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General information

Teachers: Alessandro Rudi and Francis Bach.
Practical sessions: Raphal Berthier.

Website: https://www.di.ens.fr/appstat/

The class will last 52 hours (30 hours of class 4+ 22 hours of practical sessions) and
can be validated for 9 ECTS. Final grade: 50% final exam, 50% homework.
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General information

Teachers: Alessandro Rudi and Francis Bach.
Practical sessions: Raphal Berthier.

Website: https://www.di.ens.fr/appstat/

The class will last 52 hours (30 hours of class 4+ 22 hours of practical sessions) and
can be validated for 9 ECTS. Final grade: 50% final exam, 50% homework.

Special online format: inverted classroom!
- Read lecture notes before
- Short review of material
- &~ One mandatory question per student per session
- Have video feeds open


https://www.di.ens.fr/appstat/

Prerequesites

Linear algebra (matrix operations, linear systems)

Probability (e.g. notion of random variables, conditional expectation)

Basic coding skills in Python: Jupyter notebooks, Anaconda
- If you do not know the language Python, please read (and code the examples of)
this 10-minutes introduction to Python:
https://www.stavros.io/tutorials/python/.
- For next week: run
https://www.di.ens.fr/appstat/spring-2020/TP/TDO-prerequisites/
crash_test.ipynb


https://www. stavros.io/tutorials/python/
https://www.di.ens.fr/appstat/spring-2020/TP/TD0-prerequisites/crash_test.ipynb
https://www.di.ens.fr/appstat/spring-2020/TP/TD0-prerequisites/crash_test.ipynb

questions if something is unclear (we like them especially if you think they are stupid).



What is ML?

artificial intelligence which can learn and model some phenomena without being
explicitly programmed

Examples of “success stories”:
- Spam classification
- Machine translation
- Speech recognition
- Self-driving cars



Use your voice to send
messages, set reminders,
search for information,
and more.
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Search engines

machine learing L Q

Tous  Actualtés  Images  Vidéos  Livies  Plus Paramétres  Outils

Environ 2210000000 résultats (0,54 secondes)

Apprentissage automatique — Wikipédia
hitps:/frwikipedia.orghwiki/Apprentissage_automatique

Lapprentissage automatique (en anglais machine learning, littéralement « Fapprentissage machine »)
ou apprentissage statistique est un champ détude do

Meachine & vecteurs de support - Intelligence artifcielle - Apprentissage supervisé

Machine Learning et Big .

https:/iwww lebigdata.fr > Analytics » Data Analytics v

6 uil. 2018 - Le Machine Learning est une technologie dintelligence artificielle permettant aux
ordinateurs d'apprendre sans avoir été programmés

Qu'est-ce que le machine leaming ? - Initiez-vous au machine ...
hitps://openciassrooms.com » Accuel» Cours » Initiez-vous au machine lear
14 mai 2018 - Dans ce chapire, nous allons étudier fensemble des éléments qui entrent en jeu dans
Ia formulation d'un probléme de machine learning,

Machine Learning Stanford University Cours - Coursera
hitps:/frcoursera.org/leam/machine-learning

Apprentissage automatique from Université de Stanford. Machine lear
computers to act without being expliity programmed.

g is the science of getiing

Vidéos

Plysidiimages

Apprentissage automatique <

Champ détude

L i estun champ
d'étude de lintelligence artficielle qui se fonde sur des approches
statistiques pour donner aux ordinateurs la capacité d ... Wikipédia

Commentaires

Afficher les résultats pour
Apprentissage profond (Domaine d'étude)
L

d'apprentissage automatique tentant de ...
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Le machine learning : un engouement t. Machine learning et lutte contre la fraude - Netheos

The Machine Learning Revolution... Machine Learning with Python: from Linear M...

An Introduction to Machine Learning | DigitalOcean



Search engines

A a

Tous  Images  Maps  Shopping  Plus Paramétres  Outils

Environ 25270000000 résulats (0,81 secondes)

Taille de limage
1702 %1733

‘Trouver d'autres tailles de fimage
Toutes les tailles - Grandes

Recherche associée possible : francis bach

Francis Bach - INRIA - ENS - DI ENS

hitps://www.di.ens.fri~fbach/ v Traduire cette page

Francis Bach. INRIA - SIERRA project-team. Departement d'Informatique de I'Ecole Normale Superieure.
Centre de Recherche INRIA de Paris 2 rue Simone Iff.

Francis Bach — Wikipédia
https/ifr wikipedia.org/wiki/Francis_Bach v

Francis Bach est un chercheur tatistique. Sommaire. 1
Biographie; 2 Travaux; 3 Liens externes; 4 Références.
Images similaires

6]

Francis Bach <

Chercheur

Francis Bach est un chercheur franais spécialiste de Iapprentissage
statistique. Wikipédia

Livres
—_—— ——
Leaming  Sparse Optimiza,
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Submodu... Image..  Sparsityl
201 Py 20
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Julien Jean Ponce



Text recognition

Monsieur,

Vous étes averti de porter
samedi prochain 26 janvier
quarante écus dans un trou qui
est au pied de Ila croix
Montelay sous peine d’avoir la
téte cassée a I'heure que vous
y penserez le moins. Si I'on ne

Ao fon

%;fma9awmzfigw~ _ﬁ
S o /,{“Z]

)n.. f-‘“' vous rencontre point vous étes

Sl m,z’,..lz, assuré que le feu sera mis
warie’ d dadi s ».L./.-,- Z chez vous. S'il en est parlé a
a. ch gre -‘9”.4»7/.-“ qui que ce soit la téte cassée

M..,g,,,,,,,u vous aurez.
7 ":;(7 5 Do ar

7‘“’ ﬁ / ’f«?asﬂ.

Archives du Val d'Oise - 1737
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Text recognition

Image from Francis Bach lecture



Large data — Complex data




What is ML?

Machine Learning : artificial intelligence which can learn and model some phenomena
without being explicitly programmed

Machine Learning C Statistics + Computer Sciences

Mathematics

(Statistics, Optimization)

Machine Traditional
learning research
Applied
Machine
Learning
Computer Domain

science Dangerous expertise

software



What is ML?

Machine Learning : artificial intelligence which can learn and model some phenomena
without being explicitly programmed

Machine Learning C Statistics + Computer Sciences

» Traditional programming:

N ‘tiger’

output

g; input

» Machine learning:

‘tiger’ ___‘zebra’

— M
output  chosen program /

training data input
model

Image from Francis Bach lecture



Why is ML successful?
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= artificial
intelligence

machine learning

= big data



Sexiest job of the century

1 L
Data scientist is

the sexiest job,

of the 21st century.

Harvard Business Review

Job Trends from Indeed.com
~="data scientist"
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The machine learning revolution

Big data / machine learning / data science / artificial intelligence / deep learning, a
revolution?

- Technical progress: increase in computing power and storage capacity, lower costs



Moore’s law: more computing power
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Moore’s Law: reduced costs

$1,000,000.00 } hard drive cost per gigabyte (USD)
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Limits : — debits do not follow

— miniaturization — reach the limits of classical physics — quantum mechanics



The machine learning revolution

Big data / machine learning / data science / artificial intelligence / deep learning, a
revolution?

- Technical progress: increase in computing power and storage capacity, lower costs
- Exponential increase in amount of data: Volume, Variability, Velocity, Veracity
— IBM: 10'® bytes created each day — 90% of the data < 2 years
— In all area: sciences, industries, personal life
— In all forms: video, text, clicks, numbers



The machine learning revolution

Big data / machine learning / data science / artificial intelligence / deep learning, a
revolution?

- Technical progress: increase in computing power and storage capacity, lower costs
- Exponential increase in amount of data: Volume, Variability, Velocity, Veracity
— IBM: 10'® bytes created each day — 90% of the data < 2 years
— In all area: sciences, industries, personal life
— In all forms: video, text, clicks, numbers
- Methodological advancement to analyze complex datasets: high dimensional
statistics, deep learning, reinforcement learning,. ..



Overview of Machine Learning
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Overview of Machine Learning
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Overview of most popular machine learning methods

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X. The training data has a
known label Y.

Examples: .
— X is a picture, and Y is a cat or a dog . @
— X is a picture, and Y € {0,...,9} is a digit . .
— X is are videos captured by a robot playing table .
tennis, and Y are the parameters of the robots to @ . .
return the ball correctly . ®

— X is a music track and Y are the audio signals of
each instrument

- Unsupervised learning: training data is not labeled and does not have a known result

Examples: @

— detect change points in a non-stationary time-series @ @
— detect outliers @ @
— cluster data in homogeneous groups @ @@

— compress data without loosing much information

— density estimation @ @

- Others: reinforcement learning, semi-supervised learning, online learning,. ..
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Overview of most popular machine learning methods

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X. The training data has a

known label Y.

Classification Regression

SVM Lasso, Ridge @
Logistic regression Nearest Neighbors @ @ @
Random Forest Neural Networks @ @

- Unsupervised learning: training data is not labeled and does not have a known result

Dimensionality @@

reduction
@ @

Clustering

K-means, the Apriori al-
gorithm, Birch, Ward,
Spectral Cluster

PCA, ICA

word embedding @ @

- Others: reinforcement learning, semi-supervised learning, online learning,. ..



Supervised learning




Supervised learning

Goal: from training data, we want to predict an output Y (or the best action) from
the observation of some input X.

Difficulties: Y is not a deterministic function of X. There can be some noise:

Y=Ff(X)+e
The function f is unknown and can be sophisticated. . . @
— hard to perform well systematically .

Possible theoretical approaches: perform well
- in the worst-case: minimax theory, game theory @ @
- in average, or with high probability .
Algorithmic approaches:
- local averages: K-nearest neighbors, decision trees
- empirical risk minimization: linear regression, lasso, spline regression, SVM,
logistic regression
- online learning
- deep learning
- probabilistic models: graphical models, Bayesian methods

20



Supervised learning: theory

Some data (X, Y) € X x )V is distributed according to a probability distribution P.
We observe training data D, := {(X1. Y1), ..., (Xn, Ya) }-

We must form prediction into a decision set A by choosing a prediction function

f: X —= A

observation decision

Our performance is measured by a loss function 7 : A x V — R. We define the risk

R(f) :==E[¢(f(X),Y)] = expected loss of f

Goal: minimize R(f) by approaching the performance of the oracle f* = arg min,¢ » R(f)

‘ Least square regression Classification
A=Y R {0,1,...,K -1}
(a,y) (a—y)° Loy
R(f) E[(f(X) - Y)?] P(f(X) #Y)
f* E[Y|X] arg max, P(Y = k|X)

21



Supervised learning: theory

22



Supervised learning

Empirical risk minimization: OLS, Logistic regression, Ridge, Lasso, Quantile
regression

23



Empirical risk minimization

Idea: estimate R(f) thanks to the training data with the empirical risk

Ra(f) : Z( ~ R(f)

average error on training data expected error
We estimate f, by minimizing the empirical risk

ﬁ, € arg min I%n(f) .
fer

Many methods are based on empirical risk minimization: ordinary least square, logistic
regression, Ridge, Lasso,. ..

Choosing the right model: F is a set of models which needs to be properly chosen:
R(f) = min R(f) +  R(fa) — min R(f)

—_—— N——

Approximation error Estimation error

24



Error

/

\

Underfitting Overfitting

Expected error

Training error

>

Best choice Complexity of F

25



Overfitting: example in regression

Linear model: Y =aX+b

Training error: 0.1 .
2 | Expected error: 0.08
n
9
> 24
wn
o
=
S 4

0.0 0.2 0.4 0.6 0.8 1.0



Overfitting: example in regression

Cubic model: Y = aX+bX?+cX3+d

Training error: 0.03 d
2 | Expected error: 0.05
n
9
> 24
0 —
b
o
S 4

0.0 0.2 0.4 0.6 0.8 1.0



Overfitting:

example in regression

2.0

15

1.0

0.5

0.0

Polynomial model: Degree =14

Training error: 0.01
Expected error: 0.17

0.0 0.2 0.4 0.6 0.8 1.0
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Least square linear regression

example taken from Coursera

DATA .
Living area (feet?) | Price (10008s) ~
2104 400 -
1600 330 o
2400 369 f.
1416 232 i
3000 540 "
(xl’ y1)7 ctc (:Bn’ yn) T Rl W ’

Living area (feet?) | #bedrooms | Price (1000$s)

2104 3 400

1600 3 330

2400 3 369

1416 2 232
4

3000 540

27



Least square Linear regression

Given training data (X;, ;) for i = 1,...,n, with X; € R? and Y; € {0,1} learn a
predictor f such that our expected square loss

E[(f(X) - Y)?]
is small.
Y F(X)

We assume here that f is a linear combination
of the input x = (x1,...,xq)

d
fw(x) = Z wixj = w ' x
i=1

28



Ordinary Least Square

Input X € RY, output Y € R, and £ is the square loss: l(a,y) =

(a—y)* Y )

o
The Ordinary Least Square regression (OLS) minimizes the em- N .
pirical risk

1 n LY \.
Ro(w) = = 3 (Vi = w' Xi)® A
i=1
.

This is minimized in w € RY when X " X w — X " Y = 0, where X
X=X, ...%]  €R™and Y = [V1,...,Y,] " €R"

Assuming X is injective (i.e., XT X is invertible) and there is an exact solution

w=(x"x)"'xTy.

What happens if d > n?

29



Geo-science

30



Ordinary Least Square: how to compute w,?

If the design matrix X T X is invertible, the OLS has the closed form:

Wy € arg min Ry(w) = (XTX>71XTY.
w

Question: how to compute it?
- inversion of (X T X) can be prohibitive (the cost is O(d3)!)
- QR-decomposition: we write X = QR, with Q an orthogonal matrix and R an
upper-triangular matrix. One needs to solve the linear system:

Rv=Q"Y, with R= "
0

- iterative approximation with convex optimization algorithms [Bottou, Curtis, and
Nocedal 2016]: (stochastic)-gradient descent, Newton,. . .

Wis1 = w; — 0V Ra(w;)

31



Beyond vectors?

1 P
Z‘l N .731
X, = : :
1 P
l.n 'r’l’l
85 [255/221| 0

17 1170|119| 68

238|136| 0 |255

85 [170(136(238
221(68 |119(255
119(221 17 [136

32
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Beyond vectors?

n patients p gene expression measurements

o zfj Y1
X, = : Y= :
5, zh Yn

33
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Beyond vectors?

behavi

*@En?;ei«;c:;»;,algorlthmsnguna- n

.:da asstatistical .- |

deal UuSe amounts == @

xtract:
= zledrning s rar: Un

o fication'

gl'aplis CIustermgm-- =

Document Representation

In the beginning God created

the heaven and the eaith, . beginning 1

And the earth was without fori

and void; and darkness was oarth 2

upon the face of the deep. T p
‘ ~ 5 1 e e ..o@

And the Spirit of God moved

upon the face of the wat X n = . . N N .

And God said, Let there be

light: and there was light. xX

34
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Classification

Given training data (X;, Y;) for i = 1,...,n, with X; € R? and Y; € {0,1} learn a
classifier f(x) such that

>0 = Yi=+1

<0 = Y, =0

Linearly separable Non Linearly separable

wX =0

35



Linear classification

We would like to find the best linear classifier such

that

>0 = Y =41
fu(X) =w'X
<0 = Y=0
1

Empirical risk minimization with the binary loss?

1< S s
Wp = arg min — Ty, . g Y
’ WgeRd n VZ:; T30 binary
T This is not convex in w. Very hard to compute! 0 _5 O—g’

36



Spam filters

2007-05-22 18133 - News In Englizh
T3¢ Soccer: Milan weighs attack options
u Gilardino tipped to lead the line, Inzaghi late card
2007-05-22 17129 - News in Englizh

Wine wards off senile dementia
d A glass a Jay stops mild impairment worsening, Italians say

2007-05-22 16127 - News in English

s Treasury may sell all of Alitalia @

Formal bids for carrier due by July 2

2007-05-22 13:58 - News in English
Afghanistan: Rome cold on Bush call
‘We respcnd to parliament, no one else, ' FM says

2007-05-22 14:11 - News in English

™ Electronic nose sniffs asthma Technology
Device developed by Itaian researcher in Netherlands

{

ISubject Date Time Body
i R 2
| has the viagra for 0an 2/‘99212.23 Hi! | noticed that you are a software engineer
pm  so here's the pleasure you were looking for...

1 01:24 S
Important business 05/29/1995pm Give me your account number and you'll be rich. I'm totally serial

Business Plan 05/23/199607:‘9 As per our conversation, here's the business plan for our new venture Warm
pm regards...

1
lob Opportunity 02/2911 998::‘ g Hi Il am trying to fill a position for a PHP ...

[A few thousand rows ommitted]

2:14
05/23/20002”‘ Call mom. She's been trying to reach you for a few days now

37
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Image recogpnition

training data

decision
boundary

Image from Francis Bach lecture 3



Pedestrian recogpnition

Mobileye Pedgstrian Detection

Esci dalla modalita a schermo intero (f)

[ o a

https://youtu.be/1U4w0o-caFM

39
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Logistic regression

Idea: replace the loss with a convex loss

LwTX,y)=ylog (1+ e’WTX) +(1—y)log(1+ e""TX)

binary

error

0.5

logistic

<>

Probabilistic interpretation: based on likelihood maximization of the model:

P(Y = 1|X) = € [0,1]

14+ew'X
Satisfied for many distributions of X|Y: Bernoulli, Gaussian, Exponential, . ..
Computation of the minimizer of the empirical risk (No closed form of the solution)

- Use a convex optimization algorithm (Newton, gradient descent,...)
40



Support Vector Machine (SVM)

In SVM, the linear separator (hyperplane) is chosen by maximizing the margin. Not by
minimizing the empirical risk.

" Sparsity: it only depends on a few training points, called the support vectors

In practice, we use soft margins because no perfect linear separation is possible.

41



Non-linear regression/classi

Until now, we have only considered linear predictions of x = (xi,. .., X4)

d
fuw(x) = Z WiX; .
i=1

But this can perform pretty bad... How to perform non-linear regression?

Non linear regression

f(X)

Non Linearly separable

42



Non-linear regression/classi

Idea: map the input X into a higher dimensional space where the problem is linear.

Example: given an input x = (x1, x2, x3) perform a linear method on a transformation

of the input like

P(x) = (x1x1, x1%2, . . ., X3X2, X3X3) € R?

Linear transformations of ®(x) are polynomials of x! The previous methods works by

replacing x with ®(x).

Non linear regression

f(X)

Non Linearly separable

42



Example: Word Embedding (Word2Vect)

http://wordrepresentation.appspot.com

Words

>>> print_analogy('Paris', 'France', 'Rome', words)
o Paris—France is like Rome-Italy

" >>> print_analogy('man’, 'king', 'woman', words)
® man—king is like woman-queen

o~ o
o
. >>> print_analogy('walk’, 'walked' , 'go‘, words)
o walk-walked is like go-went
P
o o= >>> print_analogy('quick', 'quickest' , 'far', words)
o L oaipees QO Qe quick-quickest is like far-furthest
-

43
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Spline regression

A spline of degree p is a function formed by connecting polynomial segments of degree
p so that:

- the function is continuous
- the function has D 1 continuous derivatives
- the pth-derivative is constant between knots

This can be done by choosing the good transformation ®,(x) and the right
regularization ||®,(x)]|.

Difficulties: choose the number of knots and the degree

44



Regularization

?

How to avoid over-fitting if there is not enough data?

Error

Best choice

Complexity of F

Control the complexity of the solution
- explicitly by choosing F small enough: choose the degree of the polynomials,. ..
- implicitly by adding a regularization term

min R, (f) 4+ \||f]|?
feF

The higher the norm ||f|| is, the more complex the function is.

s We do not need to know the best complexity F in advance
e Complexity controlled by A, which need to be calibrated.

45



Ridge regression

The most classic regularization in statistics for linear regression:
d

W,,fargmmfz(Y—W X;)? + /\Zw/2
weRd N5 i=1

The exact solution is unique because the problem is now strongly convex:
p= (XTX+n) 7' XTY

The regularization parameter A\ controls the matrix conditioning:
- if A =0: ordinary linear regression
-ifA— o0 wp —0

46



The Lasso: how to choose among a large set of variables with few observa-

tions

The Lasso corresponds to L; regularization:
1. d
W, = arg min — Z(Y, — WTX,')2 + A Z [w;|
i=1

werd N

b Powerful if d > n: many potential variables, few observations
|‘ W, is sparse: most of its values will be 0 — can be used to choose variables

B2

n— X“ﬁ”g = constante

Other formulation of the Lasso: h
35 > 0 such that 5" (t
n

1
W, € arg min — (Yi— WTX,')Z
Iwlly<B M

B

[Bi] + 82| = ¢
A = argming [[Y" — D]

47



The Lasso: how to choose among a large set of variables with few observa-

tions

The Lasso corresponds to L; regularization:
1. d
W, = arg min — Z(Y, — WTX,')2 + A Z [w;|
i=1

werd N

b Powerful if d > n: many potential variables, few observations
|‘ W, is sparse: most of its values will be 0 — can be used to choose variables

'®  The Lasso is biased: W," X # E[Y|X]. Hence, it is better to:

Perform Lasso

1

Choose variables with w; > 0

1

Perform Ridge on this sub-model only

Another solution is Elastic Net:

W,,_argnnnfz(Y—W Xi)® + /\lZ\w,\qL/\Zwaz

weRrd i=1

Many extensions of the Lasso exist: Group Lasso,. ..
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Lasso: the regularization path

The Lasso corresponds to Ly regularization:
n

d

1

Wp = arg min — Z(Y, - WTX,')2 + /\Z |w;
werd Ny i—1

Plot of the evolution of the coefficients of W, as a function of \:

BLARS,i
e + 4 ————— D). |
)\5 /\4 /\3 )\2 )\1
| [ |
sign 3° # s (L1)  (L1) (L1)




Probabilistic prediction

In some situation, we are not interested by prediction the average case E[Y|X] only,
but by the distribution of Y|X. — give a measure of uncertainty of our prediction

Solution: modify the loss function:
- square loss /(a,y) = (a — y)?: prediction of the expected value
- absolute loss /(a,y) = |a — y|: prediction of the median
(50% to be above Y, and 50% chance to be below)
- pinball loss /(a,y) = (a — y)(7 — 1.-,): prediction of the T-quantile
((1 — 7) chance to be above Y and 7 chance to be below)

observation
prevision
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Supervised learning

Calibration of the parameters: cross-validation

50



How to choose the parameters? Test set

All the methods in machine learning depend on learning parameters.

How to choose them? First solution: use a test set.
- randomly choose 70% of the data to be in the training set
- the remainder is a test set

New training set

Initial training set

‘ \’ N

We choose the parameter with the smallest error on the test set.

|‘ very simple
'®  Waste data: the best method is fitted only with 70% of the data
'®  With bad luck the test set might be lucky or unlucky
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How to choose the parameters? Cross-validation

Cross-validation:
- randomly break data into K groups
- for each group, use it as a test set and train the data on the (K — 1) other groups

New training set Test set

D

()
(5

We choose the parameter with the smallest average error on the test sets.

Initial training set

—

.

Ik

& only 1/K of the data lost for training
'® K times more expensive

In practice: choose K = 10.
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Supervised learning

Local averages
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K-Nearest Neighbors

Classify data based on similarity with neighbors.

When observing a new input x, find the k-closest training data points to x and for
- classification: predict the most frequently occuring class
- regression: predict the average value
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K-Nearest Neighbors

b Advantages:
- No optimization or training
- Easy to implement
- Can get very good performance

'®  Drawbacks:
- Slow at query time: must pass through all training data at each
- Easily fooled by irrelevant inputs
- Bad for high-dimensional data (d > 20)

?f
Difficulties:

- choice of K
- what distance for complex data?
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Decision Tree

Introduced by Breiman et al. 1984

Idea: partitioned the input space in an inductive and diadic fashion.
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Decision Tree

Introduced by Breiman et al. 1984

Idea: partitioned the input space in an inductive and diadic fashion.
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Decision Tree

Introduced by Breiman et al. 1984

Idea: partitioned the input space in an inductive and diadic fashion.

To construct the tree, we need to answer two questions:

- Location of the cuts: which variable, what threshold?

— minimize the inter-groups variance

W T o - Depth of the tree: when do we stop? Over-fitting risk!
P 25 — continue while variance decreases enough
B2 oyl — pruning: build a large tree and prune it by minimiz-
% :
o : ing a penalized error:
Test error(T) + Asize(T)
i Advantage: interpretable '®  Drawbacks: instable (butterfly effect),

computational cost
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Decision trees: example for spam detection

char_freq_dollar < 0.0555

word_freq_remove < 0.055 word_freq_hp <0.4

]

spam email

char_freq_exclamdtion_mark < 0.191

spam
word_freq_{hp <0.025 capital_run_length| average <2.7655
capital_rt[m_lﬂiﬁa—-wé—\ ’——|
email email spam
email email
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Ensemble algorithms

Ensemble algorithms are based on the following idea: averaging adds stability.

Example: Assume that Y € {0,1} and that you have K independent classification
methods f, k = 1,..., K such that P(f,(X) # Y) < e. Then from Hoeffding's
inequality:

PP(majority voting of fi(X) # Y) < e Ke?

— exponential decrease to 0!

Idea: build base methods as independent as possible and average them.
1. split the training set into K subsets of size n/K
2. train a different “base learner” on each subset

Issue: n may be too small — not enough data per “base learner” — Bagging
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Bagging (Boostrap) regat

Introduced by Breiman 1996
To fit a new “base learner”

1. sample n data with replacement from the training set

2. train the “base learner” on this subset of observations

Each base learner gets =~ 36.8% of the data. Remaining points are called “out-of-bag”.

We can estimate the performance of each base learner with the out-of-bag error
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Introduced by Breiman 2001

Idea: build many (= 400) random decisions trees and average their predictions.

: 14 : 14
P 15 e 15
18 18 oo
T : 11
32 2 dict 247t23.3 _ o
: 2 redict =24
15 27 : “‘115““: 27 p 2
""""""""" P25 : 25
23 ' 231
9233 2 V247 22
2% 23 2% :

How to build uncorrelated trees?
- bagging: each tree is built over sample of training points
- random choice of the covariate to cut

i Advantages:
- No over-fitting (the more trees we build, the better)
- Easy computation of an error estimate: “out-of-bag”: no-need of cross validation
- efficient for small data sets n

'®  Drawbacks: computational cost, black box
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Variable selection with random forests

Random forests is a powerful tool to order explanatory variables by predictive
importance.
First, we build the forest and compute E its “out-of-bag” error.
For each variable X;, we compute its importance as follows
- randomly permute the values of X; among training data
- update the “out-of-bag"” error E;

- get the importance of X; given by E; — E
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Supervised learning

Deep learning

62



Deep learning

Successful application domains: Image (object recognition), Audio (speech
recognition), Text (parsing)

What is it used for?
- Prediction: regression, classification,
- Generation: denoising, reconstruction of partial/missing data, generation of new
data

What is it?
- Models with graphs structure (networks) with multiple layers (deep)
- Typically non-linear models
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Deep neural network

e A neuron is a non-linear transformation of a linear combination of inputs.

Inputs Neuron

X1 — f(WTX+b)

X2 — . — Output

X3 —

\/

X4 —
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Deep neural network

e A neuron is a non-linear transformation of a linear combination of inputs.
e A column of neurons taking the same input x forms a new layer

Input Hidden Output
layer layer layer

X1 —
X2 —
X3 —

Xg —>

64



Deep neural network

e A neuron is a non-linear transformation of a linear combination of inputs.
e A column of neurons taking the same input x forms a new layer

Input Hidden Output
layer layer layer

X] —
X2 —
X3 —>
X4 —>
Training a neural networks: backpropagation (gradient descent using % = ﬂ@).
q Ox

Avoid over-fitting: dropout [Hinton et al. 2012]

Build data-specific models: convolutional neural networks [LeCun et al. 1998]
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hat can you do with DNN?

= Attistic style transfer for videos

Freiburger Munsterplatz

https://youtu.be/Khuj4ASldmU
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https://youtu.be/Khuj4ASldmU

Unsupervised learning



Overview of Machine Learning

Image
Structure Classification
DISCgVGTY Feature ° Customer
@ Elicitation  Fraud ® Retention

Meaningful [ ]

compression

Detection

DIMENSIONALLY . s
. REDUCTION CLASSIFICATION @ Diagnostics
Big data

Visualisation
N\

@ Forecasting

Recommended UNSUPERVISED SUPERVISED
Systems LEARNING LEARNING ® Predictions

CLUSTERING

Targetted o MACHINE S ® Process

Marketing Optimization

LEARNING .
[ J
Customer New Insights
Segmentation

REINFORCEMNET
LEARNING

Real-Time Decisions ® ® Robot Navigation
GameAl ® @ Skill Aquisition

(]
Learning Tasks
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Unsupervised learning

Clustering
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Clustering

e lIdea: group together similar instances
e Requires data but no labels

e Useful when you don't know what you are looking for

%
&

The similarity is measured by a metric (ex: [|x — y||3).

The results crucially depends on the metric choice: depends on data.

Types of clustering algorithms:
- model based clustering (mixture of Gaussian)
- hierarchical clustering: a hierarchy of nested clusters is build using divisive or
agglomerative approach
- Flat clustering: no hierarchy (k-means, spectral clustering)
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Guaranteed to converge in a finite number of iterations.

Initialization is crucial.
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Example: Segmentation

= ICNet for Real-Time Semantic Segmentation on High-Resolution Images

https://youtu.be/qWl9idsCulQ
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https://youtu.be/qWl9idsCuLQ

Unsupervised learning

Dimensionality Reduction Algorithms
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Principal component analysis

Assume that you have a data matrix (with column-wise zero empirical mean)

If p is large, some columns (i.e., explanatory
variables) may be linearly correlated.

e bad statistical property: risk minimization not
identifiable, the covariance matrix (XTX) is
not invertible — unstable estimators

e bad computational property: we need to store
p > 1 columns with redundant information

PCA reduces the p dimensions of the data set X
down to k principal components.

X1,p

Xn,p

X (enjoyment)

X (skill)
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Principal component analysis

Assume that you have a data matrix (with column-wise zero empirical mean)

How does it work?
1. Find the vector u; such that the projection of
the data on u has the greatest variance.

up :=argmax || X u|? = v X7 Xu
llull=1

= this is the principal eigenvector of X T X.

2. More generally, if we wish a k-dimensional
subspace we choose vy, ..., uy the top k
eigenvectors of X T X.

3. The u; form a new orthogonal basis of the data

X1,p

Xn,p

X (enjoyment)

X (skill)
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Generative Models
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Generative Models

Face Aging
\

0-18 19-29 30-39 40-49 50-59 60+
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Generative Models

N si= === ==re=——=——=c==c—=
L t
-, + +
Tenor
% s D I
boln ®
N S s e e e Sie= ===

https://youtu.be/QiBM7-5hA60
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https://youtu.be/QiBM7-5hA6o

Generative Models

= _Mr Shadow: a song composed by Artificial Intelligence

FLOW MACHINES

Pl ) 001/302

https://youtu.be/1cGYEXJqun8
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https://youtu.be/lcGYEXJqun8

Planning of the class




Objective of the class

The goal of the class is to introduce the basics of machine learning. We will mix:
- theory: some theorems will be proved!
- practice: some algorithms will be implemented on real data

Disclaimer: at the end of the class, you will most likely not be able to reproduce all

examples seen in this introduction!

Typical session will be a lecture from 8h30 to 10h20, followed by a 20min break and
the practical work (PW) from 10h40 to 12h30. 2021: Online inverted classroom
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Voir https://www.di.ens.fr/appstat/spring-2021/
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https://www.di.ens.fr/appstat/spring-2021/

Prepare your personal laptops in practical sessions with python (jupyter, anaconda)
working on it.

Check the crash-test Jupyter notebook:

https://www.di.ens.fr/appstat/spring-2020/TP/TDO-prerequisites/crash_
test.ipynb
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https://www.di.ens.fr/appstat/spring-2020/TP/TD0-prerequisites/crash_test.ipynb
https://www.di.ens.fr/appstat/spring-2020/TP/TD0-prerequisites/crash_test.ipynb
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