
Final Exam

Introduction to Statistical Learning

ENS 2018-2019

January 25th 2019

The duration of the exam is 3 hours. You may use any printed references including books. The use
of any electronic device (computer, tablet, calculator, smartphone) is forbidden.

All questions require a proper mathematical justification or derivation (unless otherwise stated), but
most questions can be answered concisely in just a few lines. No question should require lengthy or
tedious derivations or calculations.

Answers can be written in French or English.

1 “Question de cours” (16 points)

1.1 Regression

We want to predict Yi ∈ R as a function of Xi ∈ R. We consider the following models:
(a) Linear regression
(b) 2-nd order polynomial regression
(c) 10-th order polynomial regression

(d) Kernel ridge regression with a Gaussian kernel
(e) k-nearest neighbor regression

We consider the following regression problems.
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Answer each of the following questions with no justification.

1. (1 point) If Y ∈ Rn is the output vector and X ∈ Rn is the input vector. Write the expression
of the estimator for linear regression.

Solution: In one dimension, the estimator of linear regression solves the following optimization
problem:

β̂n ∈ argmin
β∈R2

∥∥Y − β0 +Xβ1

∥∥2
.
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Solving the gradients yields: β̂0 = Ȳ where Ȳ = 1
n

∑n
i=1 Yi and β̂1 = (X>X)−1X>(Y − Ȳ ).

Another solution is to add the intercept in the input matrix, writing X̃ :=
[
1, X

]
the (n× 2)

matrix where the first column is (1, . . . , 1)> ∈ Rn, we have β̂n = (X̃>X̃)−1X̃>Y .

2. (3 points) What are the time and space complexities

• in n and d of d-th order polynomial regression,
• in n of kernel ridge regression,
• in n and k of k-nearest neighbor regression?

Solution: Polynomial regression for one-dimensional inputs needs to compute (Z>Z)−1Z>X
where Z = [1, X,X2, . . . , Xd] is an (n× (d+ 1)) matrix. The matrix multiplication Z>Z costs
O(nd2) and the matrix inversion of the (d+ 1)× (d+ 1) matrix (Z>Z)−1 costs O(d3) time.

Kernel regression needs to compute α = (Knn+nλIn)−1Y ∈ Rn, whereKnn =
[
k(xi, xj)

]
1≤i,j≤n.

For a new input x ∈ R, it then predicts f̂λ(x) =
∑n
i=1 k(xi, x)αi. The algorithm thus needs to

inverse the n× n matrix Knn + nλIn which requires O(n3) time and O(n2) space.

The k-NN regression does not need any training. The time complexity of the training part
is thus O(1), while for space it only needs to store all points which requires O(n). However,
a naive implementation of k-NN (there are optimized versions using trees) requires O(nk)
runtime to make a prediction.

Regression model Time complexity Space complexity

Polynomial regression O(d3 + d2n) O(d2 + dn)

Kernel ridge regression O(n3) O(n2)

k-nearest neighbor O(nk) (for prediction) O(n)

3. (2 points) What are the hyper-parameters of kernel ridge regression and k-nearest neighbors?

Solution: Kernel ridge regression with a Gaussian kernel requires two hyper-parameters: the
regularization parameter λ > 0 and the bandwidth of the Gaussian kernel: σ > 0.

k-nearest neighbor only needs the number of neighbors k ≥ 1.

4. (2.5 points) For each problem, what would be the good model(s) to choose? (no justification)

Solution: Several solutions are possible for each problem. We only choose here the ones that
seem to be the most appropriate (i.e., the simplest one). Some methods such as kernel ridge
regression would need however to be regularized enough.

Problem 1 2 3 4 5

Best models among (a)-(e) a b No method will per-
form well. The
best would be (a) to
avoid over-fitting.

e c, d
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5. (1 point) What models would lead to over-fitting in Problem 1.

Solution: In problem 1, the relation between X and Y seem to be linear. Models c, d, and e
might lead to over-fitting (though there seems to be sufficiently many points in the dataset) if
they are not regularized enough.

6. (1 point) Provide one solution to deal with over-fitting.

Solution: A solution is to use cross-validation to calibrate the hyper-parameters to regularize
enough the methods (such as the regularization parameter λ in KRR or the bandwidth σ).
Cross-validation can also be used to select the best model among (a-e).

1.2 Classification

We aim at predicting Yi ∈ {0, 1} as a function of Xi ∈ R2 (with the notation ◦ = 0 and × = 1).
We consider the following models:
(a) Logistic regression
(b) Linear discriminant analysis
(c) Logistic regression with 2-nd order poly-

nomials

(d) Logistic regression with 10-th order poly-
nomials

(e) k-nearest neighbor classification

We consider the following classification problems.
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Answer each of the following questions with no justification.

7. (2 points) Write the optimization problem that logistic regression is solving. How is it solved?

Solution: Logistic regression solves the following optimization problem:

min
β0,β∈R2

n∑
i=1

`(β0 + β>Xi, Yi)

where β0 ∈ R is the intercept (which may be included into the inputs) and `(ŷ, y) = y log
(
1 +

e−ŷ
)

+ (1− y) log
(
1 + eŷ

)
is the logistic loss. Contrary to least square regression, there is no

closed form solution. One needs thus to use iterative convex optimization algorithms such as
Newton’s method or gradient descent.

8. (1 point) What is the main assumption on the data distribution made by linear discriminant
analysis?
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Solution: Linear discriminant analysis assumes that the data is generated from a mixture
of Gaussian: given a group (label Yi) the variables Xi are independently sampled from the
same multivariate Gaussian distribution. Another common assumption that simplifies the
computation of the solution is the homogeneity of variance between groups.

9. (2.5 points) For each problem, what would be the good model(s) to choose? (no justification)

Solution: Again several solutions are possible for each problem. We only choose here the ones
that seem to be the most appropriate (i.e., the simplest one).

Problem 1 2 3 4 5

Best models among (a)-(e) a,b,e c No model will be
good. Choose the
simplest to avoid
over-fitting: a,b,e

d, e a

2 Projection onto the `1-ball (13 points)

Let z ∈ Rn and µ ∈ R∗+. We consider the following optimization problem:

minimize
1

2
‖x− z‖22 with respect to x ∈ Rn such that ‖x‖1 6 µ.

10. (1 point) Show that the minimum is attained at a unique point.

Solution: Minimizing a strongly-convex function over a compact set always leads to a unique
minimizer.

11. (1 point) Show that if ‖z‖1 6 µ, the solution is trivial.

Solution: We have x = z which is the feasible unconstrained minimizer.

12. (2 points) We now assume ‖z‖1 > µ. Show that the minimizer x is such that ‖x‖1 = µ.

Solution: If not, the points y(ε) = x + ε(z − x) are such that ‖y(ε)‖1 6 µ for all ε > 0
sufficiently small, and ‖y(ε) − z‖2 < (1 − ε)‖x − z‖2 + ε × 0, by Jensen’s inequality. Then x
cannot be the minimizer.

13. (2 points) Show that the components of the solution x have the same signs as the ones of z.
Show then that the problem of orthogonal projection onto the `1-ball can be solved from an
orthogonal projection onto the simplex, for some well-chosen u, that is:

minimize
1

2
‖y − u‖22 with respect to y ∈ Rn+ such that

n∑
i=1

yi = 1.
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Solution: If zi > 0, and xi < 0, then |zi − 0| < |zi − xi|, and thus replacing xi by 0 leads to a
strictly better solution, hence zi > 0 implies that xi > 0. Similarly, zi < 0 implies that xi 6 0.
Also zi = 0 implies that xi = 0.

Therefore, if ε ∈ {−1, 1}n is a vector of signs of z, then, we can take u = |z| (taken component-
wise) and recover the solution x as ε ◦ u.

14. (3 points) Using a Lagrange multiplier β for the constraint
∑n
i=1 yi = 1, show that a dual

problem may be written as follows:

maximize − 1

2

n∑
i=1

max{0, ui − β}2 +
1

2
‖u‖22 − β with respect to β ∈ R.

Does strong duality hold?

Solution: We can write the Lagrangian as

L(y, β) =
1

2
‖y − u‖22 + β

( n∑
i=1

yi − 1
)
.

Strong duality holds because the objective is convex, the contraints linear and there exists a
feasible point (and Slater’s conditions are satisfied).

Minimizing with respect to y leads to (y∗)i = (u− βi)+ and the dual function

q(β) = −1

2

n∑
i=1

max{0, ui − β}2 +
1

2
‖u‖22 − β.

15. (4 points) Show that the dual function is continuously differentiable and piecewise quadratic
with potential break points at each ui, and compute its derivative at each break point. Describe
an algorithm for computing β and y with complexity O(n log n).

Solution: The function max{0, uj−β}2 is piecewise quadratic and continuously differentiable,
with a break point of the derivative at β = uj for all j. Moreover, q(β) tends to −∞ when
β →∞ and β → −∞, so there is a minimizer.

We have q′(uj) = −
∑n
i=1 1uj6ui

(uj − ui) − 1. If we assume that after we sort all ui in time
O(n log n) and reorder them so that u1 > u2 > · · · > un, then

q′(uj) = −
j−1∑
i=1

(uj − ui)− 1 = (j − 1)uj − 1 +

j−1∑
i=1

ui.

We can then compute the non-creasing (by concavity) sequence of derivatives in O(n) so find
the interval where it is zero. All of this in O(n).

3 Stochastic gradient descent (SGD) (23 points)

The goal of this exercise is to study SGD with a constant step-size in the simplest setting. We
consider a strictly convex quadratic function f : Rd → R of the form

f(θ) =
1

2
θ>Hθ − g>θ.
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16. (1 point) What conditions on H lead to a strictly convex function? Compute a minimizer θ∗
of f . Is it unique?

Solution: Assuming H to be symmetric, f is strictly convex if and only if H is positive definite
(only strictly positive eigenvalues). The minimum is then unique equal to θ∗ = H−1g.

17. (2 points) We consider the gradient descent recursion:

θt = θt−1 − γf ′(θt−1).

What is the expression of θt − θ∗ as a function of θt−1 − θ∗, and then as a function of θ0 − θ∗?

Solution: We have f ′(θ) = Hθ − q = H(θ − θ∗), and thus θt − θ∗ = (I − γH)(θt−1 − θ∗) =
(I − γH)t(θ0 − θ∗).

18. (1 point) Compute f(θ)− f(θ∗) as a function of H and θ − θ∗.

Solution: We have f(θ)− f(θ∗) = 1
2 (θ0 − θ∗)>H(θ0 − θ∗).

19. (2 points) Assuming a lower-bound µ > 0 and upper-bound L on the eigenvalues of H, and a
step-size γ 6 1/L, show that for all t > 0,

f(θt)− f(θ∗) 6 (1− γµ)2t
[
f(θ0)− f(θ∗)

]
.

What step-size would be optimal from the result above?

Solution: We have f(θt)− f(θ∗) = 1
2 (θ0 − θ∗)>H(I − γH)2t(θ0 − θ∗), and the eigenvalues of

(I − γH)2t are between 0 and (1− γµ)2t. The best is γ = 1/L.

20. (2 points) Only assuming an upper-bound L on the eigenvalues of H, and a step-size γ 6 1/L,
show that for all t > 0,

f(θt)− f(θ∗) 6
‖θ0 − θ∗‖2

8γt
.

What step-size would be optimal from the result above?

Solution: We have f(θt)− f(θ∗) = 1
2 (θ0 − θ∗)>H(I − γH)2t(θ0 − θ∗), and the eigenvalues of

H(I − γH)2t are between 0 and maxα∈[0,L] α exp(−2γαt) = 1
2γt maxu>0 ue

−u 6 1
4γt . The best

is γ = 1/L.

21. (2 points) We consider the stochastic gradient descent recursion:

θt = θt−1 − γ
[
f ′(θt−1) + εt

]
,

where εt is a sequence of independent and identically distributed random vectors, with zero
mean E(εt) = 0 and covariance matrix C = E(εtε

>
t ).

What is the expression of θt − θ∗ as a function of θt−1 − θ∗ and εt, and then as a function of
θ0 − θ∗ and all (εk)k6t?
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Solution: We have

θt − θ∗ = (I − γH)(θt−1 − θ∗)− γεt = (I − γH)t(θ0 − θ∗)− γ
t∑

k=1

(I − γH)t−kεk.

22. (2 points) Compute the expectation of θt and relate it to the (non stochastic) gradient descent
recursion.

Solution: Eθt follows exactly the gradient descent recursion.

23. (3 points) Show that

Ef(θt)− f(θ∗) =
1

2
(θ0 − θ∗)>H(I − γH)2t(θ0 − θ∗) +

γ2

2
trCH

t−1∑
k=0

(I − γH)2k.

Solution: This is simply computing the expectation and using the independence of the se-
quence (εk).

24. (2 points) Assuming that γ 6 1/L (where L is an upper-bound on the eigenvalues of H), show

that H

t−1∑
k=0

(I − γH)2k =
1

γ
(2− γH)−1(I − (I − γH)2t), and that its eigenvalues are all between

0 and 1/γ.

Solution: This is simply summing a geometric series and expanding (I − γH)2, and using
that 2− γL > 1.

25. (2 points) Assuming a lower-bound µ > 0 and upper-bound L on the eigenvalues of H, and a
step-size γ 6 1/L, show that for all t > 0,

Ef(θt)− f(θ∗) 6 (1− γµ)2t
[
f(θ0)− f(θ∗)

]
+
γ

2
trC.

Solution: This is simply the consequence of previous questions.

26. (4 points) Only assuming an upper-bound L on the eigenvalues of H, and a step-size γ 6 1/L,
show that for all t > 0,

Ef(θt)− f(θ∗) 6
‖θ0 − θ∗‖2

8γt
+
γ

2
trC.

Considering that t is known in advance, what would be the optimal step-size from the bound
above? Comment on the obtained bound with this optimal step-size.
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Solution: This is simply the consequence of previous questions. γ∗ = ‖θ0−θ∗‖
2
√

trC
, leading to the

bound
‖θ0 − θ∗‖

√
trC

2
√
t

.

The optimal step-size depends on potentially unknown quantities and the scaling is O(1/
√
t),

which is worse than the deterministic case in O(1/t).

4 Mixture of Gaussians (24 points)

In this exercise, we consider an unsupervised method that improves on some shortcomings of
the K-means clustering algorithm.

27. (1 point) Given the data below, plot (roughly) the clustering that K-means with K = 2 would
lead to.
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Solution: K-means would cut the large cluster in two.

We consider a probabilistic model on two variables X and Z, where X ∈ Rd and Z ∈ {1, . . . ,K}.
We assume that

(a) the marginal distribution of Z is defined by the vector in the simplex π ∈ RK (that is with
non-negative components which sum to one) so that P(Z = k) = πk,

(b) the conditional distribution of X given Z = k is a Gaussian distribution with mean µk and
covariance matrix σ2

kI.

28. (1 point) Write down the log-likelihood log p(x, z) of a single observation (x, z) ∈ Rd×{1, . . . ,K}.

Solution: We have: log p(x, z) = log p(z) + log p(x|z) = log πz− log(2πσ2
z)d/2− 1

2σ2
z

‖x−µz‖2.

29. (3 points) We assume that we have n independent and identically distributed observations
(xi, zi) of (X,Z) for i = 1, . . . , n. Write down the log likelihood of these observations, and
show that it is a sum of a function of π and a function of (µk, σk)k∈{1,...,K}.
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It will be useful to introduce the notation δ(zi = k), which is equal to one if zi = k and 0

otherwise, and double summations of the form
∑K
k=1

∑n
i=1 δ(zi = k)Jik for a certain J .

Solution: We have, because of the i.i.d. assumption:

` =

n∑
i=1

log p(xi, zi)

=

n∑
i=1

{
log πzi − log(2πσ2

zi)
d/2 − 1

2σ2
zi

‖xi − µzi‖2
}

=

K∑
k=1

n∑
i=1

δ(zi = k)

{
log πk − log(2πσ2

k)d/2 − 1

2σ2
k

‖xi − µk‖2
}
.

30. (4 points) In the setting of the question above, what are the maximum likelihood estimators of
all parameters?

Solution: ML decouples. We have π̂k = 1
n

∑n
i=1 δ(zi = k), which is the proportion of observed

class k.

Moreover, µ̂k = 1
n

∑n
i=1 δ(zi = k)xi, which is the mean of the data points belonging to class k.

Finally, we get σ̂2
k = 1

dn

∑n
i=1 δ(zi = k)‖xi − µ̂k‖2.

31. (2 points) Show that the marginal distribution on X has density

pπ,µ,θ(x) =

K∑
k=1

πk
1

(2πσ2
k)d/2

exp
(
− 1

2σ2
k

‖x− µk‖2
)
.

Represent graphically a typical such distribution for d = 1 and K = 2. Can such a distribution
handle the shortcomings of K-means? What would be approximately good parameters for the
data above?

Solution: We use: p(x) =
∑K
k=1 p(x, k) to get to the expression. The data were generated

with π = (1/8, 7/8), µ1 = (−2, 0), µ2 = (+2, 0), σ1 = 1/10, σ2 = 3/2 and n = 400.

32. (2 points) By applying Jensen’s inequality, show that for any positive vector a ∈ (R∗+)K , then

log

K∑
k=1

ak >
K∑
k=1

τk log
ak
τk

for any τ ∈ ∆K (the probability simplex), with equality if and only if τk = ak∣∣∑K
k′=1

ak′
.

Solution: This is simply Jensen’s inequality for the logarithm, with

log

K∑
k=1

ak = log

K∑
k=1

τk
ak
τk
.
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33. (4 points) We assume that we have n independent and identically distributed observations xi
of X for i = 1, . . . , n. Show that

log pπ,µ,θ(x) = sup
τ∈∆K

K∑
k=1

τk log

[
πk

1

(2πσ2
k)d/2

exp
(
− 1

2σ2
k

‖x− µk‖2
)]
−

K∑
k=1

τk log τk.

Provide an expression of the maximizer τ as a function of π, µ, θ and x.

Provide a probabilistic interpretation of τ as a function of x.

Solution: We have:

log p(x) = log

K∑
k=1

πkp(x|Z = k)

= log

K∑
k=1

τk
πkp(x|Z = k)

τk

>
K∑
k=1

τk log
πkp(x|Z = k)

τk
.

There is equality if and only if τk = πkp(x|Z=k)∑K
k′=1

πk′p(x|Z=k′)
, which is exactly τk = p(Z = k|x) (which

acts a soft-clustering of each input x, as oppose to K-means that performs hard clustering).

34. (2 points) Write down a variational formulation of the log-likelihood ` of the data (x1, . . . , xn)
in the form

` =

n∑
i=1

sup
τi∈∆K

H(τi, xi, π, µ, σ)

for a certain H.

Solution: This is applying the previous question for all i, with

H(τi, xi, π, µ, σ) =

K∑
k=1

τik log

[
πk

1

(2πσ2
k)d/2

exp
(
− 1

2σ2
k

‖xi − µk‖2
)]
−

K∑
k=1

τik log τik.

35. (4 points) Derive an alternating optimization algorithm for optimizing
∑n
i=1H(τi, xi, π, µ, σ)

with respect to τ and (π, µ, σ).

Solution: The maximization with respect to τ (often called the “E-step”) leads to τik = p(Z =
k|xi) for the current value of the parameters (π, µ, σ).

The maximization with respect to (π, µ, σ) (often called the “M-step”) leads to π̂k = 1
n

∑n
i=1 τik.

Moreover, µ̂k = 1
n

∑n
i=1 τikxi.

Finally, we get σ̂2
k = 1

dn

∑n
i=1 τik‖xi − µ̂k‖2.

The M-step is simply the same as estimating parameters for full observations with δ(zi = k)
replaced τik.
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36. (1 point) What are its convergence properties?

Solution: This is an ascent algorithm. No guarantees of convergence to any global maximum
of the log likelihood. It is often called the “Expectation-Maximization” algorithm.
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