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1 Introduction

Pac-Learning (Probably Approximately Correct Learning) is a theoretical framework for analysing machine
learning algorithms. It was introduced by Leslie Valiant in 1984.

Notation and reminder

• Training set: Dn = {(Xi, Yi)}1≤i≤n. The data points (Xi, Yi) are i.i.d. random variables in X × Y
and follow a distribution P. X is the input set (typically Rd) and Y the output set (typically {0, 1}
for regression or R for classification).

• A learning algorithm is a function A that maps a training set Dn to an estimator f̂n : X → Y:

A : ∪n≥0(X × Y)n︸ ︷︷ ︸
training set

7→ YX︸︷︷︸
estimator

.

We denote f̂n = A(Dn) the estimator (which is a random variable in YX ). Sometimes the prediction
set can differ from the output set. For instance, in classification in {0, 1} we might want to predict
probability in [0, 1] for the output to belong to class 1.

• Loss function to measure the performance: ` : Y × Y → R

• Risk of an estimator (statistical risk)

R(f) := E(X,Y )∼P

[
`(f(X), Y )

]
= E

[
`(f(X), Y )|f

]
• Target function: any function f∗ such that R(f∗) = inff :X→Y R(f), i.e.,

f∗ ∈ arg min
f :X→Y

R(f),

where f : X → Y is the set of measurable functions.

Definition 1 (Fundamental problem of Supervised Learning). The goal of supervised learning is to estimate
f∗ given only Dn and `.

To quatify the goal above we introduce the excess risk R(f̂n) which measures how close is a given predictor

f̂n, to the best possible f∗, in terms of expected risk R, i.e., in terms of average error on new examples:

R(f̂n) := R(f̂n)−R(f∗).

Remark 1. Note that R(f̂n) and then R(f̂n) are random variables, since f̂n depends on the dataset Dn
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Definition 2 (Consistency). Let δ ∈ (0, 1]. The algorithm A is consistent (i.e., it is a proper learning
algorithm)

lim
n→∞

EDn R(f̂n) = 0.

We can ask also more: The algorithm A is strongly consistent, i.e., the following holds with probability 1,

lim
n→∞

R(f̂n) = 0.

We can define more quantitative versions of the requirements above, that are useful to characterize how
precise are the predictions

Definition 3 (Learning Rates). The sequence (en)n∈N is a learning rate in expectation, if

EDn R(f̂n) ≤ en, ∀ n ∈ N.

Given δ ∈ (0, 1], a sequence (pn,δ)n∈N is a learning rate in probability, if

PDn(R(f̂n) > pn,δ) ≤ δ, ∀ n ∈ N.

2 Empirical Risk Minimization

A classical way to estimate f∗ is via empirical risk minimization. Let F be a set of functions called hypothesis
space containing some candidate estimators of choice, the estimator is defined as

f̂n := arg min
f∈F

Rn(f), Rn(f) =
1

n

n∑
i=1

`(yi, f(xi)),

where Rn(f) is the empirical risk and measures the average error performed by f on the training set. The
intuition is that Rn(f) approximates R(f) (the expected error) increasingly better, when n go to infinity.
A crucial question we need to address is to understand under which conditions empirical risk minimization
is a learning algorithm and has learning rates.
We first recall some results that will be useful for the proof.

3 Preliminary results

Lemma 1 (Union bound). Let F be a finite set indexing a family of sets (Af )f∈F , then

P(
⋃
f∈F

Af ) ≤
∑
f∈F

P(Af )

Proof. Let A,B be two sets, we have P(A ∪B) = P(A) + P(B)− P(A ∩B), then

P(A ∪B) = P(A) + P(B)− P(A ∩B) ≤ P(A) + P(B).

The result is obtained by iterating the formula above over (Af )f∈F .

Lemma 2 (supremum of random variables). Let t > 0 and F be a finite set indexing real random variables
(uf )f∈F , we have

P(sup
f∈F
|uf | > t) ≤

∑
f∈F

P(|uf | > t).
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Proof. Since supf∈F |uf | ≤ t is equivalent to |uf | ≤ t ∀f ∈ F , we have

{sup
f∈F
|uf | ≤ t} = ∩f∈F{|uf | ≤ t},

where we denote by {condition} the event (subset of the sample space) satisfying condition. Since P(A) =
1− P(Ac), for any set A, with Ac the complement of A, we have

P(sup
f∈F
|uf | > t) = 1− P(sup

f∈F
|uf | ≤ t) = 1− P(∩f∈F{|uf | ≤ t}) = P(∪f∈F{|uf | > t}).

Finally by using the union bound from Lemma 1

P(∪f∈F{|uf | > t}) ≤
∑
f∈F

P(|uf | > t),

Proposition 1. Let x be a random variable and let f, g be real functions, with t ∈ R such that f(x) ≥ g(x) > t
almost surely, then

P(g(x) > t) ≤ P(f(x) > t)

Proof. The result is obtained considering that the event G := {g(x) > t} satisfies G ⊂ F with F the event
F := {f(x) > t}. So P(G) ≤ P(F ).

3.1 Bernstein inequality

Lemma 3 (exponential moments of bounded random variables). Let u be a random variable such that
|u| ≤ B, for B > 0 almost surely and Eu = 0. Define σ2 := Eu2. Let 0 ≤ θ < 1/B, then

Eeθu ≤ e
θ2σ2

2(1−θB) .

Proof. First note that for k ≥ 2
Euk ≤ Bk−2Eu2 = Bk−2σ2.

By Taylor expansion, we have

Eeθu = 1 + Eθu︸︷︷︸
:=0

+

∞∑
k=2

θkEuk

k!
≤ 1 +

θ2σ2

2

∞∑
k=2

θk−2Bk−2

k!/2
≤ 1 +

θ2σ2

2

∞∑
k=2

θk−2Bk−2 = 1 +
θ2σ2

2(1− θB)
.

Finally, since 1 + x ≤ ex for any x we have

Eeθu ≤ 1 +
θ2σ2

2(1− θB)
≤ e

θ2σ2

2(1−θB) .

Lemma 4 (Bernstein inequality for random variables). Let u, u1, . . . , un be independently and identically
distributed random variables, such that Eu = 0, and |u| ≤ B almost surely, for B > 0. Define σ2 := Eu2.
Let t > 0, the following holds

P(
1

n

∑
i=1n

ui > t) ≤ e−
t2n/2

σ2+Bt ,
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Proof. Let 0 < θ < 1/B,

P(
1

n

n∑
i=1

ui > t) = P(θ

n∑
i=1

ui > θnt) = P(eθ
∑n
i=1 ui > eθnt) ≤ Eeθ

∑n
i=1 ui

eθnt
,

where in the last step we used the Markov inequality. Now since u1, . . . , un are independent, we have

Eeθ
∑n
i=1 ui =

n∏
i=1

Eeθui ≤ e
θ2σ2n

2(1−θB) ,

where in the last step we used Lemma 3. So we have

P(
1

n

n∑
i=1

ui > t) ≤ e
θ2σ2n

2(1−θB)
− θnt.

Since the inequality above holds for any θ in [0, B), we will take a θ that makes the exponent negative, in
particular the one satisfying θnt = θ2σ2n/(1 − θB), that is θ := t/(σ2 + Bt) < 1/B obtaining the desired
result.

Corollary 1. Under the same assumptions of Lemma 4

P(| 1
n

n∑
i=1

ui| > t) ≤ 2e
− t2n/2

σ2+Bt ,

Proof. For a random variable z, by applying Lemma 1, we have

P(|z| > t) = P({z > t} ∪ {−z > t}) ≤ P(z > t) + P(−z > t).

The final result is obtained by setting z = 1
n

∑n
i=1 ui and using two times the Bernstein inequality.

4 Consistency and Learning rates for Empirical Risk Minimiza-
tion

The goal of this section is to prove consistency and learning rates for empirical risk minimization. Key step
here is to decompose the excess risk as:

E
[
R(f̂n)

]
−R∗ =

(
E
[
R(f̂n)

]
− inf
f∈F

R(f)

)
︸ ︷︷ ︸

Estimation error

+

(
inf
f∈F

R(f)−R∗
)

︸ ︷︷ ︸
Approximation error

.

The bias term (or approximation error) depends on f∗ and F ⊆ YX but not on f̂n, Dn. To control it, we must
make some assumption on ρ. It is possible to prove consistency it without assumptions, but assumptions are
needed to get rates of convergence.

The variance term (or estimation error) depends on Dn,F , and f̂n. We can bound this term making very
mild or no assumption on the data distribution P. These are the type of results we are going to prove in
this lecture.
In the picture below the effect of the capacity |F| is analyzed on the variance term, bias term and total
excess risk, for a fixed dataset. In particular there are two important regimes underfitting and overfitting.
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The algorithm is in a regime of underfitting when the capacity of the hypothesis space is too small, i.e., the
chosen functions are not able to approximate well f∗, but at the same time there are only few function in
|F| and then the variance is small. On the other side, when we select a very large hypothesis space, then
likely there exists a function f ∈ F very close to f∗, inducing a small bias, but at the same time since |F|
is big, the variance is large.
Obviously there are cases that are not represented by the graph above, consider for example the very lucky
case F = {f∗}, or more generally F = {f∗} ∪ F0.

4.1 Bounding the variance term: PAC bounds

As noted above, the estimator f̂n is a random variable. A way to deal with this randomness is to consider the
expectation of R(f̂n). But this is limited: it makes statements about the risk on average. A finer control over
the excess risk can be stated in terms of a probabilistic statement: a PAC bound (probably approximately
correct).

Definition 4. We say that f̂n is ε-accurate with confidence 1− δ of (ε, δ)-PAC if

PDn
{
R(f̂n)− inf

f∈F
R(f) > ε

}
< δ .

Now we have

R(f̂n)− inf
f∈F

R(f) = [R(f̂n)− inf
f∈F

Rn(f)] + [ inf
f∈F

Rn(f)− inf
f∈F

R(f)].

Noting that the definition of f̂n is to be the minimum of Rn(f) over F , then for the first term on the right
hand side of the equation above, we have

R(f̂n)− inf
f∈F

Rn(f) = R(f̂n)−Rn(f̂n) ≤ sup
f∈F
|R(f)−Rn(f)|.

For the second term, recalling that infz∈Z a(z)− infz∈Z b(z) ≤ supz∈Z |a(z)− b(z)|, we have

inf
f∈F

Rn(f)− inf
f∈F

R(f) ≤ sup
f∈F
|R(f)−Rn(f)|.

So finally,

R(f̂n)− inf
f∈F

R(f) ≤ 2 sup
f∈F
|R(f)−Rn(f)|. (1)

4.2 Bounds in probability

Here we assume
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• Assumption 1 F is a set of finite cardinality

• Assumption 2 there exists B > 0 such that `(y, y′) ≤ B for any y, y′ ∈ Y .

Note that for any f ∈ F , R(f)−Rn(f) is a random variable since it depends on Dn. Let t > 0, by Prop. 1,
we have

P(R(f̂n)− inf
f∈F

R(f) > 2t) ≤ P(2 sup
f∈F
|R(f)−Rn(f)| > 2t) (2)

≤
∑
f∈F

P(2|R(f)−Rn(f)| > 2t) (3)

=
∑
f∈F

P(|R(f)−Rn(f)| > t) (4)

where the last step is due to Lemma 2. To further bound the inequality above we need to study the
probability of the event {|R(f) − Rn(f)| > t}. Given f ∈ F , denote by vi the random variable defined as
vi := `(yi, f(xi))−R(f) for i ∈ {1, . . . , n}. Then we have

|Rn(f)−R(f)| = | 1
n

n∑
i=1

vi|.

Now note that Evi = 0, and that v1, . . . , vn are independent and identically distributed. Moreover, by
Assumption 2, |vi| ≤ B almost surely and that Ev2i ≤ B2. So, by applying the Bernstein inequality in
Lemma 4 (see also the subsequent corollaries), we have

P(| 1
n

n∑
i=1

vi| > s) ≤ 2e
− t2n/2

B2+Bt . (5)

To conclude, by Eq. (1), (4), (5) and Prop. 1

PDn
{
R(f̂n)− inf

f∈F
R(f) > 2t

}
≤ PDn

{
2 sup
f∈F
|R(f)−Rn(f)| > 2t

}

≤
∑
f∈F

PDn

{
2 sup
f∈F
|R(f)−Rn(f)| > 2t

}

≤
∑
f∈F

2e
− t2n/2

B2+Bt = 2|F|e−
t2n/2

B2+Bt .

Now note that when t ≤ B, then 2|F|e−
t2n/2

B2+Bt ≤ 2|F|e−
t2n
B2 . Let δ ∈ (0, 1], when n ≥ log 2|F|

δ , select

t =

√
B2 log

2|F|
δ

n , then t ≤ B and so we have the (t, δ)-PAC bound

PDn

R(f̂n)− inf
f∈F

R(f) >

√
4B2 log 2|F|

δ

n

 ≤ δ,
or equivalently: the following holds with probability at least 1− δ

R(f̂n)− inf
f∈F

R(f) ≤

√
4B2 log 2|F|

δ

n
.
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5 Bounding the Bias

Bias term depends on the specific properties of the function f? we are going to learn and the function space
F we have chosen. Assumptions must be done on such two objects, to quantify the bias term.

Example. Let X = R, Y = R. Let ` satisfy |`(y′, y) − `(y′′, y)| ≤ C|y′ − y′′| for C > 0. Assume that
function f? satisfies f? : [−1, 1]→ R with

f?(x) =

∞∑
k=0

βkx
k,

for a sequence (βk)k∈N such that
∑∞
k=0 |βk| := S <∞. Let R > 0, p ∈ N and define

F =

{
f(x) =

p∑
k=1

αkx
k

∣∣∣∣∣ αk ∈ [−R,R]

}
.

Denote by f̃p the function f̃p(x) =
∑p
k=0 βkx

k When R ≥ S f̃p ∈ F , then

inf
f∈F

R(f)−R(f∗) ≤ R(f̃)−R(f∗) = E[`(f̃p(x), y)− `(f̃(x), y)] (6)

≤ CE|f̃p(x)− f?(x)| (7)

≤ CE
∞∑

k=p+1

βkx
k (8)

≤ C
∞∑

k=p+1

|βk|. (9)

6 Optional exercises

Ex. 1. X = R, Y = R. Loss `(y′, y) = min(|y′ − y|, B), with B > 0. Let p ∈ N and ε > 0, T = 1/ε,

FT,ε = {f(x) =

p∑
k=1

αkx
k | αk ∈ {−T,−T + ε,−T + 2ε, . . . , T − 2ε, T − ε, T}}.

Moreover assume that f?(x) =
∑∞
k=0 βkx

k, with
∑∞
k=r+1 βk ≤ Cr−γ , with C, γ > 0.

1. Compute an upper bound for the variance term,

2. for the bias term,

3. for the excess risk.

4. Given the number of examples n, which is a good choice for ε, p depeding on n, in order to guarantee
the fastest rate possible for the upper bound?

Ex. 2. (Non-discrete hypothesis spaces) Can we generalize the analysis above, considering a non-
discrete FT defined as

F = {f(x) =

p∑
k=1

αkx
k | αk ∈ [−T, T ]}?

Suggestion. Start from the analysis of the discrete one ( and perform a decomposition of the form

R(f̂)−R(f?) ≤ [R(f̂)− inf
f∈FT,ε

R(f)] + [ inf
f∈FT,ε

R(f)− inf
f∈FT

R(f)] + [ inf
f∈FT

R(f)−R(f?)].
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