)− ρ(v)| > CTn−

1
2+d + C1(n)n−

2
2+d + C2(n)1/2n−

1
2+d

)
. ≤ δ.

where
C1(n) = 2L+ C2(n), C2(n) = Q(log(1/δ) + d log 6Rn).

This leads to bound of the form

sup
v∈[−R,R]d

|ρ̂(v)− ρ(v)| = O
(
n−

1
2+d

√
log(1/δ) + d logRn

)
,

with probability 1− δ.
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5 Estimators for the conditional expectation

Assume here to have X ⊆ Rd, that Y ⊂ R and that ρ(y|x), ρ(y, x), ρ(x) are probability densities.
We characterize ρ(y|x) as

ρ(y|x) =
ρ(y, x)

ρ(x)
.

Usually estimators for the conditional probability have the following form

ρ̂(y|x) =
ρ̂(y, x)

ρ̂(x)
,

where ρ̂(y, x) and ρ̂(x) are estimators for ρ(y, x) and ρ(x). The estimator for ρ(x, y) can be derived
in the same way as we did for the one of ρ(x),i.e., using (x1, y1), . . . , (xn, yn) ∈ Rd′ with d′ = d+ p
where d is the dimension of the euclidean space containing X and p the dimension of the space
containing Y .
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