
Final Exam

Introduction to Statistical Learning

ENS 2018-2019

January 25th 2019

The duration of the exam is 3 hours. You may use any printed references including books. The use
of any electronic device (computer, tablet, calculator, smartphone) is forbidden.

All questions require a proper mathematical justification or derivation (unless otherwise stated), but
most questions can be answered concisely in just a few lines. No question should require lengthy or
tedious derivations or calculations.

Answers can be written in French or English.

1 “Question de cours” (16 points)

1.1 Regression

We want to predict Yi ∈ R as a function of Xi ∈ R. We consider the following models:
(a) Linear regression
(b) 2-nd order polynomial regression
(c) 10-th order polynomial regression

(d) Kernel ridge regression with a Gaussian kernel
(e) k-nearest neighbor regression

We consider the following regression problems.
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Answer each of the following questions with no justification.

1. (1 point) If Y ∈ Rn is the output vector and X ∈ Rn is the input vector. Write the expression
of the estimator for linear regression.

2. (3 points) What are the time and space complexities

• in n and d of d-th order polynomial regression,
• in n of kernel ridge regression,
• in n and k of k-nearest neighbor regression?
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3. (2 points) What are the hyper-parameters of kernel ridge regression and k-nearest neighbors?

4. (2.5 points) For each problem, what would be the good model(s) to choose? (no justification)

5. (1 point) What models would lead to over-fitting in Problem 1.

6. (1 point) Provide one solution to deal with over-fitting.

1.2 Classification

We aim at predicting Yi ∈ {0, 1} as a function of Xi ∈ R2 (with the notation ◦ = 0 and × = 1).
We consider the following models:
(a) Logistic regression
(b) Linear discriminant analysis
(c) Logistic regression with 2-nd order poly-

nomials

(d) Logistic regression with 10-th order poly-
nomials

(e) k-nearest neighbor classification

We consider the following classification problems.
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Answer each of the following questions with no justification.

7. (2 points) Write the optimization problem that logistic regression is solving. How is it solved?

8. (1 point) What is the main assumption on the data distribution made by linear discriminant
analysis?

9. (2.5 points) For each problem, what would be the good model(s) to choose? (no justification)

2 Projection onto the `1-ball (13 points)

Let z ∈ Rn and µ ∈ R∗+. We consider the following optimization problem:

minimize
1

2
‖x− z‖22 with respect to x ∈ Rn such that ‖x‖1 6 µ.

10. (1 point) Show that the minimum is attained at a unique point.

11. (1 point) Show that if ‖z‖1 6 µ, the solution is trivial.

12. (2 points) We now assume ‖z‖1 > µ. Show that the minimizer x is such that ‖x‖1 = µ.
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13. (2 points) Show that the components of the solution x have the same signs as the ones of z.
Show then that the problem of orthogonal projection onto the `1-ball can be solved from an
orthogonal projection onto the simplex, for some well-chosen u, that is:

minimize
1

2
‖y − u‖22 with respect to y ∈ Rn+ such that

n∑
i=1

yi = 1.

14. (3 points) Using a Lagrange multiplier β for the constraint
∑n
i=1 yi = 1, show that a dual

problem may be written as follows:

maximize − 1

2

n∑
i=1

max{0, ui − β}2 +
1

2
‖u‖22 − β with respect to β ∈ R.

Does strong duality hold?

15. (4 points) Show that the dual function is continuously differentiable and piecewise quadratic
with potential break points at each ui, and compute its derivative at each break point. Describe
an algorithm for computing β and y with complexity O(n log n).

3 Stochastic gradient descent (SGD) (23 points)

The goal of this exercise is to study SGD with a constant step-size in the simplest setting. We
consider a strictly convex quadratic function f : Rd → R of the form

f(θ) =
1

2
θ>Hθ − g>θ.

16. (1 point) What conditions on H lead to a strictly convex function? Compute a minimizer θ∗
of f . Is it unique?

17. (2 points) We consider the gradient descent recursion:

θt = θt−1 − γf ′(θt−1).

What is the expression of θt − θ∗ as a function of θt−1 − θ∗, and then as a function of θ0 − θ∗?

18. (1 point) Compute f(θ)− f(θ∗) as a function of H and θ − θ∗.

19. (2 points) Assuming a lower-bound µ > 0 and upper-bound L on the eigenvalues of H, and a
step-size γ 6 1/L, show that for all t > 0,

f(θt)− f(θ∗) 6 (1− γµ)2t
[
f(θ0)− f(θ∗)

]
.

What step-size would be optimal from the result above?

20. (2 points) Only assuming an upper-bound L on the eigenvalues of H, and a step-size γ 6 1/L,
show that for all t > 0,

f(θt)− f(θ∗) 6
‖θ0 − θ∗‖2

8γt
.

What step-size would be optimal from the result above?
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21. (2 points) We consider the stochastic gradient descent recursion:

θt = θt−1 − γ
[
f ′(θt−1) + εt

]
,

where εt is a sequence of independent and identically distributed random vectors, with zero
mean E(εt) = 0 and covariance matrix C = E(εtε

>
t ).

What is the expression of θt − θ∗ as a function of θt−1 − θ∗ and εt, and then as a function of
θ0 − θ∗ and all (εk)k6t?

22. (2 points) Compute the expectation of θt and relate it to the (non stochastic) gradient descent
recursion.

23. (3 points) Show that

Ef(θt)− f(θ∗) =
1

2
(θ0 − θ∗)>H(I − γH)2t(θ0 − θ∗) +

γ2

2
trCH

t−1∑
k=0

(I − γH)2k.

24. (2 points) Assuming that γ 6 1/L (where L is an upper-bound on the eigenvalues of H), show

that H

t−1∑
k=0

(I − γH)2k =
1

γ
(2− γH)−1(I − (I − γH)2t), and that its eigenvalues are all between

0 and 1/γ.

25. (2 points) Assuming a lower-bound µ > 0 and upper-bound L on the eigenvalues of H, and a
step-size γ 6 1/L, show that for all t > 0,

Ef(θt)− f(θ∗) 6 (1− γµ)2t
[
f(θ0)− f(θ∗)

]
+
γ

2
trC.

26. (4 points) Only assuming an upper-bound L on the eigenvalues of H, and a step-size γ 6 1/L,
show that for all t > 0,

Ef(θt)− f(θ∗) 6
‖θ0 − θ∗‖2

8γt
+
γ

2
trC.

Considering that t is known in advance, what would be the optimal step-size from the bound
above? Comment on the obtained bound with this optimal step-size.

4 Mixture of Gaussians (24 points)

In this exercise, we consider an unsupervised method that improves on some shortcomings of
the K-means clustering algorithm.

27. (1 point) Given the data below, plot (roughly) the clustering that K-means with K = 2 would
lead to.
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We consider a probabilistic model on two variables X and Z, where X ∈ Rd and Z ∈ {1, . . . ,K}.
We assume that

(a) the marginal distribution of Z is defined by the vector in the simplex π ∈ RK (that is with
non-negative components which sum to one) so that P(Z = k) = πk,

(b) the conditional distribution of X given Z = k is a Gaussian distribution with mean µk and
covariance matrix σ2

kI.

28. (1 point) Write down the log-likelihood log p(x, z) of a single observation (x, z) ∈ Rd×{1, . . . ,K}.

29. (3 points) We assume that we have n independent and identically distributed observations
(xi, zi) of (X,Z) for i = 1, . . . , n. Write down the log likelihood of these observations, and
show that it is a sum of a function of π and a function of (µk, σk)k∈{1,...,K}.

It will be useful to introduce the notation δ(zi = k), which is equal to one if zi = k and 0

otherwise, and double summations of the form
∑K
k=1

∑n
i=1 δ(zi = k)Jik for a certain J .

30. (4 points) In the setting of the question above, what are the maximum likelihood estimators of
all parameters?

31. (2 points) Show that the marginal distribution on X has density

pπ,µ,θ(x) =

K∑
k=1

πk
1

(2πσ2
k)d/2

exp
(
− 1

2σ2
k

‖x− µk‖2
)
.

Represent graphically a typical such distribution for d = 1 and K = 2. Can such a distribution
handle the shortcomings of K-means? What would be approximately good parameters for the
data above?

32. (2 points) By applying Jensen’s inequality, show that for any positive vector a ∈ (R∗+)K , then

log

K∑
k=1

ak >
K∑
k=1

τk log
ak
τk

for any τ ∈ ∆K (the probability simplex), with equality if and only if τk = ak∣∣∑K
k′=1

ak′
.
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33. (4 points) We assume that we have n independent and identically distributed observations xi
of X for i = 1, . . . , n. Show that

log pπ,µ,θ(x) = sup
τ∈∆K

K∑
k=1

τk log

[
πk

1

(2πσ2
k)d/2

exp
(
− 1

2σ2
k

‖x− µk‖2
)]
−

K∑
k=1

τk log τk.

Provide an expression of the maximizer τ as a function of π, µ, θ and x.

Provide a probabilistic interpretation of τ as a function of x.

34. (2 points) Write down a variational formulation of the log-likelihood ` of the data (x1, . . . , xn)
in the form

` =

n∑
i=1

sup
τi∈∆K

H(τi, xi, π, µ, σ)

for a certain H.

35. (4 points) Derive an alternating optimization algorithm for optimizing
∑n
i=1H(τi, xi, π, µ, σ)

with respect to τ and (π, µ, σ).

36. (1 point) What are its convergence properties?
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