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Introduction



General information

Teachers: Alessandro Rudi and Francis Bach.

Practical sessions: Raphal Berthier.

Website: https://www.di.ens.fr/appstat/

The class will last 52 hours (30 hours of class + 22 hours of practical sessions) and

can be validated for 9 ECTS. Final grade: 50% final exam, 50% homework.

Special online format: inverted classroom!

- Read lecture notes before

- Short review of material

- ≈ One mandatory question per student per session

- Have video feeds open
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Prerequesites

Linear algebra (matrix operations, linear systems)

Probability (e.g. notion of random variables, conditional expectation)

Basic coding skills in Python: Jupyter notebooks, Anaconda

- If you do not know the language Python, please read (and code the examples of)

this 10-minutes introduction to Python:

https://www.stavros.io/tutorials/python/.

- For next week: run

https://www.di.ens.fr/appstat/spring-2020/TP/TD0-prerequisites/

crash_test.ipynb
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Rule

questions if something is unclear (we like them especially if you think they are stupid).

5



What is ML?

artificial intelligence which can learn and model some phenomena without being

explicitly programmed

Examples of “success stories”:

- Spam classification

- Machine translation

- Speech recognition

- Self-driving cars
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What is ML? Examples

Image from Lorenzo Rosasco lecture
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Search engines
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Search engines
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Search engines
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Text recognition

Image from Francis Bach lecture
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Text recognition

Image from Francis Bach lecture
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Bioinformatics

Large data – Complex data
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What is ML?

Machine Learning : artificial intelligence which can learn and model some phenomena

without being explicitly programmed

Machine Learning ⊂ Statistics + Computer Sciences

Mathematics

(Statistics, Optimization)

Computer

science

Domain

expertise

Applied

Machine

Learning

Traditional

research

Machine

learning

Dangerous

software

Image from Francis Bach lecture
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What is ML?

Machine Learning : artificial intelligence which can learn and model some phenomena

without being explicitly programmed

Machine Learning ⊂ Statistics + Computer Sciences
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learning 
program 
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Why is ML successful?

Image from Francis Bach lecture
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Sexiest job of the century
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The machine learning revolution

Big data / machine learning / data science / artificial intelligence / deep learning, a

revolution?

- Technical progress: increase in computing power and storage capacity, lower costs

- Exponential increase in amount of data: Volume, Variability, Velocity, Veracity

– IBM: 1018 bytes created each day — 90% of the data 6 2 years

– In all area: sciences, industries, personal life

– In all forms: video, text, clicks, numbers

- Methodological advancement to analyze complex datasets: high dimensional

statistics, deep learning, reinforcement learning,. . .
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Moore’s law: more computing power
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Moore’s Law: reduced costs

Limits : – debits do not follow

– miniaturization → reach the limits of classical physics → quantum mechanics
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Overview of most popular machine learning methods

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X . The training data has a

known label Y .

Examples:

– X is a picture, and Y is a cat or a dog

– X is a picture, and Y ∈ {0, . . . , 9} is a digit

– X is are videos captured by a robot playing table

tennis, and Y are the parameters of the robots to

return the ball correctly

– X is a music track and Y are the audio signals of

each instrument

?
?

?

- Unsupervised learning: training data is not labeled and does not have a known result

Examples:

– detect change points in a non-stationary time-series

– detect outliers

– cluster data in homogeneous groups

– compress data without loosing much information

– density estimation

?
? ?

?

?

?

?

?
?

?

?

- Others: reinforcement learning, semi-supervised learning, online learning,. . .
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Overview of most popular machine learning methods

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X . The training data has a

known label Y .

Classification Regression

SVM

Logistic regression

Random Forest

Lasso, Ridge

Nearest Neighbors

Neural Networks
?

?

?1

5
12

7

12

32

17

21

- Unsupervised learning: training data is not labeled and does not have a known result

Clustering
Dimensionality

reduction

K-means, the Apriori al-

gorithm, Birch, Ward,

Spectral Cluster

PCA, ICA

word embedding

?
? ?

?

?

?

?

?
?

?

?

- Others: reinforcement learning, semi-supervised learning, online learning,. . .
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Supervised learning



Supervised learning

Goal: from training data, we want to predict an output Y (or the best action) from

the observation of some input X .

Difficulties: Y is not a deterministic function of X . There can be some noise:

Y = f (X ) + ε

The function f is unknown and can be sophisticated.

→ hard to perform well systematically

Possible theoretical approaches: perform well

- in the worst-case: minimax theory, game theory

- in average, or with high probability

Algorithmic approaches:

- local averages: K -nearest neighbors, decision trees

- empirical risk minimization: linear regression, lasso, spline regression, SVM,

logistic regression

- online learning

- deep learning

- probabilistic models: graphical models, Bayesian methods

20
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Supervised learning: theory

Some data (X ,Y ) ∈ X × Y is distributed according to a probability distribution P.

We observe training data Dn :=
{

(X1,Y1), . . . , (Xn,Yn)
}

.

We must form prediction into a decision set A by choosing a prediction function

f : X︸︷︷︸
observation

→ A︸︷︷︸
decision

Our performance is measured by a loss function ` : A× Y → R. We define the risk

R(f ) := E
[
`
(
f (X ),Y

)]
= expected loss of f

Goal: minimize R(f ) by approaching the performance of the oracle f ∗ = argminf∈F R(f )

Least square regression Classification

A = Y R {0, 1, . . . ,K − 1}

`(a, y) (a − y)2 1a 6=y

R(f ) E
[
(f (X )− Y )2

]
P(f (X ) 6= Y )

f ∗ E[Y |X ] argmaxk P(Y = k|X )
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Supervised learning: theory
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Empirical risk minimization

Idea: estimate R(f ) thanks to the training data with the empirical risk

R̂n(f ) :=
1

n

n∑
i=1

`
(
f (Xi ),Yi

)
︸ ︷︷ ︸

average error on training data

≈ R(f ) = E
[
`
(
f (X ),Y

)]
︸ ︷︷ ︸

expected error

We estimate f̂n by minimizing the empirical risk

f̂n ∈ argmin
f∈F

R̂n(f ) .

Many methods are based on empirical risk minimization: ordinary least square, logistic

regression, Ridge, Lasso,. . .

Choosing the right model: F is a set of models which needs to be properly chosen:

R(f̂n) = min
f∈F

R(f )︸ ︷︷ ︸
Approximation error

+ R(f̂n)− min
f∈F

R(f )︸ ︷︷ ︸
Estimation error
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Overfitting

Complexity of F

Error

Training error

Expected error

OverfittingUnderfitting

Best choice
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Overfitting: example in regression
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Overfitting: example in regression
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Least square linear regression
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Least square Linear regression

Given training data (Xi ,Yi ) for i = 1, . . . , n, with Xi ∈ Rd and Yi ∈ {0, 1} learn a

predictor f such that our expected square loss

E
[
(f (X )− Y )2

]
is small.

We assume here that f is a linear combination

of the input x = (x1, . . . , xd )

fw (x) =
d∑

i=1

wixi = w>x

f(X)

X

Y
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Ordinary Least Square

Input X ∈ Rd , output Y ∈ R, and ` is the square loss: `(a, y) =

(a − y)2.

The Ordinary Least Square regression (OLS) minimizes the em-

pirical risk

R̂n(w) =
1

n

n∑
i=1

(Yi − w>Xi )
2

This is minimized in w ∈ Rd when X>X w −X>Y = 0, where

X =
[
X1, . . . ,Xn

]> ∈ Rn×d and Y =
[
Y1, . . . ,Yn

]> ∈ Rn.

f(X)

X

Y

Assuming X is injective (i.e., X>X is invertible) and there is an exact solution

ŵ =
(
X>X

)−1X>Y .

What happens if d � n?
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Geo-science
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Ordinary Least Square: how to compute ŵn?

If the design matrix X>X is invertible, the OLS has the closed form:

ŵn ∈ argmin
w

R̂n(w) =
(
X>X

)−1X>Y .

Question: how to compute it?

- inversion of (X>X ) can be prohibitive (the cost is O(d3)!)

- QR-decomposition: we write X = QR, with Q an orthogonal matrix and R an

upper-triangular matrix. One needs to solve the linear system:

Rŵ = Q>Y , with R =


x

.
.

.
.

.
.

.

x . . . . x

0 x


- iterative approximation with convex optimization algorithms [Bottou, Curtis, and

Nocedal 2016]: (stochastic)-gradient descent, Newton,. . .

wi+1 = wi − η∇R̂n(wi )
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Beyond vectors?

Image from Lorenzo Rosasco lecture
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Beyond vectors?

Image from Lorenzo Rosasco lecture
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Beyond vectors?

Image from Lorenzo Rosasco lecture
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Classification

Given training data (Xi ,Yi ) for i = 1, . . . , n, with Xi ∈ Rd and Yi ∈ {0, 1} learn a

classifier f (x) such that

f (Xi )

 > 0 ⇒ Yi = +1

< 0 ⇒ Yi = 0

Linearly separable

wX = 0

wX>0

wX<0

Non Linearly separable

f(X) = 0

f(X)>0

f(X)<0
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Linear classification

We would like to find the best linear classifier such

that

fw (X ) = w>X

 > 0 ⇒ Y = +1

< 0 ⇒ Y = 0

Empirical risk minimization with the binary loss?

ŵn = argmin
w∈Rd

1

n

n∑
i=1

1Yi 6=1w>Xi>0
.

This is not convex in w . Very hard to compute!

wX = 0

wX>0

wX<0

−5 0 5
0

0.5

1

binary

w>X

er
ro

r
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Spam filters

Image from Lorenzo Rosasco lecture
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Image recognition

Image from Francis Bach lecture
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Pedestrian recognition

https://youtu.be/lU4w0o-caFM
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Logistic regression

Idea: replace the loss with a convex loss

`(w>X , y) = y log
(
1 + e−w>X

)
+ (1− y) log

(
1 + ew

>X
)

−3 0 1
0

0.5

1
binary

logistic

Hinge

ŷ

er
ro

r

wX = 0

wX>0

wX<0

Probabilistic interpretation: based on likelihood maximization of the model:

P(Y = 1|X ) =
1

1 + e−w>X
∈ [0, 1]

Satisfied for many distributions of X |Y : Bernoulli, Gaussian, Exponential, . . .

Computation of the minimizer of the empirical risk (No closed form of the solution)

- Use a convex optimization algorithm (Newton, gradient descent,. . . )
40



Support Vector Machine (SVM)

In SVM, the linear separator (hyperplane) is chosen by maximizing the margin. Not by

minimizing the empirical risk.

wX = 0

wX>0

wX<0

Sparsity: it only depends on a few training points, called the support vectors

In practice, we use soft margins because no perfect linear separation is possible.
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Non-linear regression/classification

Until now, we have only considered linear predictions of x = (x1, . . . , xd )

fw (x) =
d∑

i=1

wixi .

But this can perform pretty bad... How to perform non-linear regression?

Non linear regression

f(X)

X

Y

Non Linearly separable

f(X) = 0

f(X)>0

f(X)<0
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Non-linear regression/classification

Idea: map the input X into a higher dimensional space where the problem is linear.

Example: given an input x = (x1, x2, x3) perform a linear method on a transformation

of the input like

Φ(x) =
(
x1x1, x1x2, . . . , x3x2, x3x3

)
∈ R9

Linear transformations of Φ(x) are polynomials of x! The previous methods works by

replacing x with Φ(x).

Non linear regression

f(X)

X

Y

Non Linearly separable

f(X) = 0

f(X)>0

f(X)<0
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Example: Word Embedding (Word2Vect)

http://wordrepresentation.appspot.com

Words

↓
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Spline regression

A spline of degree p is a function formed by connecting polynomial segments of degree

p so that:

- the function is continuous

- the function has D 1 continuous derivatives

- the pth-derivative is constant between knots

This can be done by choosing the good transformation Φp(x) and the right

regularization ‖Φp(x)‖.

Difficulties: choose the number of knots and the degree
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Regularization

How to avoid over-fitting if there is not enough data?

Complexity of F

Error

Training error

Expected error

OverfittingUnderfitting

Best choice

Control the complexity of the solution

- explicitly by choosing F small enough: choose the degree of the polynomials,. . .

- implicitly by adding a regularization term

min
f∈F

R̂n(f ) + λ‖f ‖2

The higher the norm ‖f ‖ is, the more complex the function is.

We do not need to know the best complexity F in advance

Complexity controlled by λ, which need to be calibrated.
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Ridge regression

The most classic regularization in statistics for linear regression:

ŵn = argmin
w∈Rd

1

n

n∑
i=1

(Yi − w>Xi )
2 + λ

d∑
i=1

w2
i

The exact solution is unique because the problem is now strongly convex:

ŵn =
(
X>X + nλI

)−1X>Y

The regularization parameter λ controls the matrix conditioning:

- if λ = 0: ordinary linear regression

- if λ→∞: ŵn → 0
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The Lasso: how to choose among a large set of variables with few observa-
tions

The Lasso corresponds to L1 regularization:

ŵn = argmin
w∈Rd

1

n

n∑
i=1

(Yi − w>Xi )
2 + λ

d∑
i=1

|wi |

Powerful if d � n: many potential variables, few observations

ŵn is sparse: most of its values will be 0 → can be used to choose variables

Other formulation of the Lasso:

∃β > 0 such that

ŵn ∈ argmin
‖w‖16β

1

n

n∑
i=1

(Yi−w>Xi )
2
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The Lasso: how to choose among a large set of variables with few observa-
tions

The Lasso corresponds to L1 regularization:

ŵn = argmin
w∈Rd

1

n

n∑
i=1

(Yi − w>Xi )
2 + λ

d∑
i=1

|wi |

Powerful if d � n: many potential variables, few observations

ŵn is sparse: most of its values will be 0 → can be used to choose variables

The Lasso is biased: ŵ>n X 6= E[Y |X ]. Hence, it is better to:

Perform Lasso

↓
Choose variables with ŵi > 0

↓
Perform Ridge on this sub-model only

Another solution is Elastic Net:

ŵn = argmin
w∈Rd

1

n

n∑
i=1

(Yi − w>Xi )
2 + λ1

d∑
i=1

|wi | + λ2

d∑
i=1

w2
i

Many extensions of the Lasso exist: Group Lasso,. . .
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Lasso: the regularization path

The Lasso corresponds to L1 regularization:

ŵn = argmin
w∈Rd

1

n

n∑
i=1

(Yi − w>Xi )
2 + λ

d∑
i=1

|wi |

Plot of the evolution of the coefficients of ŵn as a function of λ:

48



Probabilistic prediction

In some situation, we are not interested by prediction the average case E[Y |X ] only,

but by the distribution of Y |X . → give a measure of uncertainty of our prediction

Solution: modify the loss function:

- square loss `(a, y) = (a− y)2: prediction of the expected value

- absolute loss `(a, y) = |a− y |: prediction of the median

(50% to be above Y, and 50% chance to be below)

- pinball loss `(a, y) = (a− y)(τ − 1a<y ): prediction of the τ -quantile

((1− τ) chance to be above Y and τ chance to be below)

prévision - observation

erreur

observation
prévision
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How to choose the parameters? Test set

All the methods in machine learning depend on learning parameters.

How to choose them? First solution: use a test set.

- randomly choose 70% of the data to be in the training set

- the remainder is a test set

Initial training set

New training set

Test set

We choose the parameter with the smallest error on the test set.

very simple

waste data: the best method is fitted only with 70% of the data

with bad luck the test set might be lucky or unlucky
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How to choose the parameters? Cross-validation

Cross-validation:

- randomly break data into K groups

- for each group, use it as a test set and train the data on the (K − 1) other groups

Initial training set
Test setNew training set

We choose the parameter with the smallest average error on the test sets.

only 1/K of the data lost for training

K times more expensive

In practice: choose K ≈ 10.
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K-Nearest Neighbors

Classify data based on similarity with neighbors.

When observing a new input x , find the k-closest training data points to x and for

- classification: predict the most frequently occuring class

- regression: predict the average value

K = 3
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K-Nearest Neighbors

Classify data based on similarity with neighbors.

When observing a new input x , find the k-closest training data points to x and for

- classification: predict the most frequently occuring class

- regression: predict the average value
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K-Nearest Neighbors

Classify data based on similarity with neighbors.

When observing a new input x , find the k-closest training data points to x and for

- classification: predict the most frequently occuring class

- regression: predict the average value
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K-Nearest Neighbors

Classify data based on similarity with neighbors.

When observing a new input x , find the k-closest training data points to x and for

- classification: predict the most frequently occuring class

- regression: predict the average value
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K-Nearest Neighbors

Advantages:

- No optimization or training

- Easy to implement

- Can get very good performance

Drawbacks:

- Slow at query time: must pass through all training data at each

- Easily fooled by irrelevant inputs

- Bad for high-dimensional data (d > 20)

Difficulties:

- choice of K

- what distance for complex data?
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Decision Tree

Introduced by Breiman et al. 1984

Idea: partitioned the input space in an inductive and diadic fashion.
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Decision Tree

Introduced by Breiman et al. 1984

Idea: partitioned the input space in an inductive and diadic fashion.

To construct the tree, we need to answer two questions:

- Location of the cuts: which variable, what threshold?

→ minimize the inter-groups variance

- Depth of the tree: when do we stop? Over-fitting risk!

– continue while variance decreases enough

– pruning: build a large tree and prune it by minimiz-

ing a penalized error:

Test error(T ) + λsize(T )

Advantage: interpretable Drawbacks: instable (butterfly effect),

computational cost
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Decision trees: example for spam detection
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Ensemble algorithms

Ensemble algorithms are based on the following idea: averaging adds stability.

Example: Assume that Y ∈ {0, 1} and that you have K independent classification

methods fk , k = 1, . . . ,K such that P(fk (X ) 6= Y ) 6 ε . Then from Hoeffding’s

inequality:

P
(
majority voting of fk (X ) 6= Y

)
. e−Kε2

→ exponential decrease to 0!

Idea: build base methods as independent as possible and average them.

1. split the training set into K subsets of size n/K

2. train a different “base learner” on each subset

Issue: n may be too small → not enough data per “base learner” → Bagging
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Bagging (Boostrap) AGGregatING

Introduced by Breiman 1996

To fit a new “base learner”

1. sample n data with replacement from the training set

2. train the “base learner” on this subset of observations

Each base learner gets ≈ 36.8% of the data. Remaining points are called “out-of-bag”.

We can estimate the performance of each base learner with the out-of-bag error
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Random Forests

Introduced by Breiman 2001

Idea: build many (≈ 400) random decisions trees and average their predictions.

predict 24.7+23.3
2

= 24

How to build uncorrelated trees?

- bagging: each tree is built over sample of training points

- random choice of the covariate to cut

Advantages:

- No over-fitting (the more trees we build, the better)

- Easy computation of an error estimate: “out-of-bag”: no-need of cross validation

- efficient for small data sets n

Drawbacks: computational cost, black box
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Variable selection with random forests

Random forests is a powerful tool to order explanatory variables by predictive

importance.

First, we build the forest and compute E its “out-of-bag” error.

For each variable Xi , we compute its importance as follows

- randomly permute the values of Xi among training data

- update the “out-of-bag” error Ei

- get the importance of Xi given by Ei − E
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Outline

Introduction

Supervised learning

Empirical risk minimization: OLS, Logistic regression, Ridge, Lasso, Quantile

regression

Calibration of the parameters: cross-validation

Local averages
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Dimensionality Reduction Algorithms

Planning of the class
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Deep learning

Successful application domains: Image (object recognition), Audio (speech

recognition), Text (parsing)

What is it used for?

- Prediction: regression, classification,

- Generation: denoising, reconstruction of partial/missing data, generation of new

data

What is it?

- Models with graphs structure (networks) with multiple layers (deep)

- Typically non-linear models
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Deep neural network

• A neuron is a non-linear transformation of a linear combination of inputs.

• A column of neurons taking the same input x forms a new layer

x1

x2

x3

x4

Output

Inputs Neuron

f (w>x + b)
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Deep neural network

• A neuron is a non-linear transformation of a linear combination of inputs.

• A column of neurons taking the same input x forms a new layer
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Deep neural network

• A neuron is a non-linear transformation of a linear combination of inputs.

• A column of neurons taking the same input x forms a new layer

x1

x2

x3

x4

Output

Hidden

layer

Input

layer

Output

layer

Training a neural networks: backpropagation (gradient descent using ∂f
∂x

= ∂f
∂q

∂q
∂x

).

Avoid over-fitting: dropout [Hinton et al. 2012]

Build data-specific models: convolutional neural networks [LeCun et al. 1998]
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What can you do with DNN?

https://youtu.be/Khuj4ASldmU
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Unsupervised learning



Overview of Machine Learning
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Clustering

• Idea: group together similar instances

• Requires data but no labels

• Useful when you don’t know what you are looking for

The similarity is measured by a metric (ex: ‖x − y‖2
2).

The results crucially depends on the metric choice: depends on data.

Types of clustering algorithms:

- model based clustering (mixture of Gaussian)

- hierarchical clustering: a hierarchy of nested clusters is build using divisive or

agglomerative approach

- Flat clustering: no hierarchy (k-means, spectral clustering)
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K-means
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.

69



K-means

●●●●●●
●
●●

●
●●●●●

● ●
●●●●●●●● ●●●●
●●●●●●
●

●●
●●

●●
●

●●
●●●● ● ●●

●

●●●
●
●●

●

●●
●

●

●
●

●●
●●

●●
●●●●
●

●●●●●● ●●●●●●●
●●

●●
●●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

x x

x

1

2

3

4

5

1 2 3 4 5

x

y

- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.
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- Initialization: sample K points as

cluster centers

- Alternate:

1. Assign points to closest cen-

ter

2. Update cluster to the aver-

aged of its assigned points

- Stop when no point’s assignment

change.

Guaranteed to converge in a finite number of iterations.

Initialization is crucial.
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Example: Segmentation

https://youtu.be/qWl9idsCuLQ

70

https://youtu.be/qWl9idsCuLQ


Outline

Introduction

Supervised learning

Empirical risk minimization: OLS, Logistic regression, Ridge, Lasso, Quantile

regression

Calibration of the parameters: cross-validation

Local averages

Deep learning

Unsupervised learning

Clustering

Dimensionality Reduction Algorithms

Planning of the class
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Principal component analysis

Assume that you have a data matrix (with column-wise zero empirical mean)

X :=


x1,1 x1,2 . . . x1,p

...
... . . .

...

xn,1 xn,2 . . . xn,p


If p is large, some columns (i.e., explanatory

variables) may be linearly correlated.

• bad statistical property: risk minimization not

identifiable, the covariance matrix (X>X ) is

not invertible → unstable estimators

• bad computational property: we need to store

p � 1 columns with redundant information

PCA reduces the p dimensions of the data set X

down to k principal components.
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Principal component analysis

Assume that you have a data matrix (with column-wise zero empirical mean)

X :=


x1,1 x1,2 . . . x1,p

...
... . . .

...

xn,1 xn,2 . . . xn,p


How does it work?

1. Find the vector u1 such that the projection of

the data on u has the greatest variance.

u1 := argmax
‖u‖=1

‖X>u‖2 = u>X>Xu

⇒ this is the principal eigenvector of X>X .

2. More generally, if we wish a k-dimensional

subspace we choose u1, . . . , uk the top k

eigenvectors of X>X .

3. The ui form a new orthogonal basis of the data
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Generative Models
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Generative Models

https://youtu.be/QiBM7-5hA6o
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Generative Models

https://youtu.be/lcGYEXJqun8
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Planning of the class



Objective of the class

The goal of the class is to introduce the basics of machine learning. We will mix:

- theory: some theorems will be proved!

- practice: some algorithms will be implemented on real data

Disclaimer: at the end of the class, you will most likely not be able to reproduce all

examples seen in this introduction!

Typical session will be a lecture from 8h30 to 10h20, followed by a 20min break and

the practical work (PW) from 10h40 to 12h30. 2021: Online inverted classroom
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Planning

Voir https://www.di.ens.fr/appstat/spring-2021/
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For next week...

Prepare your personal laptops in practical sessions with python (jupyter, anaconda)

working on it.

Check the crash-test Jupyter notebook:

https://www.di.ens.fr/appstat/spring-2020/TP/TD0-prerequisites/crash_

test.ipynb
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