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1. Choice of the stepsizes for gradient descent in quadratic optimization

In this exercise, we are interested in minimizing a quadratic function, i.e., a function of the form

f(x) =
1

2
xTHx− bTx ,

where H � 0 is a d× d symmetric positive definite matrix and b ∈ Rd. Denote x∗ the minimum of f
that we are aiming at. We use the gradient descent methods with stepsize γ :

xt+1 = xt − γ∇f(xt) .

1) Show the recurrence relation xt+1 − x∗ = (Id − γH)(xt − x∗).

2) To study this recurrence relation, we diagonalize the matrix H : denote λ1 > · · · > λd > 0 its
eigenvalues and u1, . . . , ud the associated eigenvectors. What are the constants µ and L such that f
is µ-strongly convexe and L-smooth ?

3) Show that

〈xt − x∗, ui〉 = (1− γλi)t〈x0 − x∗, ui〉 .

4) What is the choice of γ maximizing the rate of convergence of ‖xt − x∗‖2 ? Compare with the
choice used in the lession.

In practice, the above rate of convergence can become very slow when the ratio µ/L is small. To
solve this issue, we propose to use a method of the form

(1) xt+1 = xt − γ∇f(xt) + β(xt − xt−1) .

This iteration can be interpreted as follows : the speed xt+1 − xt at the time t is determined by the
gradient—like for gradient descent—to which we add a fraction of the previous speed xt − xt−1 at
the time t− 1. This additional term accelerates show convergences and damps oscillatory behaviors.

The choice of the parameters γ and β can be optimized like for plain gradient descent. To simplify
the computations, we directly give the optimal solution :

γ =
4

(
√
L+
√
µ)2

, β =

(√
L−√µ
√
L+
√
µ

)2

.(2)

5) Compute the second order recurrence relation satisfied by 〈xt− x∗, ui〉 and solve it. Give the rate
of convergence of ‖xt − x∗‖2.

The method defined by equations (1)-(2) is called the heavy-ball method because it can be in-
terpreted as the discretization of the differential equation of a ball that would roll down the graph
of the quadratic f . More generally, it is usual to choose xt+1 as a function of xt, ∇f(xt) and of
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xt−1 in order to get accelerated optimization methods : one speaks about inertial methods. Although
the heavy ball method does not necessarily work beyond quadratic functions, there are some simple
modifications that do work on all (strongly convex) functions : see Nesterov’s acceleration.

2. Gradient descent for ridge regression

We implement gradient descent with constant stepsize γ on a simple problem : ridge regression.
We recall that it is the problem of minimizing the penalized quadratic empirical risk :

min
w∈Rp

1

2n
‖y −Xw‖22 +

λ

2
‖w‖22 .

We work in the regime p > n.

6) Show that this problem is of the form (1). What are the parameters H, b, L et µ ?

7) Recall the expression for the estimator of ridge regression (obtain it by calculus by canceling the
gradient).

8) Generate randomly a design matrix X ∈ Rn×p of size n = 50, p = 60 whose entries are i.i.d.
standard Gaussian and a vector y also composed pf i.i.d. standard Gaussian random variables.

9) Fix an arbitrary value for λ, for instance λ = 1. Compute numerically µ and L. Represent though
an histogram the eigenvalues of H.

10) We will now illustrate the convergence of a constant step size gradient descent method towards
the optimum. Implement plain gradient descent to find the minimum value and the minimizer. Re-
present graphically the speed of convergence.

Remarks : - The speed of convergence are usually represented on logarithmic plots, please use
the functions semilogy, loglog of matplotlib.pyplot.
- In practice, it might be hard to know the parameters µ and L. Thus one can not choose the theo-
retical recommendation for γ. In this case, γ become a “hand-tuned” hyperparameter.

11) Implement the heavy ball method and plot the speed of convergence.

12) What happens when the regularization parameter λ goes to 0 ?

This practical session show that in convex optimization, the hessian of the function to be mini-
mized, and more specifically its condition number, is an essential parameter. In machine learning,
these hessians are random because the data is random, and are of large dimension. The exists limit
theorems that give properties that these matrices will satisfy with high probability ; the random ma-
trix theory studies these properties. These properties can then be used by optimization algorithms
for machine learning.
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