Neural Networks

Alessandro Rudi, Pierre Gaillard

11 May, 2020

These notes are based on notes of Francis Bach.

1 Introduction

In this class we will introduce some basic elements about neural networks. For more information
please look at the following references:
e http://www.deeplearningbook.org/

e https://www.di.ens.fr/~lelarge/d1ldiy/

In the past classes, the main focus has been on methods to learn from n observations (z;,y;),
i=1,...,n, with z; € X (input space) and y; € Y (output / label space).

A large class of methods relies on minimizing a regularized empirical risk with respect to a function
f:+ X = R, where the following cost function is minimized:

LSty fa) + 0,
=1

where £: Y x R — R is a loss function, and Q(f) is a regularization term. Typical examples were:

e Regression: Y =R and {(y;, f(z;)) = 3(yi — f(2:))%

e Classification: Y = {—1,1} and (y;, f(x;)) = @(y; f(x;)) where ¢ is convex, e.g., p(u) =
max{l — u,0} (hinge loss leading to the support vector machine) or ¢(u) = log(l + e~ *)
(leading to logistic regression).

Note that the usual goal of binary classification is to consider the 0 — 1 loss, which we don’t
consider here.

The class of functions we have considered so far were:

e Affine functions: when X = R?, we consider f(z) = w'z+b, with parameters (w,b) € R+,

http://www.deeplearningbook.org/
https://www.di.ens.fr/~lelarge/dldiy/

Pros: simple to implement, convex optimization (gradient descent). Complexity proportional
to O(nd).

Cons: only applies to vector spaces, only linear.

e Non-linear functions through kernel methods: requires (implicitly) a feature vector

®(x) € F (feature space), known through a kernel k(x,2") = (®(z), ®(z)).
Pros: non-linear predictions, simple to implement, convex optimization.

Cons: complexity is at least O(n?).

The goal of this class is to explore another class of functions for non-linear predictions, namely
neural networks.

2

2.1

A single neuron

A (tiny) bit of history / background

e Artificial neuron model (McCulloch and Pitts, 1942): f(z) = o(w ' x+b), with & non-linear

(typically non-decreasing) function. Loose connection with actual biological neurons.

e Perceptron (Rosenblatt, 1958): Learning by stochastic gradient descent update rule.

e Activation functions:

2.2

sigmoid o(u) = H_%,

step () = Luso,
rectified linear unit (ReLU) o(u) = (u)4+ = max{u,0}.

Sigmoid activation + cross-entropy loss = logistic regression

For least-squares, the loss for a single pair (z,y) is

1 1
Uy, f(x) = 5y = f(2)* = Sy —o(w "z + b))%
and is not convex in (w,b) (unless o is linear).

For classification, the loss for a single pair (z,y) is

Uy, F(x)) = p(yf (@) = p(yo(w z + b)),
and is not convex in (w,b) (unless o is linear).

For the sigmoid function f(x) = o(w'x +b) € (0,1) can be seen as a probability and thus it
is natural to consider the model on Y € {—1,1}, wher p(Y = 1|z) = o(w'x + b), and thus
p(ylz) = o(y(w'z +b)).

If the cross-entropy loss is used (or equivalently maximum likelihood), that is, —1,—1 log p(Y =
1|z) — 1y=—1logp(Y = —1|z), then the loss to minimize is exactly —logo(y(w'z + b)) =
log(1 4 exp(—y(w "2 + b))), which is exacly logistic regression.

e Consequences:
(a) neural network with no hidden layers are reduced to linear predictors,

(b) last layers of deeper network will be treated in practice in the same way (for classification:
cross-entropy loss, for regression: no activation function).

2.3 Gradient and SGD

e The gradient of £(y, f()

= L,(f(x,w,b)) = Ly(c(w"x+b)) can be computed using the chain
rule, with f(x) = o(w 'z + b):

2ol - dee b”gi L (f(x,w.0))0" (w"w + D)z
ILyofl 8f ,)

e (optional) Safety check: for example, for logistic regressmn Wlth label z = (1+y)/2 € {0,1},
when Ly (u) = —zlogu — (1 — z)log(1l — u), L (u) = =2 + (u) = 1+é_u, o'(u) =

o(u)(1*0(), we get 1 —
a[LaZ 1 [7 U(wTZa3+b) + 1_0111}2—%) c(wTz+b)(1—o(w' z+0b))

= —z(1-0)+(1-2z)o.

But, we have directly L(f(z)) = zlog(1+e~% %) 4+ (1 — z)log(1+e®), and we can take
the derivative as —z(1 — o) + (1 — z)o, which is the same.

e Batch gradient: J(w,b) = % S Ly, (o(wx; + b)) + Q(w, b):

00

L/ b/Ti bi YR
Z mw)(w:ch)eraw

Algorithm requiring access to the entire data set at each iteration:

w4 wf’ya ZL% (z,w,b))o (waier)xifyg—fz
b b—'yab— —fZL’ flz,w,b))o (wai—l-b)—y%—SZ
e Stochastic gradient descent (with mini-batches), where I is a set of indices in {1,...,n}:
w4 w—vg—i: |I|ZL' flz,w,b))o (wai"‘b)l‘i—Vg%
b« b—W%: mZL’ f(z,w,b))o /(wal--i-b)—'y%

e Convergence of SGD: (a) not convergent with constant step-size, (b) need decreasing step-size,
(c) effect of averaging, (c) not a descent algorithm.

e No convergence to global optimum because of lack of convexity!

3.1

3.2

3.3

One-hidden layer

Definition

Limitations of single neuron: (a) classical XOR problem, (b) only linear predictions.
Parameterization: € RY, h € R™, y € R:

h o[(W" Tz + B"]

y = 0[(wo)Th +b°],

with W" € R>™ and B" € R™, and w® € R™ and b° € R. We denote by W/ € R? the i-th
input/hidden weight.

Computing the output y requires a forward pass.

Gradient through back-propagation

We have for the hidden layer:

oh;
SWE o' (WM Tz + Bl
Oh;
55F o' (W) Tz + Bl

For the output layer (and the hidden-output parameters):

w4
gl;yo O'/[(’U)O)Th-‘r bo]
For the output layer (and the input-hidden parameters):
oy Oy Oh; 1 T o1/ oy Ohi
owr Z o, wr ~ 7 LW RV Gy
9y —~ Jy Oh; ' T oh;
—_ — < — o h bo o
aB! 2= 0h; 0BF 7 (") h+ Mwl)aBlh

Running-time complexity. Vectorized operations adapted to GPUs.

Approximation properties

Solves the XOR problem

Can approximate any continuous function given sufficiently many hidden neurons, from differ-
entiable activation function. Simple graphical proof for rectified linear units in one dimension.
Requires activation not to be a polynomial.

G. Cybenko. Approximation by superposition of a sigmoidal function. Mathematics of Control,
Signal and Systems, 2:303-314, 1989.

K. Hornik. Some new results on neural network approximation. Neural Networks, 6:1060-
1072, 1993.

3.4 Link with kernel methods

e When no activation is used at the output layer, we have:

h = o[(W") 2+ B"
y = (w°)"h41°.
This corresponds to a linear classifier with feature vector ®(z) = %U[(Wh)—r:c + B"], pa-

rameterized by W" and B", with kernel
1 n
k(z,2') = — Wz + BMo (W T2’ + BPF.
(@) = 2o 3o alV) o+ Blo [V + 1)

Most important aspect: feature vector of finite dimension and learned from data.

e With random independent and identically distributed weights W/ € R™ and B! € R,
k@;ﬂ)—9E{UHMWUTx4aBﬂaHMﬂUTﬁ—%Bﬂ}

Can be computed in closed form for simple distributions of weights (see, e.g., Cho, Y., & Saul,
L. K. (2009). Kernel methods for deep learning. In Advances in neural information processing
systems (pp. 342-350)) . Thus an infinite number of random input weights lead to a kernel
method.

4 Multiple hidden layers

e Ignoring the constant terms, two hidden layers can be expressed as:

y = oW/ oW, o(Wy x))) = fio fro fs(x)
y = fi(01,2)
yo = fa(02,y3)
ys = f3(03,7)

e Gradient through back-propagation. We get:

9y _ Oh
89, 96,
9y _ Oh
0y B 0y
dy Oy Oy 0Oy Ifs
0> Oy200, Oys 90,
Oy _ OyoOy _ Oy of
0ys3 O0ys Oys Oy2 0ys3
dy Oy dys 0Oy Ifs
905 Oy3 903 Oy 06>

e Approximation properties: Can approximate any function from differentiable activation func-

5

5.1

5.2

5.3

tion.

A. Lapedes and R. Farber. How neural nets work. In Anderson, editor, Neural Information
Processing Systems, pages 442-456. New York, American Institute of Physics, 1987.

G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient. Tech-
nical report, Dep. of Computer Science, Tufts University, Medford, MA, 1988.

Link with kernel methods: same as before, but more complex.

Extensions

Convolutional neural networks

Working on a 512 x 512 image requires weight sharing (for both numerical and statistical
reasons).

h; = 2?21 Wi’;xj. Wf;- depends only 7 — j
Often used with subsampling or pooling

Partial invariance to translation is a good prior.

Automatic differentiation

Finite differences and the “complex trick” (https://blogs.mathworks.com/cleve/2013/10/
14/complex-step-differentiation/)

No need to code everything for deep models to obtain the exact gradient.

See http://www.autodiff.org/

Applications

Computer vision (CNN)
Speech (CNN)

Natural language processings (recurrent neural networks)

https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/
https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/
http://www.autodiff.org/

	Introduction
	A single neuron
	A (tiny) bit of history / background
	Sigmoid activation + cross-entropy loss = logistic regression
	Gradient and SGD

	One-hidden layer
	Definition
	Gradient through back-propagation
	Approximation properties
	Link with kernel methods

	Multiple hidden layers
	Extensions
	Convolutional neural networks
	Automatic differentiation
	Applications

