
High-dimensional data and variable selection

Pierre Gaillard and Alessandro Rudi

April 2019

1 Introduction

In statistics or machine learning, we often want to explain some output Y ∈ Y from input
X ∈ X ⊂ Rp by observing a data set Dn = {(Xi, Yi)}1≤i≤n of i.i.d. observations. In previous
lessons, we saw methods such as Ordinary Least Square Regression, K-Nearest Neighbors,
Probabilist models or Kernel regression. Today, we would like to deal with high-dimensional
input spaces, i.e., large p (possibly p� n). We will have two motivations in mind:

– prediction, accuracy : when p � n classical models fail. Is it possible to have strong
theoretical guarantees on the risk (i.e., generalization error)?

– model interpretability : by removing irrelevant featuresXi (i.e, by setting the corresponding
coefficients estimates to zero), the model will easier to understand.

Good references on this topic are Giraud [2014] and Friedman et al. [2001].

Why high-dimensional data? The volume of available data is growing exponentially fast
nowadays. According to IBM two years ago, 1018 bytes of data were created every day in the
world and 90% of data is less than two years old. Many modern data record simultaneously
thousands up to millions of features on each objects or individuals. In many applications, data is
high-dimensional such as with DNA, images, video, cookies (data about consumer preferences)
or in astrophysics.

The curse of dimensionality
– High-dimensional spaces are vast and data points are isolated in their immensity.
– The accumulation of small errors in many different directions can produce a large global

error.
– An event that is an accumulation of rare events may be not rare in high-dimensional space.

Example 1.1. In high-dimensional spaces, no point in you data set will be close from a new
input you want to predict. Assume that your input space is X = [0, 1]p. The number of points
needed to cover the space at a radius ε in L2 norm is of order 1/εp which increases exponentially
with the dimension. Therefore, in high dimension, it is unlikely to have a point in you data set
that will be close to any new input.

Example 1.2. In high-dimensional spaces classical distances are often meaningless: all the
points tends to be at similar distance from one another. Consider the following example to
convince ourselves. Assume thatX,X ′ follow uniform distribution on [0, 1]p. Then, the expected
distance in square L2-norm between X and X ′ is

E
[
‖X −X ′‖2

]
=

p∑
i=1

E
[
(Xi −X ′i)2

]
= pE

[
(X1 −X ′1)2

]
= p

∫ 1

0

∫ 1

0
(x− x′)dxdx′ = p

6

1

Therefore, the average distance between the points increases with the dimension. Furthermore,
the standard deviation of this square distance is

√
Var
(
‖X −X ′‖2

)
=

√√√√ p∑
i=1

Var
(
(Xi −X ′i)2

)
=
√
pVar

(
(X1 −X ′1)2

)
=

√
7p

6
√

5
' 0.2

√
p .

Thus, if we plot the distribution of the square distance, we get something like:

95% of the points are at distance 0.4
√
p

p/6

Distance between points in [0, 1]p

D
en

si
ty

Therefore, relatively to their
distance, all points seem to
be at similar distance from
one another. The notion of
nearest point distance van-
ishes. As a consequence, K-
Nearest Neighbors gets poor
performance in large dimen-
sion.

Example 1.3. Let us consider another example in high-dimensional linear regression. We
consider the ordinary least square estimator (OLS) for the linear model

β̂ ∈ arg min
β∈Rp

∥∥Y−Xβ∥∥2 where Yi = x>i β
∗+εi, X = (x1, . . . , xn)> ∈ Rn×p and εi

i.i.d.∼ N (0, σ2) .

If rg(X) = p (i.e., p ≤ n) then β̂ = (X>X)−1X>Y and as we saw in previous lecture the
estimator satisfies

E
[
‖β̂ − β∗‖2

]
= Tr

(
(X>X)−1

)
σ2 .

In particular, in the very gentle case of an orthogonal design, we get E
[
‖β̂ − β∗‖2

]
= pσ2 .

Therefore, the variance of the estimator increases linearly with the dimension and the later
gets unstable for high-dimensional data. Furthermore, OLS only works for p ≤ n because
otherwise the matrix X>X is not invertible and using pseudo-inverse would lead to highly
unstable estimator and over-fitting. One needs to regularize.

The previous examples seem to show that the curse of dimensionality is unavoidable and we are
doomed to poor estimators in large dimension. Hopefully, in many cases, data has an intrinsic
low complexity (sparsity, low dimensional structure,. . .). This low structure can come from
the data (for instance with images) or from the machine learning methods which is used (for
instance Kernel regression).

What can we do with high-dimensional data? There are three classes of methods to
deal with large dimensional input spaces:

– Model selection: we identify a subset of s� p predictors that we believe to be related to
the response. We then fit a model (for instance OLS) on the s variables only.

– Regularization: Ridge, Lasso,. . .
– Dimension reduction: the objective is to find a low-dimensional representation of the data.

If we consider linear transformation, we may project the p predictors into a s-dimensional
space with s � p. This is achieved by computing s different linear combination or pro-
jections of the variables. Then these projections are used as new features to fit a simple
model for instance by least squares. Examples of such methods are PCA, PLS,. . .

2

2 Model selection

The high level idea is to compare different statistical models corresponding to different possible
hidden structure and select the best. This is theoretically very powerful, however the compu-
tational complexity is often prohibitive. Here, we will consider the example of the sparse linear
model

Y = Xβ∗ + ε , Y = (y1, . . . , yn) ∈ Rn, X ∈ Rn×p, ε ∼ N (0, σ2In) . (1)

We consider p� n but we assume that β∗ has only s < p non-zero coordinates.

If we knew in advance the non-zero coordinates of β∗ say m∗ ⊂ {1, . . . , p}, we could consider
the simpler linear regression problem yi =

∑
j∈m∗ β∗jXi,j + εi and use the estimator

β̂m ∈ arg min
β ∈ Rp

βj = 0 ∀j /∈ m

∥∥Y −Xβ∥∥2 (2)

for the correct choice m = m∗. More generally, this would work if we know that β belongs to
some vectorial space of dimension s < p. We then get a risk which is scaling with s instead of
p and the estimator has good statistical properties.

If we do not know m∗ in advance, assuming the algorithmic complexity is not a problem, we can
1. consider a collection M of possible models m ⊂ {1, . . . , p};
2. compute β̂m for each m ∈M as defined in (2);
3. estimate β∗ by the best estimator among the collection β̂m.

A natural candidate for the best model is the minimizer of the empirical risk:

β̂m̂ with m̂ ∈ arg min
m∈M

{∥∥Y −Xβ̂m∥∥2}
The issue is that larger models m ⊃ m′ will always get smaller empirical risk because of over-
fitting. One needs to penalize models according to their complexity and choose the penalized
estimator

β̂m̂ with m̂ ∈ arg min
m∈M

{∥∥Y −Xβ̂m∥∥2 + pen(m)
}

(3)

Remember the class about PAC-learning with infinite class of models. There are several well
known penalization criteria.

The Akaike Information Criterion (AIC) It defines the penalization

pen(m) = 2|m|σ2 .

The AIC criterion is motivated by the following lemma.

Lemma 1. In least square linear regression with Gaussian model (see (1)), ‖Y − X̂βm‖2 +
(2|m| − n)σ2 is an unbiased estimator of the risk R(β̂m) := E

[
‖Xβ∗ −Xβ̂m‖2

]
.

Proof. We show that in least square regression the risk equals

R(β̂m) := E
[
‖Xβ∗ −Xβ̂m‖2

]
= E

[
‖Y −Xβ̂m‖2

]
+ (2|m| − n)σ2 .

Let us first give some useful notation an equalities. For each m ⊂ {1, . . . , p}, we define the
sub-vectorial space Sm := {Xβ ∈ Rn : β ∈ Rp, βj = 0 ∀j /∈ m} and ΠSm ∈ Rn×n the orthogonal

3

projection matrix on Sm. Then, by definition of β̂m, we have Xβ̂m = ΠSmY and we recall that
Y = Xβ∗ + ε. Furthermore, we will also use that:

E
[
‖ΠSmε‖2

]
= E

[
ε>Π>SmΠSmε

]
= E

[
ε>ΠSmε

]
= E

[
Tr(ε>ΠSmε)

]
= E

[
Tr(ΠSmεε

>)
]

= σ2Tr(ΠSm) = |m|σ2 . (4)

Similarly, E
[
‖(I−ΠSm)ε‖2

]
= (n−|m|)σ2. From the decomposition Y −Xβ̂m = (I−ΠSm)(Xβ∗+

ε), we have

E
[
‖Y −Xβ̂m‖2

]
= E

[
‖(I −ΠSm)Xβ∗‖2 +(((((((((

2ε>(I −ΠSm)Xβ∗ + ‖(I −ΠSm)ε‖2
]

= ‖(I −ΠSm)Xβ∗‖2 + (n− |m|)σ2 .
= ‖(I −ΠSm)Xβ∗‖2 + E

[
‖ΠSmε‖2

]
+ (n− 2|m|)σ2

= E
[
‖(I −ΠSm)Xβ∗ −ΠSmε‖2

]
+ (n− 2|m|)σ2 ← Pythagore’s theorem

= E
[
‖Xβ∗ −ΠSm(Xβ∗ + ε)‖2

]
+ (n− 2|m|)σ2

= E
[
‖Xβ∗ −Xβ̂m‖2

]
+ (n− 2|m|)σ2 .

Prior-based penalization Another popular penalization is to assign a prior weight πm for
each m ∈M, choose a regularization parameter K > 1 and select

pen(m) = Kσ2
(√
|m|+

√
2 log(1/πm)

)2
. (5)

Theorem 1 (Thm. 2.2, Giraud [2014]). Under the model (1), there exists some constant
CK > 1 depending only on K such that the penalized estimator β̂m̂ defined in (3) with penalty (5)
satisfies

R(β̂m̂) := E
[
‖Xβ∗ −Xβ̂m̂‖2

]
≤ CK min

m∈M

{
E
[
‖Xβ∗ −Xβ̂m‖2

]
+ σ2 log

1

πm
+ σ2

}
.

A possible choice motivated by minimum description length (see lecture on PAC-Learning with
infinite number of models) for the prior is log(1/πm) ≈ 2|m| log p, i.e., the number of bits needed
to encode m ⊂ {1, . . . , p}. Remark that this choice of prior leads up to the log p to a similar
criterion that for AIC. Yet, it is worth pointing out that the previous theorem is valid for
general models m ∈ M (it is not restricted to the estimators (2)) and priors πm. Other priors
can promote different types of assumptions such as group sparsity.

Computational issues The estimator (3) has very nice statistical properties even when
p� n. However we need to compute β̂m for all models m ∈ M. This is often prohibitive. We
can understand it by rewriting it as an optimization problem of the form

β̂m̂ ∈ arg min
β∈Rp

{
‖Y −Xβ‖2 + λ‖β‖0

}
(6)

which is non-convex because of the ‖ · ‖0. The estimator of AIC corresponds to the choice
λ = 2σ2. In some cases, such as orthogonal design, we can approximate efficiently the solution
or find an efficient implementation. However, this is not true in general. An approximate
implementation which is sometimes used to solve (3) is the forward-backward algorithm. It
consists in alternatively trying to add or remove variables in the model one by one. It quickly
converges in practice, but there is no theoretical guarantees.

4

3 The Lasso

The high-level idea of the Lasso is to transform the non-convex optimization problem (6) into
a convex problem. This is done by replacing the `0-norm ‖β‖0 =

∑m
j=1 1βj 6=0 with the `1-norm

‖β‖1 =
∑p

j=1 |β|j which is convex. We define the LASSO estimator

β̂λ ∈ arg min
β∈Rp

{
‖Y −Xβ‖2 + λ‖β‖1

}
. (LASSO)

The solution β̂λ may not be unique but the prediction Xβ̂λ is.

3.1 Geometric insight

By convex duality, the Lasso is also the solution of

β̂λ ∈ arg min
β∈Rp:‖β‖1≤Rλ

{
‖Y −Xβ‖2

}
,

for some radius Rλ > 0. The non-smoothness of the `1-norm puts some coefficients to zero. In
Figure 1, we can see in dimension p = 2 that because of the sharp corners of the `1-ball, the
solution β̂λ gets zero coefficients which is not the case when regularizing with the `2-norm (on
the right).

β1

β2

β̂

β̂λ

β1

β2

β̂

β̂λ

Figure 1: β̂ denotes the minimizer of the empirical risk and the blue lines denote level lines of
the empirical risk [left] Regularization with a `1-ball [right] Regularization with a `2-ball.

3.2 What does the solution of the Lasso looks like?

To solve the problem of Lasso, if the objective function L : β 7→ ‖Y − Xβ‖2 + λ‖β‖1 was
differentiable, one would cancel the gradient. However, because of the `1-norm the latter is not
differentiable and one needs to generalize the notion of gradient to convex functions which are
not necessarily differentiable. This is done with the following definition.

Definition 1 (Subdifferential). A subgradient of a convex function f : Rp → R at a point
β0 ∈ Rp is a vector z ∈ Rp such that for any β ∈ Rp the convex inequality holds

f(β)− f(β0) ≥ z>(β − β0) .

The set of all subgradients of f at β0 is denoted ∂f(β0) and is called the subdifferential of f
at β0.

5

The subdifferential of the `1-norm is

∂‖β‖1 =
{
z ∈ [−1, 1]p s.t. for all 1 ≤ j ≤ p zj = sign(βj) if βj 6= 0

}
and the subdifferential of the objective funtion of the Lasso is

∂L(β) =
{
− 2X>(Y −Xβ) + λz : z ∈ ∂‖β‖1

}
.

Any solution of the Lasso should cancel the subdifferential. Therefore, if β̂λ is a solution of the
Lasso, it exists ẑ ∈ ∂‖β̂λ‖1 (i.e., ẑj = sign(β̂λ(j)) if β̂λ(j) 6= 0 and ẑj ∈ [−1, 1] otherwise) such
that

−2X>(Y −Xβ) + λẑ = 0 ⇒ X>Xβ̂λ = X>Y − λ

2
ẑ . (7)

If the gram matrix X>X is general, it is not possible to solve the later in close form. To get
some insights about the solution of the Lasso, let us assume the orthonormal setting X>X = Ip.

Then, from (7), we get for all j ∈ {1, . . . , p} such that β̂λ(j) 6= 0

β̂λ(j) = X>j Y −
λ

2
sign(β̂λ(j)) .

Therefore, X>j Y = β̂λ(j)+sign(β̂λ(j)) and β̂λ(j) have same sign and we obtain for all 1 ≤ j ≤ p

β̂λ(j) =

{
X>j Y − λ

2 sign(X>j Y) if |X>j Y | ≥ λ
2

0 if |X>j Y | ≤ λ
2

In the orthonormal setting, the Lasso performs thus a soft threshold of the coordinates of the
OLS.

Statistical property of the Lasso estimator For λ large enough λ ' σ
√

log p, under some
additional condition on the design (relaxed version of orthonormal design), it is possible to show
that the Lasso does not assign any weight to coefficients that are not in m∗. If λ is properly
chosen, it recovers exactly the coefficients of β∗ and its risk is controlled with high probability
as

R(β̂λ) =
∥∥Xβ∗ −Xβ̂λ∥∥2 ≤ inf

β∈Rp\{0}

{
‖Xβ −Xβ∗‖2 + �Xλ

2‖β‖0
}
,

where λ2 ' σ2 log p and �X is the compatibility constant depending on the design X. It can
be bad for non-orthogonal design. We recover a similar result than the one obtained for model
selection in Theorem 1 but with �X and with an efficient procedure. It can be shown that it is
not possible to avoid �X for efficient (polynomial time) procedures.

3.3 Computing the Lasso estimator

The solution of the Lasso can be obtained efficiently. There are three main algorithms used by
the community.

– Coordinate descent (cf. practical session) the idea is to repeatedly minimize the objective
function L(β) with respect to each coordinate. It converges thanks to the convexity of L.

– Fista (fast iterative shrinkage thresholding algorithmn) It uses the explicit formula in the
orthogonal design setting for computing recursively an approximation of the solution

6

Figure 2: Lasso regularization path computed with LARS

– LARS The insight of the algorithm comes from equation (7): X>Xβ̂λ = X>Y − λ
2 ẑ.

We then consider the function λ 7→ β̂λ. For non-zero coefficients, ẑj = sign(β̂λ(j)) and

is constant while λ 7→ β̂λ(j) does not change sign. Therefore, the function λ 7→ β̂λ is
piecewise linear in λ with a change when for some coordinate β̂λ(j) changes sign. LARS
computes the sequence {β̂λ1 , β̂λ2 , . . . } of the Lasso estimator corresponding to the break

points of the path λ 7→ β̂λ. At each break point, the model mλ = {i ∈ {1, . . . , p} : β̂λ(i) 6=
0} is updated and we solve the linear equation

X>mλXmλ β̂λ(mλ) = X>mλY −
λ

2
sign(β̂λ(m)) ,

until the next break point. This algorithm is slower than the other two algorithms but it
provides the full regularization path λ 7→ β̂λ (see Figure 2).

3.4 Final remarks and variants

Removing the bias of the Lasso The Lasso estimator β̂λ is biased. Often one might want
to remove the bias for instance by first computing β̂λ to select to good model m̂λ and then solve
the OLS or Ridge on the model m̂λ only.

No penalization of the intercept In practice, the intercept is often not penalized and the
Lasso solves

β̂λ ∈ arg min
β∈Rp

{ n∑
i=1

(Yi − β0 − β>Xi)
2 + λ‖β‖1

}
.

Group Lasso It is an extension when coordinates are sparse by groups. In other words, we
have some groups Gk ⊂ {1, . . . , p} and we assume that all coordinates βi for i ∈ Gk are either
all zero or all non-zero.

Elastic net It is a mix of `1 and `2 regularization

β̂ ∈ arg min
β∈Rp

{
‖Y −Xβ‖2 + λ1‖β‖1 + λ2‖β‖22

}
.

It also selects variables thanks to sharp corners and it is heavily used in practice.

7

Calibration of λ It is a crucial point in practice. A common solution is to perform K-fold
cross validation. There are a few other techniques such as the slopes heuristic.

References

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning,
volume 1. Springer series in statistics New York, NY, USA:, 2001.

Christophe Giraud. Introduction to high-dimensional statistics. Chapman and Hall/CRC, 2014.

8

