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In this lesson, we study the simple but still widely used problem of Linear Least Square Regres-
sion. The linear regression problem can be traced back to Legendre (1805) and Gauss (1809).
The word “regression” is said to have been introduced by Galton in the 19th century. By model-
ing the size of individuals according to that of their fathers, Galton observed a return (regression)
towards average height. Larger-than-average fathers tend to have smaller children and vice versa
for smaller fathers.

1 Introduction

Let’s start with an example of a practical problem. In order to better optimize its production, a
producer is interested in modeling electricity consumption in France as a function of temperature
(cf. Figure 1).
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Figure 1: French power consumption (GW) as a function of temperature (ºC). To the right are
plotted error minimizing functions for polynomial spaces of degrees 1 (red), 3 (green) and 30
(blue).

The objective is to find a function f such that it explains well the power consumption (yi)16i6n

as a function of temperature (xi)16i6n, that is yi ≈ f(xi). To do this, we can choose a function
space F and solve the empirical risk minimization problem:

f̂n ∈ arg min
f∈F

R̂n(f) := arg min
f∈F

1

n

n∑
i=1

(
yi − f(xi)

)2
. (1)

∗slightly corrected by Francis Bach.
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Care must be taken when selecting the function space to avoid overfitting (see Figures 1).
Although the empirical mean square error decreases when the F space becomes larger (larger
polynomial degrees), the f̂n estimator loses its predictive power. The question is: will f̂n perform
well on new data? The linear function space of the form f : x 7→ ax+ b is the simplest. This is
the one we will study in this course.

Supervised learning: general setup and notation

Goal. In supervised machine learning, the goal is given some observations (xi, yi) ∈ X × Y of
inputs/ouptus and given a new input x ∈ X to predict well the next output y ∈ Y. The training
data set will be denoted Dn := {(xi, yi), i = 1, . . . , n}. We will often make the assumption that
the observations (xi, yi) are realizations of i.i.d. random variables from a distribution ν.

The distribution ν is unknown to the statistician, it’s a matter of learning it from the Dn data.
A learning rule A is a function that associates to training data Dn a prediction function f̂n (the
hat on f indicates that it is an estimator):

A : ∪n∈N
(
X × Y

)n → YX

Dn 7→ f̂n
.

The estimated function f̂n is constructed to predict a new output y from a new x, where (x, y)
is a pair of test data, i.e. not observed in the training data. The function f̂n is an estimator
because it depends on the data Dn and not on unobserved parameter (such as ν). If Dn is
random, it is a random function.

Risk and empirical risk. The objective is to find an estimator f̂n that predicts well new
data by minimizing the risk:

R(f̂n) := E
[(
Y ′ − f̂n(X ′)

)2 ∣∣∣Dn

]
where (X ′, Y ′) ∼ ν . (Risk)

However, the statistician cannot compute the expectation (and thus the risk) because he does
not know ν. A common method in supervised machine learning is therefore to replace the risk
with the empirical risk.

R̂n(f) =
1

n

n∑
i=1

(
yi − f(xi)

)2
. (Empirical risk)

However, one must be careful about overfitting (case where R̂n(f) is much lower than R(f), see
Figure 2). In this class, we will study the performance of the least square estimator in the case
of the linear model.

Linear model. When X = Rd and Y = R, the set of affine functions is natural. To ease the
notation, we assume that the first component of the inputs is 1 so that it is sufficient to consider
linera functions. The functions F = {x 7→ θ>x : θ ∈ Rp} can be parametrized by a vector
θ ∈ Rd and we thus consider minimizing the empirical risk

R̂n(θ) :=
1

n

n∑
i=1

(
yi − θ>xi

)2
,
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Figure 2: Overfitting and underfitting according to the complexity of F . In blue the risk R(f)
which we want to minimize, in green the empirical risk R̂n(f) that we observe on the training
data.

This expression can be rewritten in matrix notation. Let Y = (Y1, . . . , Yn)> ∈ Rn be the vector
of outputs and X ∈ Rn×d the matrix of inputs, which rows are x>i . X is called the design matrix.
The empirical risk is then

R̂n(θ) =
1

n

∥∥Y −Xθ∥∥2

2
. (2)

2 Ordinary Least Squares Estimator (OLS)

In the following, we assume that the design matrix X is injective (i.e., the rank of X is d). In
particular, d 6 n.

Definition 2.1. If X is injective, the minimizer of the empirical risk (i.e., of Equation (2)) is
called the Ordinary Least Squares (OLS) estimator.

Proposition 2.1 (Closed form solution). If X is injective, the the OLS exists and is unique. It
is given by

θ̂ =
(
X>X

)−1
X>Y .

Proof. Since R̂n is coercive and continuous, it admits at least a minimizer. Furthermore, we
have

R̂n(θ) =
1

n

∥∥Y −Xθ∥∥2

2
=

1

n

(
θ>
(
X>X

)
θ − 2θ>X>Y + ‖Y ‖2

)
.

Since R̂n is differentiable any minimizer should cancel the gradient:

∇R̂n(θ̂) =
1

n

(
2(X>X)θ̂ − 2X>Y

)
=

2

n

(
(X>X)θ̂ − Y >X

)
.

where the last equality is because X>X ∈ Rp×p is symmetric. Since X is injective, X>X is
invertible (Exercise: show that is positive definite). Therefore, a solution of ∇R̂n(θ̂) = 0 satisfies

θ̂ =
(
X>X)−1XY.

However, it remains to check that this is indeed a minimum and therefore that the Hessian is
defined as positive, which is the case because: ∇2R̂n(θ̂) = 2

n(X>X).
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2.1 Geometric interpretation

The linear model seeks to model the output vector Y ∈ Rn by a linear combination of the form
Xθ ∈ Rn. The image of X is the solution space, denoted Im(X) = {Z ∈ Rn : ∃θ ∈ Rd s.t. Z =
Xθ} ⊆ Rn. This is the vector subspace of Rn generated by the d < n columns of the design
matrix. As rg(X) = d, it is of dimension d.

By minimizing ‖Y −Xθ‖ (cf. Definition 2.1), we thus look for the element of Im(X) closest to
Y . This is the orthogonal projection of Y on Im(X), denoted Ŷ . By definition of the OLS and
by the Proposition 2.1, we have:

Ŷ
Déf 2.1

= Xθ̂
Prop. 2.1

= X(X>X)−1X>Y.

In particular, PX := X(X>X)−1X> is the projection matrix on Im(X).

2.2 Numerical resolution

The closed form formula θ̂ =
(
X>X

)−1
X>Y from the OLS is useful in analyzing it. However,

calculating it naively can be prohibitively expensive. Especially when d is large, one prefers to
avoid inverting the design matrix X>X which costs O(d3) by the Gauss-Jordan method and
can be very unstable when the matrix is badly conditioned. The following methods are usually
preferred.

QR factorization To improve stability, QR decomposition can be used. Recall that θ̂ is the
solution to the equation:

(X>X)θ̂ = X>Y ,

We write X ∈ Rn×d of the form X = QR, where Q ∈ Rn×d is an orthogonal matrix (i.e.,
Q>Q = Id) and R ∈ Rd×d is upper triangular. Upper triangular matrices are very useful for
solving linear systems. Substituting in the previous equation, we get:

R>(Q>Q)Rθ̂ = R>Q>Y ⇔ R>Rθ̂ = R>Q>Y

⇐ Rθ̂ = Q>Y .

Then all that remains is to solve a linear system with a triangular upper matrix, which is easy.

Gradient descent We can completely bypass the need of matrix inversion or factorization us-
ing gradient descent. It consists in solving the minimization problem step by step by approaching
the minimum through gradient steps. For example, we initialize θ̂0 =0, then update:

θ̂i+1 = θ̂i − η∇R̂n(θ̂i)

= θ̂i −
2η

n

(
(X>X)θ̂i − Y >X

)
,

where η > 0 is a learning parameter. We see that if the algorithm converges, then it converges to
a point canceling the gradient, thus to the OLS solution. To have convergence, the η parameter
must be well calibrated, but we will see this in more detail in the class on gradient descent.

If the data set is much too big, n � 1. It can also be prohibitively expensive to load all the
data to make the ∇R̂n(θ̂i) calculation. The common solution is then to do Stochastic Gradient
Descent, where gradient steps are made only on estimates of ∇R̂n(θ̂i), calculated on a random
subset of the data.
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2.3 Nonlinear problem: polynomial, spline, kernel regression

The assumption that the observations yi can be explained as a linear combination of the explana-
tory variables xi,j may seem strong. However, the previous linear framework can be applied to
transformations of the variables xi,j . For example, by adding the powers of the variables xki,j or
their products xi,jxi,j′ , this allows comparison to polynomial spaces. Doing a linear regression
on polynomial transformations of variables is like doing a polynomial regression.

Of course other bases (transformations) exist like regression on spline bases (piecewise polyno-
mials with constraints on the edges). This is the model used for example by EDF in operation
to predict electricity consumption as a function of variables such as time of day, day of the week,
temperature or cloud cover. In general, we can consider transformations φ : X → Rd and try to
explain the outputs yi with functions of the form θ 7→ φ(xi)

>θ. Another form of regression that
we will discuss in the following will be kernel regression, which allows to compute efficiently the
estimator even when φ maps to an infinite dimensional space.

In Figure 1, we have in this way minimized the empirical risk on polynomial spaces of degree 1
(linear model), 3 and 30. We can see that we must be careful not to consider spaces that are
too large, at the risk that the model is badly posed (X non injective). Conversely, for the
statistical analysis that we will see next to be verified, one must be in the true model Y =
φ(X)θ∗ + centered noise. We must therefore make sure that φ(X) contains enough descriptors
so that the dependency between Y and φ(X) is indeed linear. Otherwise we pay an additional
bias term.

3 Statistical analysis

3.1 Stochastic assumptions and bias/variance decomposition

Any can of guarantees requires assumption about how the data is generated. In this section, we
consider a stochastic framework that will allow us to analyze the performance of OLS.

Assumption 1 (Linear model). We assume that there exists a vector θ∗ ∈ Rd such that for all
1 6 i 6 n

Yi = x>i θ
∗ + Zi , (3)

where Z = (Z1, . . . , Zn)> ∈ Rn is a vector of errors (or noise). The Zi are assumed to be
centered independent variables E[Zi] = 0 and with variance E[Zi] = 0.

We write Yi and Zi with capital letters to remind ourselves that (from now on) they are random
variables. The noise Z comes from the fact that in practice the observations Yi never completely
fit the linear forecast. They are due to noise or unobserved explanatory variables. As before,
we assume that the first vector of the explanatory variables is the constant vector xi,1 = 1. The
Equation (3) can be rewritten in matrix form:

Y = Xθ∗ + Z

where Y = (Y1, . . . , Yn)> ∈ Rn, X = (x1, . . . , xn)> ∈ Rn×d and Z = (Z1, . . . , Zn)> ∈ Rn.

From here, there are two settings of analysis for least squares:
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• Fixed design. In this setting, the design matrix X is not random but deterministic and
the features x1, . . . , xn are fixed. The expectations are thus only with respect to the Zi
and the Yi and the goal is to minimize the

RX(θ) = E

[
1

n

n∑
i=1

(
Yi − x>i θ

)2]
, (4)

for new random observations Yi (different from the ones observed in the dataset) but on
the same inputs.

• Random design. Here, both the inputs and the outputs are random. This is the most stan-
dard setting of supervised machine learning. The goal is to minimize the risk (sometimes
called the generalization error) defined in Equation (Risk).

In this class, we will consider the fixed design setting because it eases the notation and the
calculation (we only need simple linear algebra).

Before analyzing the statistical properties of OLS, we state a general result under the linear model
which illustrate the tradeoff between estimation and approximation (or bias and variance).

Proposition 3.1 (Risk decomposition). Under the linear model (Assumption 1) with fixed de-
sign, for any θ ∈ Rd it holds [

RX(θ)−RX(θ∗)
]

= ‖θ − θ∗‖2Σ

where Σ = 1
nX
>X ∈ Rd×d and ‖θ‖2Σ = θ>Σθ. If θ is a random variable (because it depends on

a random data set) then

E
[
RX(θ)]−R(θ∗) =

∥∥E[θ]− θ∗
∥∥2

Σ︸ ︷︷ ︸
Bias

+E
[∥∥θ − E[θ]

∥∥2

Σ

]
︸ ︷︷ ︸

Variance

.

Proof. Now, let θ ∈ Rd. Then,

RX(θ) = E

[
1

n

n∑
i=1

(
Yi − x>i θ

)2]
= E

[
1

n

n∑
i=1

(
Yi − x>i θ∗ + x>i θ

∗ − x>i θ
)2]

=
1

n

n∑
i=1

E
[(
Yi − x>i θ∗

)2]
+ 2E

[
(Yi − x>i θ∗)(x>i θ∗ − x>i θ)

]
+ E

[(
x>i θ

∗ − x>i θ
)2]

= RX(θ∗) + 0 +
1

n

n∑
i=1

(θ∗ − θ)>xix>i (θ∗ − θ)

= RX(θ∗) +
∥∥θ − θ∗∥∥2

Σ
.

If θ is random, we have the following bias-variance decomposition

E
[
RX(θ)]−RX(θ∗) = E

[∥∥θ − E[θ] + E[θ]− θ∗
∥∥2

Σ

]
= E

[∥∥θ − E[θ]
∥∥2

Σ

]
+ 2E

[
(θ − E[θ])>Σ(E[θ]− θ∗)

]
+ E

[∥∥E[θ]− θ∗
∥∥2

Σ

]
= E

[∥∥θ − E[θ]
∥∥2

Σ

]
+ 2
���

���
�

E
[
(θ − E[θ])

]>Σ(E[θ]− θ∗) +
∥∥E[θ]− θ∗

∥∥2

Σ

= E
[∥∥θ − E[θ]

∥∥2

Σ

]
+ E

[∥∥E[θ]− θ∗
∥∥2

Σ

]
.
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It is worth to note that the optimal risk satisfies

RX(θ∗) = E

[
1

n

n∑
i=1

(
Yi − x>i θ∗

)2]
= E

[
1

n

n∑
i=1

Z2
i

]
=

1

n

n∑
i=1

E
[
Z2
i

]
= σ2 .

3.2 Statistical properties of OLS

We now show some guarantees for the OLS estimator.

Proposition 3.2. Under the linear model (i.e., Assumption 1) with fixed design, the OLS esti-
mator θ̂ defined in Definition 2.1 satisfies:

• it is unbiased E
[
θ̂
]

= θ∗.
• its variance is Var(θ̂) = σ2

n Σ−1 .

We can even show that the OLS satisfies the Gauss-Markov property. It is optimal among
unbiased estimators of θ, in the sense that it has a minimal variance-covariance matrix.

Proof. Using E[Zi] = 0 and Y = Xθ∗ + Z, we have

E[θ̂] = E
[
(X>X)−1X>Y

]
= E

[
(X>X)−1X>Xθ∗ +((((

(((((X>X)−1X>Z
]

= θ∗ .

Furthermore, using Var(Y ) = Var(Z) = σ2In, we have

Var(θ̂) = Var
(
(X>X)−1X>Y

)
= (X>X)−1X>Var(Y )X(X>X)−1 = σ2(X>X)−1 =

σ2

n
Σ−1 .

Corollary 3.3 (Excess risk of OLS). Under the linear model with fixed design, the excess risk
of the OLS satisfy

E
[
RX(θ̂)

]
−R(θ∗) =

σ2d

n
.

Proof. Using the bias-variance decomposition and the fact that θ∗ is unbiased (i.e., E[θ̂] = θ∗),
we have

E
[
RX(θ̂)]−RX(θ∗) =���

���
�∥∥E[θ̂]− θ∗
∥∥2

Σ
+ E

[∥∥θ̂ − E[θ̂]
∥∥2

Σ

]
= E

[∥∥θ̂ − θ∗∥∥2

Σ

]
= E

[
(θ̂ − θ∗)>Σ(θ̂ − θ∗)

]
=

1

n
E
[
(θ̂ − θ∗)>X>X(θ̂ − θ∗)

]
=

1

n
E
[

Tr
(
(θ̂ − θ∗)>X>X(θ̂ − θ∗)

)]
=

1

n
E
[

Tr
(
X(θ̂ − θ∗)(θ̂ − θ∗)>X>

)]
← because Tr(AB) = Tr(BA)

=
1

n
Tr
(
XE
[
(θ̂ − θ∗)(θ̂ − θ∗)>

]
X>
)

← because E and Tr are linear operators

=
1

n
Tr
(
XVar(θ̂)X>

)
=
σ2

n
Tr
(
X(X>X)−1X>

)
=
σ2d

n
,

where the last equality is because X(X>X)−1X> = PX is the orthogonal projection matrix
onto the d-dimensional subspace Im(X).
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Exercise: show that the expected risk E
[
R̂X(θ̂)

]
= n−d

n σ2. In particular, an unbiased estimator
of the noise σ2 is

σ̂2 =
‖Y −Xθ̂‖2

n− p
.

Gaussian noise model A very considered special case is Gaussian noise Zi ∼ N (0, σ2).
This choice comes not only from the fact that it allows to compute many additional statistical
properties on θ̂ and to perform tests (confidence intervals, significance of variables, . . . ). In
practice, it is also motivated by the central limit theorem and the fact that noise is often
an addition of many phenomena not explained by the linear combination of the explanatory
variables.

Proposition 3.4. In the linear model with Gaussian noise, the maximum likelihood estimators
of θ and σ satisfy respectively:

θ̂MV =
(
X>X

)−1
XY and σ̂2

MV =
‖Y −Xθ̂‖2

n
.

We therefore find the least squares estimator obtained by minimizing the empirical risk. The
variance estimator is biased. We will see more about maximum likelihood estimators in next
lectures.

4 Ridge regression

If X is not injective (i.e., rg(X) 6= d), the matrix (X>X) is no longer invertible and the OLS
optimization problem admits several solutions. The problem is said to be poorly posed or
unidentifiable.

The Proposition 3.2 reminds us that the variance of θ̂ depends on the conditioning of the matrix
(X>X)−1. The more the columns of the latter are likely to be dependent, the less stable θ̂ will
be. Several solutions allow to deal with the case where rg(X) < d:

• explicit complexity control by reducing the Im(X) solution space. This can be done by
removing columns from theX matrix until they become injective (for example, by reducing
the degree of polynomials). One can also set identifiability constraints of the form θ ∈ V
a vector subspace of Rd such that any element y ∈ Im(X) has a unique antecedent θ ∈ V
with y = Xθ. For example, we could choose V = Ker(X)⊥.

• implicit complexity control by regularizing the empirical risk minimization problem. The
most common is to regularize by adding ‖θ‖22 (Ridge regression, which we see below) or
‖θ‖1 (Lasso regression, see Lecture 7).

Definition 4.1. For a regularization parameter λ, the Ridge regression estimator is defined as

θ̂λ ∈ arg min
θRd

{
1

n
‖Y −Xθ‖22 + λ‖θ‖22

}
.

The regularization parameter λ > 0 regulates the trade-off between the variance of θ̂ and its
bias.
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Proposition 4.1. The Ridge regression estimator is unique (even if X is not injective) and
satisfies

θ̂λ =
(
X>X + nλIn

)−1
X>Y .

The proof is similar to the one of OLS and left as exercise. We can see that there is no longer
the problem of inverting X>X since the Ridge regression amounts to replacing

(
X>X

)−1 by(
X>X + nλIn

)−1 in the OLS solution.

Proposition 4.2 (Risk of Ridge regression). Under the linear model (Assumption 1), the Ridge
regression estimator satisfies

E
[
RX(θ̂λ)

]
−RX(θ∗) =

d∑
j=1

(θ∗j )
2 λj
(1 + λj/λ)2

+
σ2

n

d∑
j=1

λ2
j

(λj + λ)2
,

where λj is the j-th eigenvalue of Σ = 1
nX
>X. In particular, the choice λ∗ =

σ
√

Tr(Σ)

‖θ∗‖2
√
n

yields

E
[
RX(θ̂λ∗)

]
−RX(θ∗) 6

σ
√

2 Tr(Σ)‖θ∗‖2√
n

.

The proof, which follows from the bias-variance decomposition (Proposition 3.1) is left as exer-
cise.

Note that as λ → 0, its risk converges to the one of OLS. The first term corresponds to the
bias of the Ridge estimator. Thus, on the downside the Ridge estimator is biased in contrast to
the OLS. But on the positive side, its variance does not involve the inverse of Σ but of Σ + λId
which is better conditioned. It has therefore a lower variance. The parameter λ controls this
trade-off.

We can compare the excess risk bound obtained by θ̂λ∗ with the one of OLS which was σ2d/n:

• First, the one of OLS decreases in O(1/n) while this one converges slower in O(1/
√
n)

which could seem worse. Yet Ridge has a milder dependence on the noise σ instead of σ2.
• Furthermore, since Tr(Σ) 6 max16i6n ‖xi‖2, if the input norms are bounded by R, the

excess risk of Ridge does not depend on the dimension d, which can even be infinite. It is
called a dimension free bound.

The calibration of the regularization parameter is essential in practice. It can for example be
done analytically as in the proposition (but some quantities are unknown σ2, ‖θ∗‖,. . . ). In
practice one resorts to train/validation set or cross-validation (generalized).
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