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In this class, we will see logistic regression, a widely used classification algorithm. Contrary to
linear regression, there is no closed-form solution and one needs to solve it thanks to iterative
convex optimization algorithms. We will then see the basics of convex analysis.

1 Logistic regression

We will consider the binary classification problem in which one wants to predict outputs in {0, 1}
from inputs in Rd. We consider a training set Dn :=

{
(Xi, Yi)

}
16i6n. The data points (Xi, Yi)

are i.i.d. random variables and follow a distribution P in X ×Y. Here, X = Rd and Y = {0, 1}.

Goal We would like to use a similar algorithm to linear regression. However, since the outputs
Yi are binary and belong to {0, 1} we cannot predict them by linear transformation of the inputs
Xi (which belong to Rd). We will thus classify the data thanks to classification rules f : Rd 7→ R
such that:

f(Xi)

{
> 0 ⇒ Yi = +1
< 0 ⇒ Yi = 0

,

to separate the data into two groups. In particular, we will consider linear functions f of the
form fβ : x 7→ x>β. This assumes that the data are well-explained by a linear separation (see
figure below).

Linearly separable data Non-linearly separable data

f(X) = 0

f(X)>0

f(X)<0

Of course, if the data does not seem to be linearly separable, we can use similar tricks that we
used for linear regression (polynomial regression, kernel regression, splines,. . . ). We search a
feature map x 7→ φ(x) into a higher dimensional space in which the data are linearly separable.

1



−3 0 1
0

0.5

1
binary

logistic

Hinge

ŷ
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Figure 1: Binary, logistic and Hinge loss incured for a prediction ŷ := x>β when the true
observation is y = 0.

Loss function To minimize the empirical risk, it remains to choose a loss function to assess the
performance of a prediction. A natural loss is the binary loss: 1 if there is a mistake (f(Xi) 6= Yi)
and 0 otherwise. The empirical risk is then:

R̂n(β) =
1

n

n∑
i=1

1Yi 6=1X>
i
β>0

.

This loss function is however not convex neither in β. The minimization problem minβ R̂n(β)
is extremely hard to solve. The idea of logistic regression consists in replacing the binary loss
with another similar loss function which is convex in β. This is the case of the Hinge loss and
of the logistic loss ` : R × {0, 1} → R+. The latter assigns to a linear prediction ŷ = x>β and
an observation y ∈ {0, 1} the loss

`(ŷ, y) := y log
(
1 + e−ŷ

)
+ (1− y) log

(
1 + eŷ

)
. (1)

The binary loss, Hinge loss and logistic loss are plotted in Figure 1.

Definition 1.1 (Logistic regression estimator). The logistic regression estimator is the solution
of the following minimization problem:

β̂(logit) = arg min
β∈Rd

1

n

n∑
i=1

`(X>i β, Yi) ,

where ` is the logistic loss defined in Equation (1).

The advantage of the logistic loss with respect to the Hinge loss is that it has a probabilistic
interpretation by modeling P(Y = 1|X), where (X,Y ) is a couple of random variables following
the law of (Xi, Yi). We will see more on this in the lecture on Maximum Likelihood.

Computation of β̂(logit) Similarly to OLS, we may try to analytically solve the minimization
problem by canceling the gradient of the empirical risk. Since ∂`(ŷ,y)

∂ŷ = σ(ŷ)− y, where σ : z 7→
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1
1+e−z is the logistic function, we have:

∇R̂n(β) =
1

n

n∑
i=1

Xi

(
σ(X>i β)− Yi

)
=

1

n
X
(
Y − σ(Xβ)

)
where X := (X1, . . . , Xn)>, Y := (Y1, . . . , Yn), and σ(Xβ)i := σ(X>i β) for 1 6 i 6 n. Bad news:
the equation ∇R̂n(β) = 0 has no closed-form solution. It needs to be solved through iterative
algorithm (gradient descent, Newton’s method,. . . ). Fortunately, this is possible because the
logistic loss is convex in its first argument. Indeed,

∂2`(ŷ, y)

∂ŷ
= σ(ŷ)σ(−ŷ) > 0 .

The loss is strictly convex, the solution is thus unique. In this class and the next one, we will
see tools and methods to solve convex optimization problems.

Regularization Similarly to linear regression, logistic regression may over-fit the data (especially
when p > n). One needs then to add a regularization such as λ‖β‖22 to the logistic loss.

2 Convex analysis

We will now see notions of convex analysis to solve convex optimization problems such as the
one of logistic regression. For more details on this topic, we refer to the monograph Boyd and
Vandenberghe, 2004. This class and the next one, we will see two aspects:

– convex analysis: properties of convex functions and convex optimization problems
– convex optimization: algorithms (gradient descent, Newton’s method, stochastic gradient

descent, . . . )

Convexity is a crucial notion in many fields of mathematics and computer sciences. In machine
learning, convexity allows to get well-defined problems with efficient solutions. A typical example
is the problem of empirical risk minimization:

f̂n ∈ arg min
f∈F

1

n

n∑
i=1

`
(
f(Xi), Yi

)
+ λΩ(f) , (∗)

where Dn =
{

(Xi, Yi)
}
16i6n is the data set, F is a convex set of predictors f : X 7→ R,

ŷ 7→ `(ŷ, y) are convex loss functions for all y ∈ Y and Ω is a convex penalty (‖ · ‖2, ‖ · ‖1, . . . ).

Convexity will be useful to analyze

– the statistical properties of the solution f̂n and its generalization error (i.e., its risk):

R(f̂n) := E
[
`(f(X), Y )

∣∣Dn

]
– get efficient algorithms to solve the minimization problem (∗) and find f̂n.
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2.1 Convex sets

In this class, we will only consider finite dimensional Euclidean space (typically Rd).

Definition 2.1 (Convex set). A set K ⊆ Rd is convex if and only if for all x, y ∈ K [x, y] ⊂ K
(or equivalently for all α ∈ (0, 1), αx+ (1− α)y ∈ K).

Example 2.1. Here are a few examples of convex sets

– Hyperplans: K = {x ∈ Rd : a>x = b, a 6= 0, b ∈ R}
– Half spaces: K = {x ∈ Rd : a>x > b, a 6= 0, b ∈ R}
– Affine subspaces: K =

{
x ∈ Rd : Ax = b, A ∈Md(R), b ∈ R

}
– Balls: ‖x‖ 6 R, R > 0
– Cones: K = {(x, r) ∈ Rd+1, ‖x‖ 6 r

}
– Convex polytopes: intersections of half spaces.

Properties of Convex sets :

– stability by intersection (not necessarily countable)
– stability by affine transformation
– convex separation: if C,D are disjoints convex sets (C ∩ D = ∅), then there exists a

hyperplane which separates C and D:

∃a 6= 0, b ∈ R such that C ⊂
{
a>x > b

}
and D ⊂

{
a>x 6 b

}
.

The inequalities are strict if C and D are compact. Exercise: show this property when C
and D are compact (clue: define (x, y) ∈ arg minx∈C,y∈D ‖x− y‖).

Definition 2.2 (Convex Hull). Let A ∈ Rd. The convex hull, denoted Conv(A), of A is the
smallest convex set that contains A. In other words:

Conv(A) =
⋂{

B ⊆ Rd : A ⊆ B and Bconvex
}

{
x ∈ Rd : ∃p > 1, α ∈ Rp+,

p∑
i=1

αi = 1 and z1, . . . , zp ∈ Asuch that x =

p∑
i=1

αizi
}

2.2 Convex functions

Definition 2.3 (Convex function). A function f : D ⊂ Rd → R with D convex is

– convex iff for all x, y ∈ D and 0 6 α 6 1,

f(αx+ (1− α)y) 6 αf(x) + (1− α)f(y)

– strictly convex iff for all x, y ∈ D and 0 6 α 6 1,

f(αx+ (1− α)y) < αf(x) + (1− α)f(y)

– µ-strongly convex if there exists µ > 0 such that

f(αx+ (1− α)y) 6 αf(x) + (1− α)f(y)− µ

2
‖x‖2

Proposition 2.1. f is µ-strongly convex if and only if x 7→ f(x)− µ
2‖x‖

2 is convex.
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A few examples of useful convex functions:

– dimension d = 1: x, x2, − log x, ex, log(1 + e−x), |x|p for p > 1, −xp for p < 1 and x > 0
– higher dimension d > 1: linear functions x 7→ a>x, quadratic functions x 7→ x>Qx for Q

semidefinite (symmetric) positive matrix (i.e., all eigenvalues are nonnegative, or for all x
x>Qx > 0), norms, max{x1, . . . , xd}, log

(∑d
i=1 e

x
i

)
Characterization of convex functions

– if f is C1: f convex ⇔ ∀x, y ∈ D f(x) > f(y) + f ′(y)(x− y)
– if f is twice differentiable: f convex ⇔ ∀x ∈ D its Hessian is semi-definite positive

(f ′′(x) > 0)

Operations which preserve convexity

– supremum of a family x 7→ supi∈I fi(x)
– linear combination with non-negative coefficients
– partial minimization: f convex on C ×D ⇒ y 7→ infx∈C f(x, y) is convex on D

Proposition 2.2. If f is convex on D, then f is continuous on the interior of D. Furthermore,
the epigraph of f

{
(x, t) ∈ D × R, f(x) 6 t

}
is convex.

Proposition 2.3 (Jensen’s inequality). If f is convex. For all x1, . . . , xn ∈ D and α1, . . . , αn ∈
R+ such that

∑n
i=1 αi = 1 then

f

(
n∑
i=1

αixi

)
6

n∑
i=1

αif(xi) .

Jensen’s inequality can be extended to infinite sums, integrals and expected values: if f is convex

– integral formulation: if p(x) > 0 on S ⊂ D such that
∫
S p(x)dx = 1 then

f

(∫
S
p(x)xdx

)
6
∫
S
p(x)f(x)dx .

– expected value formulation: if X is a random variable such that X ∈ D almost surely and
E[X] exists then if

f
(
E
[
X]
)
6 E

[
f(X)

]
.

2.3 Unconstrained optimization problems

Let f : Rd → R convex and finite on Rd. We consider the problem

inf
x∈Rd

f(x) .

First, remark that we use the notation minx f(x) only when the minimum is reached. If no point
achieves the minimum, we use the notation infx f(x).

There are three possible cases

– infx∈Rd f(x) = −∞: there is no minimum. For instance, x 7→ x.
– infx∈Rd f(x) > −∞ and the infimum is not reached. This is the case for instance for
x 7→ log(1 + e−x) or for x 7→ e−x.
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– infx∈Rd f(x) > −∞ and the minimum is reached and equals minx∈Rd f(x). This is the case
for instance for coercive functions lim‖x‖→∞ f(x) = +∞.

Definition 2.4 (Local minimum). Let f : D → R and x ∈ D. x is a local minimum if and only
if there exists an open set V ⊂ D such that x ∈ V and f(x) = minx′∈V f(x′).

Properties:

– f convex ⇒ any local minimum is a global minimum.
– f strictly convex ⇒ at most one minimum.
– f convex and C1 then x is a minimum of f on Rd if and only if f ′(x) = 0.

As we saw for linear regression, canceling the gradient provide an efficient solution to solve the
minimization problem in closed form.

2.4 Constrained optimization problems

Let f : D 7→ Rd convex and C ⊂ D convex. We consider the constrained minimization problem

inf
x∈C

f(x) .

C is the constraint set. It is often defined as the intersection of sets of the form {hi(x) = 0} and
{gj(x) 6 0}.

Example 2.2. The minimization of a linear function over a compact A ⊂ Rd. Let A ⊂ Rd
compact (non-necessarily convex) and a ∈ Rd 6= 0 then we can reformulate the non-convex
minimization on A as a constrained convex optimization problem on Conv(A)

min
x∈A

{
a>x

}
= min

x∈Conv(A)

{
a>x

}
Lagrangian duality A useful notion to solve constrained optimization problems is Lagrangian
duality. Assume that we are interested in the following constrained optimization problem:

min
x∈D

f(x) such that
{
hi(x) = 0 for i = 1, . . . ,m
gj(x) 6 0 for j = 1, . . . , r

. (P)

We denote by D∗ ⊆ D the set of points that satisfy the constraints. Remark that equality
constraints hi(x) = 0 can be rewritten as inequalities

hi(x) 6 0 and − hi(x) 6 0 .

Contrary to unconstrained optimization problems, canceling the gradient does not necessarily
provide a solution for constrained optimization problems. The basic idea of Lagrangian duality is
to take the constraint D∗ into account in the minimization problem by augmenting the objective
function with a weighted sum of the constraint functions.

Definition 2.5 (Lagrangian). The Lagrangian associated to the optimization problem (P) is the
function L : D × Rm × Rr+ defined by:

L(x, λ, µ) = f(x) + λ>h(x) + µ>g(x) .
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Definition 2.6 (Primal function). We define the primal function f̄ : D → R∪{+∞} associated
to (P) by, for all x ∈ D

f̄(x) = sup
λ∈Rm,µ∈Rr+

L(x, λ, µ) =

{
f(x) if x ∈ D∗
+∞ otherwise .

With these definitions, we remark that the optimization problem (P) can be re-written by using
the primal function without the constraints

inf
x∈D∗

f(x) = inf
x∈D

f̄(x)

= inf
x∈D

sup
λ∈Rm,µ∈Rr+

L(x, λ, µ) . (Primal problem)

This optimization problem is thus called the Primal problem.

The Dual problem is obtained by exchanging inf and sup in the primal problem.

sup
λ∈Rm,µ∈Rr+

f∗(λ, µ) = sup
λ∈Rm,µ∈Rr+

inf
x∈D
L(x, λ, µ) , (Dual problem)

where f∗ : (λ, µ) 7→ infx∈D L(x, λ, µ) is the dual function. If f is convex this function is concave.
Remark that the dual of the dual is the primal.

The denote by D∗ = {x ∈ D : f̄(x) <∞} the admissibility domain of the primal. Similarly we
denote by C∗ = {(λ, µ) ∈ Rm × Rr+ : f∗(λ, µ) > −∞} the admissibility domain of the dual. If
there is no solution to the optimization problem (P) then D∗ = ∅. If the problem is unbounded
then C∗ = ∅.

Link between the primal and the dual problems If they are not necessarily identical the
primal and the dual problems have strong relationship. For any (λ, µ), f∗(λ, µ) provides a lower
bound on the solution of (P). The dual problem finds the best lower bound.

Proposition 2.4 (Weak duality principle). We have the inequality

d∗ := sup
λ∈Rm,µ∈Rr+

inf
x∈D
L(x, λ, µ) 6 inf

x∈D
sup

λ∈Rm,µ∈Rr+
L(x, λ, µ) := p∗ .

Therefore, the solution of the dual problem is always smaller than the solution of the primal.
A good mnemonic to remember this inequality is “the largest dwarf is always smaller than the
smallest giant”.

Definition 2.7 (Dual gap and strong duality). The dual gap of the optimization problem is the
difference between the primal and dual solutions: p∗−p∗ > 0. We say that there is strong duality
if p∗ = d∗.

If the duality gap is non-zero, the solutions of the primal and the dual problems are not really
related. But when there is no gap, we say that there is strong duality. The two problems are
equivalent (they share the same solutions). In this case, the existence of the solutions are related
with the existence of saddle points of the Lagrangian. It is worth emphasizing that strong duality
does not always holds.
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When is there strong duality? Sometimes the dual problem is easier to solve than the
primal problem. It is then useful to know if there is strong duality.

Definition 2.8 (Slater’s condition). There exists a point x0 ∈ D strictly feasible

∃x0 ∈ D such that
{
∀1 6 i 6 m hi(x) = 0
∀1 6 j 6 r gj(x) < 0

.

Theorem 2.5 (Strong duality). If the optimization problem (P) is convex: i.e.,

– f and D are convex,
– the equality constraint functions hi are affine
– the inequality constraint functions gj are convex

and if Slater’s condition holds than there is strong duality (p∗ = d∗).

In this case, we can solve the dual problem to find a solution of the primal problem.

Example 2.3. Let us compute the dual of the following linear programing problem over the set
D = Rd+

min
x>0: Ax=b

c>x ,

where A is a m× d matrix and b ∈ Rm. The constraints can be written as Ax− b = 0. We can
thus define the Lagrangian L : (x, λ) ∈ Rd+ × R 7 → c>x + λ>(b − Ax) and re-write the primal
problem with the Lagrangian

min
x>0: Ax=b

c>x = min
x>0

sup
λ∈Rm

{
c>x+ λ>(b−Ax)

}
= min

x>0
sup
λ∈Rm

{
b>λ+ x>(c−A>λ)

}
.

By Slaters condition (the problem is convex since the objective function is convex and the equality
constraints are affine), there is strong duality. We can thus swap the min and the sup, we get

min
x>0, Ax=b

c>x = sup
λ∈Rm

min
x>0

{
b>λ+ x>(c−A>λ)

}
= sup

λ∈Rm:A>λ6c

{
b>λ

}
.

The latter is the dual formulation of the problem.

Optimality condition Now, we see conditions that play the same role as canceling the
gradients for unconstrained optimization problems. These conditions will be useful to find
equations to compute analytically the solution of (P).

Assume that the functions f , hi and gj are all differentiable. Let x∗ and (λ∗, µ∗) be any primal
and dual solutions and assume that there is strong duality (no duality gap). Then, we have

1. By definition x∗ minimizes L(x, λ∗, µ∗) over x. Therefore, its gradient must be canceled
at x∗, i.e.,

∇f(x∗) +

m∑
i=1

λ∗i∇h(x∗) +

r∑
j=1

µj∇gj(x∗) = 0 (KKT1)
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2. Since x∗ ∈ D∗ and (λ∗, µ∗) ∈ C∗ are feasible we have

hi(x
∗) = 0 ∀1 6 i 6 m

gj(x
∗) 6 0 ∀1 6 j 6 r (KKT2)
µ∗j > 0 ∀1 6 j 6 r .

3. The complementary condition holds

µ∗jgj(x
∗) = 0 ∀1 6 j 6 m. (KKT3)

Otherwise, we can improve µ∗ by setting µ∗j = 0 since gj(x∗) 6 0 and (λ∗, µ∗) maximizes
L(x∗, λ, µ) = f(x∗) +

∑
i λihi(x

∗) +
∑

j µjgj(x
∗).

These conditions (KKT1-3) are called the Karush-Kuhn-Tucker (KKT) conditions. When the
primal problem is convex (see Thm. 2.5) these conditions are also sufficient.

Theorem 2.6. If there is strong duality then

x∗ is a solution of the primal problem
(λ∗, µ∗) is a solution of the dual problem

}
⇔ (KKT) conditions are satisfied.

The KKT conditions play an important role in optimization. In some cases, it is possible to solve
them analytically. Many optimization methods are conceived for solving the KKT conditions.
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