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Supervised vs unsupervised learning

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X. The training data has a known
label Y.

Examples:
– X is a picture, and Y is a cat or a dog
– X is a picture, and Y ∈ {0, . . . , 9} is a digit
– X is are videos captured by a robot playing table
tennis, and Y are the parameters of the robots to
return the ball correctly

?
?

?

- Unsupervised learning: training data is not labeled and does not have a known result

Examples:
– detect change points in a non-stationary time-series
– detect outliers
– clustering: group data in homogeneous groups
– principal component analysis: compress data without
loosing much information

– density estimation
– dictionary learning

?
? ?

?

?

?

?

?
?

?

?

- Others: reinforcement learning, semi-supervised learning, online learning,…

2



Reminder of last class on
supervised learning: OLS and
logistic regression



Least square Linear regression

Given training data (Xi, Yi) for i = 1, . . . , n, with Xi ∈ Rd and Yi ∈ R learn a predictor f
such that our expected square loss

E
[
(f(X)− Y)2

]
is small.

We assume here that f is a linear combination
of the input x = (x1, . . . , xd)

fθ(x) =
d∑
i=1

θixi = θ⊤x

f(X)

X

Y
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Ordinary Least Square

Input X ∈ Rd , output Y ∈ R, and ℓ is the square loss: ℓ(a, y) =

(a− y)2 .

The Ordinary Least Square regression (OLS) minimizes the em-
pirical risk

R̂n(w) =
1
n

n∑
i=1

(Yi − w⊤Xi)2

This is minimized in w ∈ Rd when X⊤Xw − X⊤Y = 0, where
X =

[
X1, . . . , Xn

]⊤ ∈ Rn×d and Y =
[
Y1, . . . , Yn

]⊤ ∈ Rn .

f(X)

X

Y

Assuming X is injective (i.e., X⊤X is invertible) and there is an exact solution

ŵ =
(
X⊤X

)−1X⊤Y .

What happens if d ≫ n?
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Ordinary Least Square: how to compute θ̂n?

If the design matrix X⊤X is invertible, the OLS has the closed form:

θ̂n ∈ arg min
θ

R̂n(θ) =
(
X⊤X

)−1X⊤Y .

Question: how to compute it?
- inversion of (X⊤X) can be prohibitive (the cost is O(d3)!)
- QR-decomposition: we write X = QR, with Q an orthogonal matrix and R an
upper-triangular matrix. One needs to solve the linear system:

Rθ̂ = Q⊤Y, with R =


x
. . . . . . .

x . . . . x

0 x


- iterative approximation with convex optimization algorithms [Bottou, Curtis, and
Nocedal 2016]: (stochastic)-gradient descent, Newton,…

θi+1 = θi − η∇R̂n(θi)
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Classification

Given training data (Xi, Yi) for i = 1, . . . , n, with Xi ∈ Rd and Yi ∈ {0, 1} learn a
classifier f(x) such that

f(Xi)

 ⩾ 0 ⇒ Yi = +1

< 0 ⇒ Yi = 0

Linearly separable
X = 0

X>0

X<0

θ

θ

θ

Non Linearly separable

f(X) = 0

f(X)>0

f(X)<0
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Linear classification

We would like to find the best linear classifier such
that

fθ(X) = θ⊤X

 ⩾ 0 ⇒ Y = +1

< 0 ⇒ Y = 0

Empirical risk minimization with the binary loss?

θ̂n = arg min
θ∈Rd

1
n

n∑
i=1

1Yi ̸=1
θ⊤Xi⩾0

.

This is not convex in θ. Very hard to compute!

X = 0

X>0

X<0

θ

θ

θ

−5 0 5
0

0.5

1

binary

w⊤X
er
ro
r
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Logistic regression

Idea: replace the loss with a convex loss

ℓ(θ⊤X, y) = y log
(
1+ e−θ⊤X)+ (1− y) log

(
1+ eθ

⊤X)

−3 0 1
0

0.5

1 binary

logistic

Hinge

ŷ

er
ro
r

X = 0

X>0

X<0

θ

θ

θ

Probabilistic interpretation: based on likelihood maximization of the model:

P(Y = 1|X) = 1
1+ e−θ⊤X

∈ [0, 1]

Satisfied for many distributions of X|Y: Bernoulli, Gaussian, Exponential, …

Computation of the minimizer of the empirical risk (No closed form of the solution)

- Use a convex optimization algorithm (Newton, gradient descent,…)
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Clustering



Outline

Reminder of last class on supervised learning: OLS and logistic regression

Clustering

What is clustering?

Clustering algorithms

Dimensionality Reduction Algorithms
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What is clustering?

Goal: group together similar instances

Requires data but no labels
Useful when you don’t know what you are
looking for
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Types of clustering algorithms:
- model based clustering: mixture of Gaussian
- hierarchical clustering: a hierarchy of nested clusters is build using divisive or
agglomerative approach

- Flat clustering: no hierarchy: k-means, spectral clustering
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What is clustering?

Goal: group together similar instances

Requires data but no labels
Useful when you don’t know what you are
looking for
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Types of clustering algorithms:
- model based clustering: mixture of Gaussian
- hierarchical clustering: a hierarchy of nested clusters is build using divisive or
agglomerative approach

- Flat clustering: no hierarchy: k-means, spectral clustering
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What is clustering?

Goal: group together similar instances

Requires data but no labels
Useful when you don’t know what you are
looking for

●●●●●●
●
●●

●
●●●●●

● ●
●●●●●●●● ●●●●
●●●●●●
●

●●
●●

●●
●

●●
●●●● ● ●●

●

●●●
●
●●

●

●●
●

●

●
●

●●
●●

●●
●●●●
●

●●●●●● ●●●●●●●
●●

●●
●●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

x x

x

1

2

3

4

5

1 2 3 4 5

x

y

Types of clustering algorithms:
- model based clustering: mixture of Gaussian
- hierarchical clustering: a hierarchy of nested clusters is build using divisive or
agglomerative approach

- Flat clustering: no hierarchy: k-means, spectral clustering
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Examples of applications

Clustering has a variety of goals which all relates to grouping or segmenting a
collection of objects into homogeneous objects.
- Biology: group species and generate phylogenies
- Marketing: group similar shopping items and similar customers→ market
outreach, recommender systems

- Computer science: image segmentation
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What do we need for clustering?

Clustering does not need any labeled data. But:
1. A proximity measure: it can be

– similarity measure between items s(Xi, Xj) which is large if Xi and Xj are
similar. Example: correlation

– dissimilarity measure d(Xi, Xj) which is large if Xi and Xj are different.
Example: distance from a metric d(Xi, Xj) = ∥Xi − Xj∥

2. A criterion to evaluate the clustering:

vs

3. A clustering algorithm optimizing the criterion
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Proximity measure

Proximity matrix: the data may be represented directly in terms of the proximity
between pairs of objects.
This is the case for categorical variables.
Example: experiment where participants are asked to judge how much objects differ
from one another.

The proximity matrix is assumed to be symmetric: D → (D+ DT)/2

Distance measure: the similarity can be measured by a metric
- Euclidean distance: d(Xi, Xj) = ∥Xi − Xj∥2
- Correlation
- Manhattan distance: d(Xi, Xj) = ∥Xi − Xj∥1
- Minkowvski distance: d(Xi, Xj) = ∥Xi − Xj∥p

The results crucially depends on the metric choice: depends on data.
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Clustering performance evaluation

This is often a hard problem. Much harder than for supervised learning!

A trade-off

Intra-cluster homogeneity: objects within the same cluster should be similar from
one another

Inter-clusters heterogeneity: clusters should be well-separeted, their centers should
be far from one another

In many application, we ask experts
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Examples of performance criterion

Known ground truth: mutual information: if U, V : {1, . . . , n} → P({1, . . . , n}) are two clustering
of n objects, the mutual information measures their agreement as:

MI(U, V) =
n∑
i=1

n∑
j=1

P(i, j) log
( P(i, j)
P(i)P′(j)

)
where P(i) = |Ui|/n (resp. P′(j) = |Vj|/n and P(i, j) = |Vj| ∩ |Ui|/n) is the probability that an
object picked at random falls into class Ui (resp. Vj and into both classes).
Drawback: the ground truth is rarely known

Unknown ground truth: Silhouette score defined as

Score =
b− a

max{a, b}

where
- a: the mean distance between a sample and all other points in the same class.
- b: the mean distance between a sample and all other points in the next nearest cluster.

The score is higher when clusters are dense and well separated, which relates to a standard
concept of a cluster.
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How many clusters?

vs

Possibles approaches:
- Fix the number of clusters k
- Choose the number of clusters by optimizing the performance criterion such as
the silhouette score
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Outline

Reminder of last class on supervised learning: OLS and logistic regression

Clustering

What is clustering?

Clustering algorithms

Dimensionality Reduction Algorithms
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Clustering algorithms

Types of clustering algorithms:
- Kmeans: flat clustering
- Spectral clustering
- Combinatorial clustering
- Gaussian mixture: model based clustering
- Hierarchical clustering: a hierarchy of nested clusters is build using divisive or
agglomerative approach

- Affinity propagation: based on message passing in a graph
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K-means
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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K-means
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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K-means
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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K-means
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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K-means
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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K-means
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.

Guaranteed to converge in a finite number of iterations.
Initialization is crucial.
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Kmeans: Pros and cons

Pros
- simple easy to implement
- efficient: guaranteed to converge in finite number of iteration. Complexity: O(tkn), k: number
of clusters (small), n: number of data, t number of iteration (small)

- popular

Cons
- the means need to be defined
- the number of cluster k need to be specified
- sensitivity to outliers
→ perform subsampling or outlier detection

- sensitivity to initial seeds: often get stuck in
local minima
→ initialize with different random seeds

- not suited for special data structure
- fails if clusters are not round
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Kmeans: Pros and cons

Pros
- simple easy to implement
- efficient: guaranteed to converge in finite number of iteration. Complexity: O(tkn), k: number
of clusters (small), n: number of data, t number of iteration (small)

- popular

Cons
- the means need to be defined
- the number of cluster k need to be specified
- sensitivity to outliers
→ perform subsampling or outlier detection

- sensitivity to initial seeds: often get stuck in
local minima
→ initialize with different random seeds

- not suited for special data structure
- fails if clusters are not round

Kmeans Spectral clustering

Changing the feature
(or distance) may help
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Spectral clustering

[Figures from Ng, Jordan, Weiss NIPS ’01]
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Spectral clustering

Graph based clustering. No assumption on the form of the clusters.

How to create the graph? Pair-wise similarities between points. Similarity matrix:
often, we use the Gaussian kernel to compute them

Wij = exp
(
−
d(xi, xj)2

σ2

)
.

Different types of graphs:
- fully connected graph
- k-nearest neighbors graph
- R-neighborhood graph
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Graph cut

Consider a partition of the graph into two groups A and B

We can define the cut
Cut(A,B) =

∑
i∈A

∑
j∈B

Wij

and the volume of each set

Vol(A) =
∑
i∈A

di where di =
N∑
j=1

Wij .

Intuitive Goal: find the partition that minimizes the cut
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Goal: minimize the graph cut

The goal
min
A,B

Cut(A,B)

can be rewritten in the form

min
u∈{−1,1}N

1
4
u⊤(D−W)u where D = Diag(di) ,

where u ∈ {−1, 1}N is a vector such that ui = 1 if i ∈ A.

This minimization problem is however NP-hard. We thus relax it to the continuous
space

min
u∈Rn

u⊤(D−W)u such that u⊤u = 1 .

Denoting λ this minimum: this corresponds to solving

(D−W)u = λu

which means finding the eigenvector with the smallest non-zero eigenvalue of the
Laplacian matrix L = D−W.

Then, we choose the two groups using the signs of u.
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Goal: minimize the graph cut

The goal
min
A,B

Cut(A,B)

can be rewritten in the form

min
u∈{−1,1}N

1
4
u⊤(D−W)u where D = Diag(di) ,

where u ∈ {−1, 1}N is a vector such that ui = 1 if i ∈ A.

This minimization problem is however NP-hard. We thus relax it to the continuous
space

min
u∈Rn

u⊤(D−W)u
u⊤u

Denoting λ this minimum: this corresponds to solving

(D−W)u = λu

which means finding the eigenvector with the smallest non-zero eigenvalue of the
Laplacian matrix L = D−W.

Then, we choose the two groups using the signs of u.
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Normalized graph cut

The previous approach works if there are no isolated points but it may fail by
providing two clusters with unbalanced size.

Therefore, it is better to use normalized cut

Ncut(A,B) = Cut(A,B)
( 1

Vol(A)
+

1
Vol(B)

)

which will encourage balanced cuts.

With some simplifications we can show that this corresponds to solving

min
u∈{−1,1}N

u⊤(D−W)u
u⊤Du

which can be relaxed with continuous u and corresponds to finding u that solves

(D−W)u = λDy

for the smallest non-zero λ.
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Spectral clustering summary

Preprocessing: build the similarity matrix W

Spectral representation:
- Form the Laplacian matrix L = D−W
- Compute eigenvalues and eigenvectors of L
- Map each point to the lower-dimensional representation based on one or more
eigenvectors

Clustering
- Assign points to two or more classes based on the new representation
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Conclusion on spectral clustering

More then two clusters:
- recursive bi-partitioning: repeat the procedure several times dividing by two each
time

- cluster multiple eigenvectors: use this spectral methods to map the data points
into a reduced space of eigenvectors and use k-means on that space.
→ often better

From continuous u ∈ RN to clusters:
- split at 0
- split at the median (to get clusters of the same size)
- split at the point that minimize the cut or the normalized cut
- using K-means (especially if we use several eigenvectors)

Parameter to be tuned: the main parameters are K the number of clusters and the
Gaussian window σ2 used to build the similarity matrix. The latter is really important.

Other similarity measures then Gaussian can be used to build the similarity matrix.
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Gaussian mixture

What is a Gaussian mixture?
- Parameter θ = (w, µ,Σ)

- There are K groups.
- Group k is associated a mean µk and a variance Σk
- The data of each group is generated from a GaussianN (µk,Σk)

- A data point X(i) is generated as follows:
– randomly sample the group Z(i) ∈ {0, 1}K with

∑
k Z

(i)
k = 1 the group P(Z(i)k = 1) = wk

– If Z(i)k = 1, sample X(i) ∼ N (µk,Σk)

- The points X(i) are revealed but the groups Z(i) are hidden

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

● ●

●●
●

●

●
●

●
●

●
●

●

● ●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

● ●●
●

● ●

●
●

●

● ●
●

●

●

●

●

●

●
● ●

●

●
●

●
●

●
●

●●

●

●

●●
●

●

●●
●

●●● ● ●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

0.0

0.5

1.0

−0.5 0.0 0.5 1.0

X1

X
2

groups
●●

●●

●●

●●

1

2

3

centers

The density of X(i) is

f(x; θ) =
K∑
k=1

wkN (x;µk,Σk)

The density of Xi, Zi is

f(x, z; θ) =
K∏
k=1

(
wkN (x;µk,Σk)

)zk
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Gaussian Mixture – EM algorithm
We want to maximize the log-likelihood of
f(x; θ) =

∑K
k=1 wkN (x;µk,Σk) but the ex-

pression of the log-likelihood L(X; θ) is com-
plicated.

Instead, we consider the complete density of
X(i), Z(i)

f(x, z; θ) =
K∏
k=1

(
wkN (x;µk,Σk)

)zk
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whose log-likelihood is

L(X, Z; θ) = log

( n∏
i=1

f(X(i), Z(i);w, µ,Σ)

)
=

n∑
i=1

K∑
k=1

Z(i)k logN (X(i);µk,Σk) +
n∑
i=1

K∑
k=1

Z(i)k log wk

How to maximize L?
1. If we knew the Z(i) we could maximize L in θ = (w, µ,Σ)

2. If we knew θ we could choose the best Z(i) maximizing their probability

P
{
Z(i)k = 1|X, θ

}
=

wkN (X(i);µk,Σk)∑K
j=1 wjN (X(i);µk,Σk)

The expectation-maximization algorithm alternates between those two.
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Gaussian Mixture – EM algorithm
We want to maximize the log-likelihood of
f(x; θ) =

∑K
k=1 wkN (x;µk,Σk) but the ex-

pression of the log-likelihood L(X; θ) is com-
plicated.

Instead, we consider the complete density of
X(i), Z(i)

f(x, z; θ) =
K∏
k=1

(
wkN (x;µk,Σk)

)zk
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( n∏
i=1
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)
=

n∑
i=1

K∑
k=1

Z(i)k logN (X(i);µk,Σk) +
n∑
i=1

K∑
k=1

Z(i)k log wk

Expectation-Maximization algorithm
Initialize: θ = θ0
Until convergence do
- Expectation step: q(Z) = P {Z|X, θ}
- Maximization step:

θt = arg max
θ

EZ∼q
[
L(X, Z; θ)

]
.

There are closed form formulas!
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Hierarchical clustering

Produce a hierarchical representation in which the clusters at each level of the
hierarchy are created by
- merging clusters at the lower level: agglomerative (bottom-up) strategy
→ we group the pair of clusters with the smallest intergroup dissimilarity

- splitting clusters at the higher level: divisive (top-down) strategy
→ we split the cluster to produce two groups with the largest intergroup
dissimilarity

Does not require the number k of clusters to be pre-specified.

Each level of the hierarchy represents a particular clustering of the data

For some data (like biological) this is better suited than flat clustering with a hierarchy
of groups: animal, mammal,…

30



Hierarchical clustering dendogram
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Divisive clustering

Initialize with a single cluster
Divide each group recursively into two childs using for example kmeans with k = 2.
Stop when each cluster has only a single element.
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Agglomerative clustering

Algorithm: Initialize with n cluster each containing a single data point.
While there is more than one cluster:
- find the two nearest clusters
- merge them

How to measure the distance between clusters? Four common ways
- minimum distance: dmin(U, V) = minu∈U,v∈V ∥u− v∥
- maximum distance: dmax(U, V) = max u ∈ U, v ∈ V∥u− v∥
- average distance
- distance between means

Different choices create different clustering behaviors!
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Agglomerative clustering

Algorithm: Initialize with n cluster each containing a single data point.
While there is more than one cluster:
- find the two nearest clusters
- merge them
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Divisive vs Agglomerative

Agglomerative is faster (no kmeans computation at each iteration)

Divisive is more global:

first step find the best split among the all data, while agglomerative only look at
pairwise comparison.
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Dimensionality Reduction
Algorithms



Principal component analysis

Assume that you have centered observations x1, . . . , xn ∈ Rp represented as a data matrix (with
column-wise zero empirical mean x̄ = 1

n
∑n

i=1 xi = 0)

X := [x1, . . . , xn]⊤ of dimension n× p .

If p is large, some columns (i.e., explanatory variables) may
be linearly correlated.

• bad statistical property: risk minimization not
identifiable, the covariance matrix (X⊤X) is not
invertible→ unstable estimators

• bad computational property: we need to store p ≫ 1
columns with redundant information

Is it possible to reduce the dimension of the data from Rp

to Rq through linear transformations without loosing much
information?

The principal components of a set of data in Rp provide a
sequence of best linear approximations of that data.

35



Principal component analysis

Assume that you have centered observations x1, . . . , xn ∈ Rp represented as a data matrix (with
column-wise zero empirical mean x̄ = 1

n
∑n

i=1 xi = 0)

X := [x1, . . . , xn]⊤ of dimension n× p .

Goal: find q good directions uk that preserve important
aspects of the data
- two equivalent ways to define what are good
directions
– find directions of maximum variation
– find projections that minimize the
reconstruction error

- the directions u1, . . . , uq turn out to be the top
k-eigenvalues of the covariance matrix X⊤X
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Principal Component Analysis (Maximum Variance)

1. Find the vector u1 such that the projection of
the data on u has the greatest variance.

u1 ∈ arg max
∥u∥=1

1
n

n∑
i=1

(u⊤1 xi − u⊤1 x̄i)2

= arg max
∥u∥=1

∥X⊤u∥2 = u⊤X⊤Xu

⇒ this is the principal eigenvector of X⊤X.
2. More generally, if we wish a k-dimensional sub-
space we choose u1, . . . , uk the top k eigenvec-
tors of X⊤X.

3. The ui form a new orthogonal basis of the data
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Principal component analysis (Minimum reconstruction Error)

We can also think of PCA as minimizing the reconstruction error of the compressed
data.

Consider the linear transformation from Rq to Rp for q ⩽ p:

f : z ∈ Rq 7→ µ+ Uqz

where µ ∈ Rp is a location vector and Uq is a p× q matrix with q orthogonal unit
vectors.

The goal of PCA is to fit such a linear model to the data by minimizing the
reconstruction error

min
µ,(zi),Uq

n∑
i=1

∥∥xi − µ− Uqzi
∥∥2

The solution turns out to be the same as maximal variation.
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How many components should we choose?

If we use principal components as a summary of our data, how many components are
sufficient?
- No simple answer to this question. Cross validation as we would use for
supervised learning is not possible.

- We may choose by looking visually at the reconstruction error or the percentage
of variance explained.
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PCA vs Clustering

PCA looks for a low-dimensional representation of the observations that explains a
good fraction of the variance.

Clustering looks for homogeneous subgroups among the observations.

They can be combined in methods such as Spectral Clustering:
1. apply PCA like techniques to find a better representation of the data
2. apply Kmeans

Kmeans Spectral clustering
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Conclusion

Unsupervised learning is important for understanding the variation and grouping
structure of a set of unlabeled data, and can be a useful pre-processor for supervised
learning.

It is intrinsically more difficult than supervised learning because there is no gold
standard (like an outcome variable) and no single objective (like test set accuracy).

It is an active field of research, with many recently developed tools such as
self-organizing maps, independent components analysis and spectral clustering.
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