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1 Introduction

In probabilistic modeling, we are given a set of observations Dn = (y1, . . . , yn) in Y that we assume to be
generated from some unknown i.i.d. distribution. The objective is to find a probabilistic model that explains
well the data. For instance by estimating the density of the underlying distribution. If possible, we would
like the model to predict well new data and to be able to incorporate prior knowledge and assumptions.

Let µ denote some reference measure on the output set Y. Typically, µ is the counting measure if Y ⊂ N or
the Lebesgue measure if Y ⊂ Rd.

Definition 1 (Parametric model). Let p ≥ 1 and Θ ⊂ Rp be a set of parameters. A parametric model
P is a set of probability distributions taking value in Y with a density with respect to µ and indexed by Θ:
P = {pθdµ|θ ∈ Θ}.

Example 1.1. Here are a few examples of statistical parametric models based on well known family distri-
butions:

• Binomial model: Y = N, Θ = [0, 1] and pθ(k) =

(
n

k

)
θk(1− θ)n−k;

• Gaussian model: Y = R, Θ = {(µ, σ) ∈ R× R+} and p(µ,σ)(x) = 1√
2πσ

e−
(x−µ)2

2σ2

• Multidimensional Gaussian model: Y = Rd, Θ = {(µ,Σ) ∈ Rd ×Md(R)} and

p(µ,Σ)(x) =
1

(2π)d/2|Σ|1/2
e−

1
2 (x−µ)>Σ−1(x−µ).

• Exponential model on Y = R+, Bernoulli model on Y = {0, 1},. . .

Now, we assume that we are given some model P indexed by θ ∈ Θ and we assume that the data Dn is
generated independently from pθ∗ ∈ P for some unknown parameter θ∗. We would like to recover the best
parameter θ∗ from the data. Note that in practice the data might come from a distribution which is not in
P: we call this misspecification but we will not enter into this details in this class.

2 Maximum likelihood estimation

The idea behind maximum likelihood estimation is to choose the most probable parameter θ ∈ Θ for the
observed data. Assume that Y is discrete and that Y ∼ pθ∗dµ for some θ∗ ∈ Θ. Then, for any observation
yi the probability that Y = yi equals pθ∗(yi). Similarly, the probability of observing (y1, . . . , yn) ∈ Yn if
all the samples were sampled independently from pθ is

∏m
i=1 pθ(yi) . Hence, the high level idea of maximum

likelihood estimation will be to maximize this probability over θ ∈ Θ. This is formalized by the definition of
the likelihood which also holds for non-discret set Y.
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Definition 2 (Likelihood). Let P = {pθ, θ ∈ Θ} a parametric model and y ∈ Y. Given the outcome y ∈ Y,
the likelihood is the function θ 7→ pθ(y). The likelihood L(.|Dn) of a data set Dn = (y1, . . . , yn) is the function

L(·|Dn) : θ 7→
m∏
i=1

pθ(yi) .

The maximum likelihood estimator (MLE) is then the parameter which maximizes the likelihood, i.e.,

θ̂n ∈ arg max
θ∈Θ

{
n∏
i=1

pθ(yi)

}
.

This principle was proposed by Ronald Fisher in 1922 and was validated since with good theoretical prop-
erties. It is worth pointing out that since log is an increasing function, the maximum likelihood estimator
can also be obtained by maximizing the log-likelihood:

θ̂n ∈ arg max
θ∈Θ

{
n∑
i=1

log(pθ(yi))

}
. (MLE)

This turns out to be much more convenient in practice because it is easier to maximize a sum than a product.
Convince yourself by computing the gradients!

Examples

• Bernoulli model: Y = {0, 1}, Θ = [0, 1], pθ(y) = θy(1 − θ)(1−y). We assume that Dn was generated
from a Bernoulli distribution of parameter θ∗, the the maximum likelihood estimator is:

θ̂n = arg min
0≤θ≤1

1

n

n∑
i=1

(
yi log θ + (1− yi) log(1− θ)

)
.

Denoting ȳn = 1
n

∑n
i=1 yi the empirical average and solving d logL(θ̂n|Dn)/dθ = 0 yields

ȳn

θ̂n
− 1− ȳn

1− θ̂n
= 0 ⇒ (1− ȳn)θ̂n = (1− θ̂n)ȳn ⇒ θ̂n = ȳn .

Therefore the maximum likelihood estimator is in this case the empirical mean.

• As an exercise, compute the maximum likelihood estimator for the models seen in Example 1.1.

Link with empirical risk minimization In density estimation, the goal is to find the density of the
distribution which generated the data. Assuming that the density belongs to the model P, the possible
densities are pθ, for θ ∈ Θ. A standard loss function in this setting is the negative log-likelihood: ` : (θ, y) ∈
Θ× Y 7→ − log

(
pθ(y)

)
. The risk (or generalization error) is then:

R(θ) = −EY
[

log(pθ(Y ))
]
.

In particular, if Y ∼ pθ∗dµ for some θ∗ ∈ Θ, θ∗ minimizes the risk and the objective is to recover θ∗. The
empirical risk is then by definition

R̂n(θ) = − 1

n

n∑
i=1

log
(
pθ(yi)

)
.

Therefore, the empirical risk minimizer matches the estimator obtained from maximum likelihood in Equa-
tion (MLE).
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Link with Kullback-Leibler divergence The Kulback-Leibler divergence is a measure of dissimilarity
two between probability distributions. It was introduced by Kullback and Leibler in 1951.

Definition 3 (Kullback-Leibler divergence). Let pdµ and qdµ be two probability distributions. The Kullback-
Leibler divergence from p to q is defined as

KL(p||q) := EY∼pdµ
[
log

p(Y )

q(Y )

]
=

∫
Y
p(y) log

p(y)

q(y)
dµ(y) .

The KL divergence has various interpretations. As we will see now, it can be interpreted as the excess
risk of the measure pθdµ when the data follows distribution pθ∗dµ when the loss function is the negative
log-likelihood. Assume that the data Dn were generated from pθ∗ . Then, the excess risk can be written

R(θ)−R(θ∗) = −EY∼θ∗
[

log(pθ(Y ))
]

+ EY∼θ∗
[

log(pθ∗(Y ))
]

= Eθ∗
[

log
(pθ∗(Y )

pθ(Y )

)]
=: KL

(
pθ∗ ||pθ

)
where Eθ∗ [f(Y )] denotes EY∼pθ∗dµ[f(Y )] the expectation of f(Y ) when Y follows pθ∗dµ.

Another interpretation comes from information theory. It can be seen as the difference of bits needed to
encode Dn under a code optimized for pθdµ compared to a code optimized for pθ∗dµ.

Properties and remarks about the KL-divergence:
– KL(P ||Q) ≥ 0 by Jensen’s inequality
– KL(p||p) = 0. Therefore, we see that pθ∗ minimizes the the risk and thus maximizes the likelihood.
– If the distributions are discrete and µ is the counting measure, we have in particular KL(p||q) :=∑

i∈Y p(i) log
(p(i)
q(i)

)
.

– The Kullback–Leibler divergence is defined only if for all A ⊂ Y, q(A) = 0 implies p(A) = 0, i.e., if q
is absolutely continuous with respect to p.

– Though KL is often seen as a distance, it does not fill the requirements: it is not symmetric and it
does not satisfy the triangular inequality.

– With an abuse of notation, we can rewrite the empirical risk minimization for log loss with the KL:

θ̂n ∈ arg min
θ∈Θ

KL(p̂n||pθ)

where p̂n = 1
n

∑n
i=1 δyi is the empirical measure (which does not have any density with respect to the

Lebesgue measure though).

Conditional modeling

Until now, we considered the problem of density estimation when the data set has only outputs yi ∈
Y. However, the principle of maximum likelihood can be extended to couples of input outputs Dn =
{(x1, y1), . . . , (xn, yn)} in X × Y. We can then distinguish two different modeling:

– generative modeling: we aim at estimating the density of couples of input outputs (X,Y ) among a
family of densities (x, y) ∈ X × Y 7→ pθ(x, y) on X × Y. Then the risk and the empirical risks are:

R(θ) = −E
[

log(pθ(X,Y )
]

R̂n(θ) = − 1

n

n∑
i=1

log
(
pθ(xi, yi)

)
.

This can be useful to generate some new samples (see what is obtained with GANs).
– conditional modeling: we aim at estimating the density of an output Y given an input X. The family

of densities are now densities y ∈ Y 7→ pθ(.|x) on Y only but that depend on the inputs. The risk and
the empirical risk with negative log-likelihood are then

R(θ) = −E
[

log(pθ(Y |X))
]

R̂n(θ) = − 1

n

n∑
i=1

log
(
pθ(yi|xi)

)
.
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This is useful if one want to predict the distribution or the value of a new output Y given X.

Example 2.1. Linear regression. We consider a data set Dn = {(x1, y1), . . . , (xn, yn)} of samples in X ×Y.
We assume that the outputs yi were independently generated from a Gaussian distribution of mean w>xi
and variance σ2. In other words, we model an output Y given an input X as

Y = w∗
>X + ε, where ε ∼ N (0, σ2

∗) .

for some unknown θ∗ = (w∗, σ
2
∗) ∈ Rd × R+. Our family of possible conditional densities is indexed by

parameters θ = (w, σ2) ∈ Rd × R+

pθ(y|x) =
1√
2πσ

e−
(y−w>x)2

2σ2 .

The empirical risk (or conditional log-likelihood) is then

R̂n(θ) = − 1

n

n∑
i=1

log
(
pθ(yi|xi)

)
=

1

2nσ2

n∑
i=1

(
yi − w>xi

)2
+

1

2
log(2πσ2) .

Therefore, the maximum likelihood estimator ŵn of w in a Gaussian model is the estimator obtained by
least square linear regression. As an exercise, you may show that the maximum likelihood estimator for σ is

σ̂2
n =

1

n

n∑
i=1

(
yi − ŵ>n xi

)2
.

Example 2.2. Logistic regression. A plus of logistic loss in comparison with Hinge loss is that it has a
probabilist interpretation. Consider (X,Y ) ∼ P a pair of input-output random variables in Rd × {0, 1}. In
binary classification, the objective is given the input X to predict the probability that Y = 1. In other
words, we want to estimate

P(Y = 1|X)

from observations Dn := {(xi, yi)}1≤i≤n ∈
(
Rd × {0, 1}

)n
that were independently generated from P. The

issue is that linear predictions of the form θ>xi belongs to R while our model needs to output probabilities
with values in the range [0, 1]. A function that maps R to [0, 1] is the sigmoid function

σ : z ∈ R 7→ 1

1 + e−z
.

This function satisfies σ(−z) = 1−σ(z) and dσ(z)
dz = σ(z)σ(−z). Logistic regression assumes the probabilistic

model
P(Y = 1|X) = σ

(
θ>X

)
.

It is worth pointing out that this probabilistic model is satisfied for many natural models: for instance if
X|Y = 1 and X|Y = 0 follow independent Gaussian distributions. We can define the family of possible
densities (with respect to the countable measure) on {0, 1} considered here

pθ(y|x) = σ
(
θ>x

)y(
1− σ(θ>x)

)1−y
, (1)

indexed by θ ∈ Rd. We recall that similarly to linear regression, to ease the notation, the intercept (to make
afffine prediction) may be included into the input X by adding the constant 1.

Proposition 1. Assume that Dn = {(xi, yi)}1≤i≤n are realizations of i.i.d. random variables. Then the

logistic regression estimator θ̂(logit) ∈ arg minθ∈Rd
∑n
i=1 `(θ

>xi, yi) with `(x, y) := y log(σ(θ>x)) + (1 −
y) log(σ(−θ>x)) matches the definition of the maximum likelihood estimator of θ ∈ Rd with parametric
model (1).
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Proof. The conditionnal log-likelihood can be written

logL(·|Dn) =

n∑
i=1

log (pθ(yi|xi))

=

n∑
i=1

log
(
σ(θ>xi)

yiσ(−θ>xi)1−yi
)

=

n∑
i=1

yi log
(
σ(θ>xi)

)
+ (1− yi) log

(
σ(−θ>xi)

)
=

n∑
i=1

`(θ∗
>xi, yi)

where ` is the logistic loss.

3 Maximum a-posteriori

If the dimension p of the parameter space Θ is too large compared to the number of samples n, the MLE
may lead to poor performance. Similarly to least square linear regression without regularization, it overfits
when p > n. A second limitation is that no prior knowledge on the parameters θ is included. Let us see this
on an example.

Example 3.1. Consider the multinomial model where each observation is a discrete observation in k classes
{1, . . . , k}. Each class j ∈ {1, . . . , k} is sampled with a probability θ∗j and we aim at retrieving these
probabilities.
For convenience, we define the output set Y =

{
y ∈ {0, 1}k :

∑k
i=1 yi = 1

}
. An observation yi ∈ {0, 1}k

is such that yi(j) = 1 if it is in class j ∈ {1, . . . , k} and 0 otherwise. The multinomial model consists of
densities of the form:

pθ : y ∈ Y 7→
k∏
j=1

θ
y(j)
j , for θ ∈ [0, 1]k :

k∑
j=1

θj = 1 .

In other words, the probability of an observation to be in class j equals θj . The dimension of the parameter
space is p = k − 1. The MLE is

θ̂j = arg max
θj

1

n

n∑
i=1

yi(j) log θj =
nj
n

where nj =
∑n
i=1 yi(j) is the proportion of occurrence of class j in the data set. If k > n (think about the

probability of words into some text, each word being a possible class, the number of possible words k can
be much larger than the number of words in the text), many classes j are never observed and estimated
with 0. The log-loss of these options is infinite and so is the risk (or generalization error) R(θ). We say the
the model is overestimating.

This problem can be solved by adding a regularization which can also be seen from a Bayesian point of view
as a prior distribution over the possible distributions θ. This is what does Maximum a Posteriori (MAP).
The idea behind MAP is to see the parameter θ as a random variable taking values in Θ, and to choose the
most probable value θ̂MAP for the observed data. Given the data set Dn, the MAP can be formalized as
the solution of

θ̂MAP
n ∈ arg max

θ∈Θ
p(θ|Dn)

where p(θ|Dn) is the density of the posterior distribution of the model given the data. In discrete model
space Θ, the MAP is exactly the most probable model. To calculate the posterior distribution we use the
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Bayes rule:

p(θ|Dn) =
p(Dn|θ)p(θ)
p(Dn)

,

where Dn is a random data set and
– p(Dn|θ) is the probability density of observing Dn if the distribution follows pθdµ. This is exactly the

likelihood L(θ|Dn);
– p(θ) is the prior distribution of the model. How likely we think it is before seeing the data. In general,

the simpler, the more likely!
– p(Dn) is the marginal distribution of the data.

Hence, the MAP is the solution of

θ̂MAP
n ∈ arg max

θ∈Θ

{
L(θ|Dn)p(θ)

}
= arg min

θ∈Θ

{
− 1

n

n∑
i=1

log pθ(yi) + log
1

p(θ)

}
. (MAP)

In some situation, we may not have to prefer one model over another and one can think of p(θ) as a constant
over the parameter space Θ. Then the MAP reduces to the MLE. However, this assumption that p(θ) is
constant is problematic because uniform distribution cannot always be defined if Θ is not compact. Therefore
it may be better to see MAP as a regularized version of MLE with a regularization of the form log 1

p(θ) rather

than MLE as a particular case of MAP with uniform prior.
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