Final Exam Introduction to Statistical Learning ENS 2018-2019

January 25th 2019

The duration of the exam is 3 hours. You may use any printed references including books. The use of any electronic device (computer, tablet, calculator, smartphone) is forbidden.

All questions require a proper mathematical justification or derivation (unless otherwise stated), but most questions can be answered concisely in just a few lines. No question should require lengthy or tedious derivations or calculations.

Answers can be written in French or English.

1 "Question de cours" (16 points)

1.1 Regression

We want to predict $Y_i \in \mathbb{R}$ as a function of $X_i \in \mathbb{R}$. We consider the following models:

- (a) Linear regression
- (b) 2-nd order polynomial regression
- (c) 10-th order polynomial regression
- (d) Kernel ridge regression with a Gaussian kernel(e) k-nearest neighbor regression

We consider the following regression problems.

Answer each of the following questions with no justification.

- 1. (1 point) If $Y \in \mathbb{R}^n$ is the output vector and $X \in \mathbb{R}^n$ is the input vector. Write the expression of the estimator for linear regression.
- 2. (3 points) What are the time and space complexities
 - in n and d of d-th order polynomial regression,
 - in n of kernel ridge regression,
 - in n and k of k-nearest neighbor regression?

- 3. (2 points) What are the hyper-parameters of kernel ridge regression and k-nearest neighbors?
- 4. (2.5 points) For each problem, what would be the good model(s) to choose? (no justification)
- 5. (1 point) What models would lead to over-fitting in Problem 1.
- 6. (1 point) Provide one solution to deal with over-fitting.

1.2 Classification

We aim at predicting $Y_i \in \{0, 1\}$ as a function of $X_i \in \mathbb{R}^2$ (with the notation $\circ = 0$ and $\times = 1$). We consider the following models:

(a) Logistic regression

(b) Linear discriminant analysis

(d) Logistic regression with 10-th order polynomials

(e) k-nearest neighbor classification

(c) Logistic regression with 2-nd order polynomials

We consider the following classification problems.

Answer each of the following questions with no justification.

- 7. (2 points) Write the optimization problem that logistic regression is solving. How is it solved?
- 8. (1 point) What is the main assumption on the data distribution made by linear discriminant analysis?
- 9. (2.5 points) For each problem, what would be the good model(s) to choose? (no justification)

2 Projection onto the ℓ_1 -ball (13 points)

Let $z \in \mathbb{R}^n$ and $\mu \in \mathbb{R}^*_+$. We consider the following optimization problem:

minimize
$$\frac{1}{2} ||x - z||_2^2$$
 with respect to $x \in \mathbb{R}^n$ such that $||x||_1 \leq \mu$.

- 10. (1 point) Show that the minimum is attained at a unique point.
- 11. (1 point) Show that if $||z||_1 \leq \mu$, the solution is trivial.
- 12. (2 points) We now assume $||z||_1 > \mu$. Show that the minimizer x is such that $||x||_1 = \mu$.

13. (2 points) Show that the components of the solution x have the same signs as the ones of z. Show then that the problem of orthogonal projection onto the ℓ_1 -ball can be solved from an orthogonal projection onto the simplex, for some well-chosen u, that is:

minimize
$$\frac{1}{2} \|y - u\|_2^2$$
 with respect to $y \in \mathbb{R}^n_+$ such that $\sum_{i=1}^n y_i = 1$.

14. (3 points) Using a Lagrange multiplier β for the constraint $\sum_{i=1}^{n} y_i = 1$, show that a dual problem may be written as follows:

maximize
$$-\frac{1}{2}\sum_{i=1}^{n} \max\{0, u_i - \beta\}^2 + \frac{1}{2} ||u||_2^2 - \beta$$
 with respect to $\beta \in \mathbb{R}$

Does strong duality hold?

15. (4 points) Show that the dual function is continuously differentiable and piecewise quadratic with potential break points at each u_i , and compute its derivative at each break point. Describe an algorithm for computing β and y with complexity $O(n \log n)$.

3 Stochastic gradient descent (SGD) (23 points)

The goal of this exercise is to study SGD with a constant step-size in the simplest setting. We consider a strictly convex quadratic function $f : \mathbb{R}^d \to \mathbb{R}$ of the form

$$f(\theta) = \frac{1}{2} \theta^{\top} H \theta - g^{\top} \theta.$$

- 16. (1 point) What conditions on H lead to a strictly convex function? Compute a minimizer θ_* of f. Is it unique?
- 17. (2 points) We consider the gradient descent recursion:

$$\theta_t = \theta_{t-1} - \gamma f'(\theta_{t-1}).$$

What is the expression of $\theta_t - \theta_*$ as a function of $\theta_{t-1} - \theta_*$, and then as a function of $\theta_0 - \theta_*$?

- 18. (1 point) Compute $f(\theta) f(\theta_*)$ as a function of H and $\theta \theta_*$.
- 19. (2 points) Assuming a lower-bound $\mu > 0$ and upper-bound L on the eigenvalues of H, and a step-size $\gamma \leq 1/L$, show that for all t > 0,

$$f(\theta_t) - f(\theta_*) \leqslant (1 - \gamma \mu)^{2t} [f(\theta_0) - f(\theta_*)].$$

What step-size would be optimal from the result above?

20. (2 points) Only assuming an upper-bound L on the eigenvalues of H, and a step-size $\gamma \leq 1/L$, show that for all t > 0,

$$f(\theta_t) - f(\theta_*) \leqslant \frac{\|\theta_0 - \theta_*\|^2}{8\gamma t}.$$

What step-size would be optimal from the result above?

21. (2 points) We consider the stochastic gradient descent recursion:

$$\theta_t = \theta_{t-1} - \gamma \big[f'(\theta_{t-1}) + \varepsilon_t \big],$$

where ε_t is a sequence of independent and identically distributed random vectors, with zero mean $\mathbb{E}(\varepsilon_t) = 0$ and covariance matrix $C = \mathbb{E}(\varepsilon_t \varepsilon_t^{\top})$.

What is the expression of $\theta_t - \theta_*$ as a function of $\theta_{t-1} - \theta_*$ and ε_t , and then as a function of $\theta_0 - \theta_*$ and all $(\varepsilon_k)_{k \leq t}$?

- 22. (2 points) Compute the expectation of θ_t and relate it to the (non stochastic) gradient descent recursion.
- 23. (3 points) Show that

$$\mathbb{E}f(\theta_t) - f(\theta_*) = \frac{1}{2}(\theta_0 - \theta_*)^\top H(I - \gamma H)^{2t}(\theta_0 - \theta_*) + \frac{\gamma^2}{2} \operatorname{tr} CH \sum_{k=0}^{t-1} (I - \gamma H)^{2k}.$$

- 24. (2 points) Assuming that $\gamma \leq 1/L$ (where *L* is an upper-bound on the eigenvalues of *H*), show that $H \sum_{k=0}^{t-1} (I \gamma H)^{2k} = \frac{1}{\gamma} (2 \gamma H)^{-1} (I (I \gamma H)^{2t})$, and that its eigenvalues are all between 0 and $1/\gamma$.
- 25. (2 points) Assuming a lower-bound $\mu > 0$ and upper-bound L on the eigenvalues of H, and a step-size $\gamma \leq 1/L$, show that for all t > 0,

$$\mathbb{E}f(\theta_t) - f(\theta_*) \leqslant (1 - \gamma\mu)^{2t} \left[f(\theta_0) - f(\theta_*) \right] + \frac{\gamma}{2} \operatorname{tr} C.$$

26. (4 points) Only assuming an upper-bound L on the eigenvalues of H, and a step-size $\gamma \leq 1/L$, show that for all t > 0,

$$\mathbb{E}f(\theta_t) - f(\theta_*) \leqslant \frac{\|\theta_0 - \theta_*\|^2}{8\gamma t} + \frac{\gamma}{2} \operatorname{tr} C.$$

Considering that t is known in advance, what would be the optimal step-size from the bound above? Comment on the obtained bound with this optimal step-size.

4 Mixture of Gaussians (24 points)

In this exercise, we consider an unsupervised method that improves on some shortcomings of the K-means clustering algorithm.

27. (1 point) Given the data below, plot (roughly) the clustering that K-means with K = 2 would lead to.

We consider a probabilistic model on two variables X and Z, where $X \in \mathbb{R}^d$ and $Z \in \{1, \ldots, K\}$. We assume that

- (a) the marginal distribution of Z is defined by the vector in the simplex $\pi \in \mathbb{R}^K$ (that is with non-negative components which sum to one) so that $\mathbb{P}(Z = k) = \pi_k$,
- (b) the conditional distribution of X given Z = k is a Gaussian distribution with mean μ_k and covariance matrix $\sigma_k^2 I$.
- 28. (1 point) Write down the log-likelihood log p(x, z) of a single observation $(x, z) \in \mathbb{R}^d \times \{1, \dots, K\}$.
- 29. (3 points) We assume that we have n independent and identically distributed observations (x_i, z_i) of (X, Z) for i = 1, ..., n. Write down the log likelihood of these observations, and show that it is a sum of a function of π and a function of $(\mu_k, \sigma_k)_{k \in \{1,...,K\}}$.

It will be useful to introduce the notation $\delta(z_i = k)$, which is equal to one if $z_i = k$ and 0 otherwise, and double summations of the form $\sum_{k=1}^{K} \sum_{i=1}^{n} \delta(z_i = k) J_{ik}$ for a certain J.

- 30. (4 points) In the setting of the question above, what are the maximum likelihood estimators of all parameters?
- 31. (2 points) Show that the marginal distribution on X has density

$$p_{\pi,\mu,\theta}(x) = \sum_{k=1}^{K} \pi_k \frac{1}{(2\pi\sigma_k^2)^{d/2}} \exp\left(-\frac{1}{2\sigma_k^2} \|x-\mu_k\|^2\right).$$

Represent graphically a typical such distribution for d = 1 and K = 2. Can such a distribution handle the shortcomings of K-means? What would be approximately good parameters for the data above?

32. (2 points) By applying Jensen's inequality, show that for any positive vector $a \in (\mathbb{R}^*_+)^K$, then

$$\log \sum_{k=1}^{K} a_k \ge \sum_{k=1}^{K} \tau_k \log \frac{a_k}{\tau_k}$$

for any $\tau \in \Delta_K$ (the probability simplex), with equality if and only if $\tau_k = \frac{a_k}{\sum_{k'=1}^K a_{k'}}$.

33. (4 points) We assume that we have n independent and identically distributed observations x_i of X for i = 1, ..., n. Show that

$$\log p_{\pi,\mu,\theta}(x) = \sup_{\tau \in \Delta_K} \sum_{k=1}^K \tau_k \log \left[\pi_k \frac{1}{(2\pi\sigma_k^2)^{d/2}} \exp\left(-\frac{1}{2\sigma_k^2} \|x - \mu_k\|^2 \right) \right] - \sum_{k=1}^K \tau_k \log \tau_k.$$

Provide an expression of the maximizer τ as a function of π, μ, θ and x. Provide a probabilistic interpretation of τ as a function of x.

34. (2 points) Write down a variational formulation of the log-likelihood ℓ of the data (x_1, \ldots, x_n) in the form

$$\ell = \sum_{i=1}^{n} \sup_{\tau_i \in \Delta_K} H(\tau_i, x_i, \pi, \mu, \sigma)$$

for a certain H.

- 35. (4 points) Derive an alternating optimization algorithm for optimizing $\sum_{i=1}^{n} H(\tau_i, x_i, \pi, \mu, \sigma)$ with respect to τ and (π, μ, σ) .
- 36. (1 point) What are its convergence properties?