
Neural Networks

Alessandro Rudi, Pierre Gaillard

11 May, 2020

These notes are based on notes of Francis Bach.

1 Introduction

In this class we will introduce some basic elements about neural networks. For more information
please look at the following references:

• http://www.deeplearningbook.org/

• https://www.di.ens.fr/~lelarge/dldiy/

In the past classes, the main focus has been on methods to learn from n observations (xi, yi),
i = 1, . . . , n, with xi ∈ X (input space) and yi ∈ Y (output / label space).

A large class of methods relies on minimizing a regularized empirical risk with respect to a function
f : X → R, where the following cost function is minimized:

1

n

n∑
i=1

`(yi, f(xi)) + Ω(f),

where ` : Y × R→ R is a loss function, and Ω(f) is a regularization term. Typical examples were:

• Regression: Y = R and `(yi, f(xi)) = 1
2 (yi − f(xi))

2.

• Classification: Y = {−1, 1} and `(yi, f(xi)) = ϕ(yif(xi)) where ϕ is convex, e.g., ϕ(u) =
max{1 − u, 0} (hinge loss leading to the support vector machine) or ϕ(u) = log(1 + e−u)
(leading to logistic regression).

Note that the usual goal of binary classification is to consider the 0 − 1 loss, which we don’t
consider here.

The class of functions we have considered so far were:

• Affine functions: when X = Rd, we consider f(x) = w>x+b, with parameters (w, b) ∈ Rd+1.

1

http://www.deeplearningbook.org/
https://www.di.ens.fr/~lelarge/dldiy/

Pros: simple to implement, convex optimization (gradient descent). Complexity proportional
to O(nd).

Cons: only applies to vector spaces, only linear.

• Non-linear functions through kernel methods: requires (implicitly) a feature vector
Φ(x) ∈ F (feature space), known through a kernel k(x, x′) = 〈Φ(x),Φ(x′)〉.
Pros: non-linear predictions, simple to implement, convex optimization.

Cons: complexity is at least O(n2).

The goal of this class is to explore another class of functions for non-linear predictions, namely
neural networks.

2 A single neuron

2.1 A (tiny) bit of history / background

• Artificial neuron model (McCulloch and Pitts, 1942): f(x) = σ(w>x+b), with σ non-linear
(typically non-decreasing) function. Loose connection with actual biological neurons.

• Perceptron (Rosenblatt, 1958): Learning by stochastic gradient descent update rule.

• Activation functions:

sigmoid σ(u) = 1
1+e−u ,

step σ(u) = 1u>0,

rectified linear unit (ReLU) σ(u) = (u)+ = max{u, 0}.

2.2 Sigmoid activation + cross-entropy loss = logistic regression

• For least-squares, the loss for a single pair (x, y) is

`(y, f(x)) =
1

2
(y − f(x))2 =

1

2
(y − σ(w>x+ b))2,

and is not convex in (w, b) (unless σ is linear).

• For classification, the loss for a single pair (x, y) is

`(y, f(x)) = ϕ(yf(x)) = ϕ(yσ(w>x+ b)),

and is not convex in (w, b) (unless σ is linear).

• For the sigmoid function f(x) = σ(w>x + b) ∈ (0, 1) can be seen as a probability and thus it
is natural to consider the model on Y ∈ {−1, 1}, wher p(Y = 1|x) = σ(w>x + b), and thus
p(y|x) = σ(y(w>x+ b)).

If the cross-entropy loss is used (or equivalently maximum likelihood), that is, −1y=1 log p(Y =
1|x) − 1y=−1 log p(Y = −1|x), then the loss to minimize is exactly − log σ(y(w>x + b)) =
log(1 + exp(−y(w>x+ b))), which is exacly logistic regression.

2

• Consequences:

(a) neural network with no hidden layers are reduced to linear predictors,

(b) last layers of deeper network will be treated in practice in the same way (for classification:
cross-entropy loss, for regression: no activation function).

2.3 Gradient and SGD

• The gradient of `(y, f(x)) = Ly(f(x,w, b)) = Ly(σ(w>x+b)) can be computed using the chain
rule, with f(x) = σ(w>x+ b):

∂[Ly ◦ f]

∂w
= L′y(f(x,w, b))

∂f

∂w
= L′(f(x,w, b))σ′(w>x+ b)x

∂[Ly ◦ f]

∂b
= L′y(f(x,w, b))

∂f

∂b
= L′y(f(x,w, b))σ′(w>x+ b)

• (optional) Safety check: for example, for logistic regression, with label z = (1 + y)/2 ∈ {0, 1},
when Ly(u) = −z log u − (1 − z) log(1 − u), L′y(u) = − z

u + 1−z
1−u , and σ(u) = 1

1+e−u , σ′(u) =
σ(u)(1− σ(u)), we get

∂[L ◦ f]

∂b
=

[
− z

σ(w>x+ b)
+

1− z
1− σ(w>x+ b)

]
σ(w>x+ b)(1− σ(w>x+ b))

= −z(1− σ) + (1− z)σ.

But, we have directly L(f(x)) = z log(1 + e−w
>x−b) + (1− z) log(1 + ew

>x+b), and we can take
the derivative as −z(1− σ) + (1− z)σ, which is the same.

• Batch gradient: J(w, b) = 1
n

∑n
i=1 Lyi(σ(w>xi + b)) + Ω(w, b):

∂J

∂w
=

1

n

n∑
i=1

L′yi
(f(x,w, b))σ′(w>xi + b)xi +

∂Ω

∂w

Algorithm requiring access to the entire data set at each iteration:

w ← w − γ ∂J
∂w

= w − γ

n

n∑
i=1

L′yi
(f(x,w, b))σ′(w>xi + b)xi − γ

∂Ω

∂w

b ← b− γ ∂J
∂b

= b− γ

n

n∑
i=1

L′yi
(f(x,w, b))σ′(w>xi + b)− γ ∂Ω

∂b

• Stochastic gradient descent (with mini-batches), where I is a set of indices in {1, . . . , n}:

w ← w − γ ∂J
∂w

= w − γ

|I|
∑
i∈I

L′yi
(f(x,w, b))σ′(w>xi + b)xi − γ

∂Ω

∂w

b ← b− γ ∂J
∂b

= b− γ

|I|
∑
i∈I

L′yi
(f(x,w, b))σ′(w>xi + b)− γ ∂Ω

∂b

• Convergence of SGD: (a) not convergent with constant step-size, (b) need decreasing step-size,
(c) effect of averaging, (c) not a descent algorithm.

• No convergence to global optimum because of lack of convexity!

3

3 One-hidden layer

3.1 Definition

• Limitations of single neuron: (a) classical XOR problem, (b) only linear predictions.

• Parameterization: x ∈ Rd, h ∈ Rm, y ∈ R:

h = σ
[
(Wh)>x+Bh

]
y = σ

[
(wo)>h+ bo

]
,

with Wh ∈ Rd×m and Bh ∈ Rm, and wo ∈ Rm and bo ∈ R. We denote by Wh
i ∈ Rd the i-th

input/hidden weight.

Computing the output y requires a forward pass.

3.2 Gradient through back-propagation

• We have for the hidden layer:

∂hi
∂Wh

i

= σ′
[
(Wh

i)>x+Bh
i

]
x

∂hi
∂Bh

i

= σ′
[
(Wh

i)>x+Bh
i

]
• For the output layer (and the hidden-output parameters):

∂y

∂wo
= σ′

[
(wo)>h+ bo

]
h

∂y

∂bo
= σ′

[
(wo)>h+ bo

]
• For the output layer (and the input-hidden parameters):

∂y

∂Wh
i

=

m∑
j=1

∂y

∂hj

∂hj
∂Wh

i

= σ′
[
(wo)>h+ bo

]
(wo

i)
∂hi
∂Wh

i

∂y

∂Bh
i

=

m∑
j=1

∂y

∂hj

∂hj
∂Bh

i

= σ′
[
(wo)>h+ bo

]
(wo

i)
∂hi
∂Bh

i

• Running-time complexity. Vectorized operations adapted to GPUs.

3.3 Approximation properties

• Solves the XOR problem

• Can approximate any continuous function given sufficiently many hidden neurons, from differ-
entiable activation function. Simple graphical proof for rectified linear units in one dimension.
Requires activation not to be a polynomial.

G. Cybenko. Approximation by superposition of a sigmoidal function. Mathematics of Control,
Signal and Systems, 2:303-314, 1989.

K. Hornik. Some new results on neural network approximation. Neural Networks, 6:1060-
1072, 1993.

4

3.4 Link with kernel methods

• When no activation is used at the output layer, we have:

h = σ
[
(Wh)>x+Bh

]
y = (wo)>h+ bo.

This corresponds to a linear classifier with feature vector Φ(x) = 1√
m
σ
[
(Wh)>x + Bh

]
, pa-

rameterized by Wh and Bh, with kernel

k(x, x′) =
1

m

n∑
i=1

σ
[
(Wh

i)>x+Bh
i

]
σ
[
(Wh

i)>x′ +Bh
i

]
.

Most important aspect: feature vector of finite dimension and learned from data.

• With random independent and identically distributed weights Wh
i ∈ Rm and Bh

i ∈ R,

k(x, x′)→ E
{
σ
[
(Wh)>x+Bh

]
σ
[
(Wh)>x′ +Bh

]}
Can be computed in closed form for simple distributions of weights (see, e.g., Cho, Y., & Saul,
L. K. (2009). Kernel methods for deep learning. In Advances in neural information processing
systems (pp. 342-350)) . Thus an infinite number of random input weights lead to a kernel
method.

4 Multiple hidden layers

• Ignoring the constant terms, two hidden layers can be expressed as:

y = σ(W>1 σ(W>2 σ(W>3 x))) = f1 ◦ f2 ◦ f3(x)

y = f1(θ1, y2)

y2 = f2(θ2, y3)

y3 = f3(θ3, x)

• Gradient through back-propagation. We get:

∂y

∂θ1
=

∂f1
∂θ1

∂y

∂y2
=

∂f1
∂y2

∂y

∂θ2
=

∂y

∂y2

∂y2
∂θ2

=
∂y

∂y2

∂f2
∂θ2

∂y

∂y3
=

∂y

∂y2

∂y2
∂y3

=
∂y

∂y2

∂f2
∂y3

∂y

∂θ3
=

∂y

∂y3

∂y3
∂θ3

=
∂y

∂y3

∂f3
∂θ2

5

• Approximation properties: Can approximate any function from differentiable activation func-
tion.

A. Lapedes and R. Farber. How neural nets work. In Anderson, editor, Neural Information
Processing Systems, pages 442-456. New York, American Institute of Physics, 1987.

G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient. Tech-
nical report, Dep. of Computer Science, Tufts University, Medford, MA, 1988.

• Link with kernel methods: same as before, but more complex.

5 Extensions

5.1 Convolutional neural networks

• Working on a 512 x 512 image requires weight sharing (for both numerical and statistical
reasons).

• hi =
∑d

j=1W
h
ijxj . W

h
ij depends only i− j

• Often used with subsampling or pooling

• Partial invariance to translation is a good prior.

5.2 Automatic differentiation

• Finite differences and the “complex trick” (https://blogs.mathworks.com/cleve/2013/10/
14/complex-step-differentiation/)

• No need to code everything for deep models to obtain the exact gradient.

• See http://www.autodiff.org/

5.3 Applications

• Computer vision (CNN)

• Speech (CNN)

• Natural language processings (recurrent neural networks)

6

https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/
https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/
http://www.autodiff.org/

	Introduction
	A single neuron
	A (tiny) bit of history / background
	Sigmoid activation + cross-entropy loss = logistic regression
	Gradient and SGD

	One-hidden layer
	Definition
	Gradient through back-propagation
	Approximation properties
	Link with kernel methods

	Multiple hidden layers
	Extensions
	Convolutional neural networks
	Automatic differentiation
	Applications

