EXERCISE SHEET - KERNEL METHODS

STATISTICAL LEARNING COURSE, ECOLE NORMALE SUPÉRIEURE

Raphaël Berthier raphael.berthier@inria.fr

Let \mathcal{X} be a set. We recall that that a symmetric function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a positive definite kernel if the two following equivalent conditions hold:

(a) for all $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, for all $x_1, \ldots, x_n \in \mathcal{X}$

$$\sum_{i,j} \alpha_i \alpha_j k(x_i, x_j) \ge 0$$

(b) there exists a Hilbert space \mathcal{H} and a feature map $\phi: \mathcal{X} \to \mathcal{H}$ such that for all $x, x' \in \mathcal{X}$,

$$k(x, x') = \left\langle \phi(x), \phi(x') \right\rangle$$

1. Examples of positive definite kernels

- (1) **Basic operations.** Let k_1, k_2 be two positive definite kernels on \mathcal{X} .
 - (a) Show that $k_1 + k_2$ is a positive definite kernel on \mathcal{X} .
 - (b) Show that the pointwise product k_1k_2 is a positive definite kernel on \mathcal{X} .
- (2) Minimum. Show that the function $k(x,y) = \min(x,y)$ is a positive definite kernel on \mathbb{R}_+ .
- (3) Chi-2. Show that the function $k(x, y) = \frac{xy}{x+y}$ is a positive definite kernel on \mathbb{R}^*_+ (4) On finite sets. Let X be a finite set, and $\mathcal{X} = \mathcal{P}(X)$ the collection of all subsets of X. Show that the function $k(A, B) = \frac{|A \cap B|}{|A \cup B|}$ is a positive definite kernel on \mathcal{X} .
- (5) Greatest common divisor. Show that the function k(n,m) = GCD(n,m), where GCD(n,m) is the greatest common divisor of n and m, is a positive definite kernel on ℕ.

2. DISTANCE IN THE FEATURE SPACE

- (1) (a) Let k be a positive definite kernel on \mathcal{X} . Let \mathcal{H} be a Hilbert space and ϕ : $\mathcal{X} \to \mathcal{H}$ be a feature map such that $k(x,y) = \langle \phi(x), \phi(y) \rangle$. Express the distance $\|\phi(x) - \phi(y)\|^2$ as a function of k only.
 - (b) What is the distance in the case of the Chi-2 kernel?
- (2) In this question, we want to apply the kernel trick for a simple method for classification: the distance to the mean. More precisely, we are given points $x_1, \ldots, x_n \in \mathcal{X}$ and their classes $y_1, \ldots, y_n \in \{-1, 1\}$. We define the centers of each class

$$\mu_{+} = \frac{1}{n_{+}} \sum_{i,y_{i}=1} \phi(x_{i}) \qquad \qquad \mu_{-} = \frac{1}{n_{-}} \sum_{i,y_{i}=-1} \phi(x_{i})$$

where n_+ (resp. n_-) is the number of points labeled +1 (resp. -1). We classify a new point $\Phi(x)$ in the class +1 if and only if it is closer to μ_+ than μ_- in the kernel space.

STATISTICAL LEARNING COURSE, ECOLE NORMALE SUPÉRIEURE

- (a) Express the distance $\|\phi(x) \mu_+\|^2$ using the kernel k and the data only. (b) Express the classication rule explained above using the kernel k and the data only.
- (c) Assume now and in the next question that $\|\mu_+\| = \|\mu_-\|$, and that the two classes are balanced, i.e., $n_{+} = n_{-}$. Simplify the rule of the previous question.
- (d) We now take $\mathcal{X} = \mathbb{R}^d$ and the Gaussian kernel $k(x, y) = \exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right)$. Show that the classification rule boils down to a local averaging rule.