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1 Introduction

Pac-Learning (Probably Approximately Correct Learning) is a theoretical framework for analysing machine
learning algorithms. It was introduced by Lesli Valiant in 1984.

Notation and reminder

• Training set: Dn = {(Xi, Yi)}1≤i≤n. The data points (Xi, Yi) are i.i.d. random variables in X ×Y and
follow a distribution P. X is the input set (typically Rd) and Y the output set (typically {0, 1} for
regression or R for classification).

• A learning algorithm is a function A that maps a training set Dn to an estimator f̂n : X → Y:

A : ∪n≥0(X × Y)n︸ ︷︷ ︸
training set

7→ YX︸︷︷︸
estimator

.

We denote f̂n = A(Dn) the estimator (which is a random variable in YX ). Sometimes the prediction
set can differ from the output set. For instance, in classification in {0, 1} we might want to predict
probability in [0, 1] for the output to belong to class 1.

• Loss function to measure the performance: ` : Y × Y → R

• Risk of an estimator (statistical risk)

R(f) := E(X,Y )∼P

[
`(f(X), Y )

]
= E

[
`(f(X), Y )|f

]
• Since an estimator f̂n = A(Dn) is random, we often consider the expected risk or frequentist risk :

E[R(f̂n)] = EDn∼P⊗n

[
R(f̂n)

]
= E

[
`(f(X), Y )

]
• An estimator is consistent for P if

lim
n→∞

E[R(f̂n)] = R(f∗) where f∗ ∈ arg min
f∈YX

R(f) .

We denote by R∗ = R(f∗) the optimal risk. An estimator is universally consistent if this is valid for
all P.

• Example: in classification X = Rd, Y = {0, 1}, `(y, ŷ) = 1{y 6= ŷ}, R(f) = P(X,Y )∼P(f(X) 6= Y ).
kNN when k →∞ and k/n→ 0 is universally consistent.
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Ultimate goal Minimize the risk R(f̂n) with high probability or in expectation. We can decompose the
excess risk into two terms:

E
[
R(f̂n)

]
−R∗ =

(
E
[
R(f̂n)

]
− inf

f∈F
R(f)

)
︸ ︷︷ ︸

Estimation error

+

(
inf
f∈F

R(f)−R∗
)

︸ ︷︷ ︸
Approximation error

.

The approximation error depends on P and F ⊆ YX but not on f̂n. To control it, we must make some
assumption on P. It is possible to have asymptotic result on it without assumptions (remember KNN) but
assumptions are needed to get rates of convergence.

The estimation error depends on P,F , and f̂n. We can bound this term without making any assumption
on the data distribution P. These are the type of results we are going to prove in this lecture.

1.1 PAC bounds

As noted above, the estimator f̂n is a random variable. A way to deal with this randomness is to consider
the expected risk. But this is limited: it makes statements about the risk on average. A finer control over
the excess risk can be stated in terms of a probabilistic statement: a PAC bound (probably approximately
correct).

Definition 1. We say that f̂n is ε-accurate with confidence 1− δ of (ε, δ)-PAC if

PDn

{
R(f̂n)− inf

f∈F
R(f) > ε

}
< δ .

From bounds in high-probability to bounds in expectation It is worth to notice that if the risk is
bounded by L and f̂n is (ε, δ)-PAC, this implies:

E
[
R(f̂n)− inf

f∈F
R(f)︸ ︷︷ ︸

=:∆n

]
≤ E

[
∆n > ε

]
P
{

∆n > ε}+ E
[
∆n|∆n ≤ ε

]
P
{

∆n ≤ ε} ≤ Lδ + ε . (1)

Therefore, a result in high probability is stronger than a result in expectation. Tighter bound on the expected
risk can be obtained from (ε, δ)-PAC bounds by using the equality for any non-negative random variable X:

E[X] =

∫ ∞
0

P(X > ε)dε . (2)

1.2 A simple PAC-bound in the binary classification setting

We consider the binary classification setting with X = Rd, Y = {0, 1}, `(y, ŷ) = 1{y 6= ŷ}, R(f) =
P(X,Y )∼P(f(X) 6= Y ). Let F ⊂ YX be a finite class of models such that one of the models is perfect:
inff∈F R(f) = 0. This is a very strong assumption.

Theorem 1. Let f̂n = arg minf∈F R̂n(f) = 1
n

∑n
i=1 1f(Xi)6=Yi

the empirical risk minimizer. Then, for every
n ≥ 1 and ε > 0

P
{
R(f̂n) ≥ ε

}
≤ |F|e−nε (=: δ).

Therefore, the empirical risk minimizer is (ε, |F|e−nε)-PAC.
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Proof. Let f∗ ∈ arg minf∈F R(f). First, remark that R̂n(f̂n) = 0 since 0 ≤ E[R̂n(f̂n)] ≤ E[R̂n(f∗)] =

R(f∗) = 0 by assumption. Let G := {f ∈ F : R̂n(f) = 0
}

then f̂n ∈ G therefore,

P
{
R(f̂n) ≥ ε

}
≤ P

{
∪f∈G {R(f) ≥ ε}

}
= P

{
∪f∈F {R(f) ≥ ε, R̂n(f) = 0}

}
= P

{
∪f∈F :R(f)≥ε {R̂n(f) = 0}

}
≤

∑
f∈F :R(f)≥ε

P
{
R̂n(f) = 0

}
=

∑
f∈F :R(f)≥ε

P
{
∀i = 1, . . . , n, 1f(Xi) 6=Yi

= 0
}

by definition of R̂n

=
∑

f∈F :R(f)≥ε

P(X,Y )∼P
{
1f(X)6=Y = 0

}n
because data is i.i.d. with distribution P

=
∑

f∈F :R(f)≥ε

(
1−R(f)

)n
≤

∑
f∈F :R(f)≥ε

(1− ε)n

≤ |F |(1− ε)n ≤ |F |e−nε ,

where the last inequality is because 1− x ≤ e−x.

Note that for n large, δ = elog |F|−nε can be made arbitrailly small. For a given δ, we need

n =
log |F | − log δ

ε

training samples.

Corollary 1. E[R(f̂n)] ≤ 1+log |F |+log n
n .

Proof. Since the risk is bounded by L = 1, applying inequality (1), we have for any ε > 0

E
[
R(f̂n)

]
≤ ε+ δ ≤ ε+ |F |e−nε

The choice ε = (log |F |+ log n)/n concludes.

Exercise: get rid of the log n term in the corollary by using Inequality (2) instead of Inequality (1).

2 General PAC-bounds for ERM

Goals and tools In the previous section, we made a very strong assumption R(f∗) = 0. Basically, this
means both that E(X,Y )∼P [`(E[X|Y ], Y )] = 0 and that the optimal predictor belongs to our class of models
E[Y |X] ∈ F . Here we want similar result without assumption on P. We focus on (penalized) empirical risk
minimization (ERM):

f̂n ∈ arg min
f∈F

R̂n(f) .
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How good is ERM? Assume that we have a result which says that the empirical risk is close to the true
risk with high probability uniformly over all models in F : i.e.,

P
{
∀f ∈ F ,

∣∣R̂n(f)−R(f)
∣∣ ≤ ε} ≥ 1− δ . (∗)

In this case ERM is a good choice, since with probability 1− δ

R(f̂n) ≤ R̂n(fn) + ε ≤ R̂n(f∗) + ε ≤ R(f∗) + 2ε . (3)

Therefore, with high probability, the risk of ERM is close to the best risk in F . Now, the question is how to
get Inequality (∗).

2.1 Tools needed to obtain (∗): concentration inequalities

Let us first better understand what (∗) means. By the strong law of large number

R̂n(f) =
1

n

n∑
i=1

`(f(Xi), Yi)
R−−−−→

n→∞
(f)

almost surely. This is unfortunately not enough to get (∗). We still need two properties:

a) Get the speed of convergence → Obtained thanks to concentration inequalities (Chernoff bound)

b) Get this result simultaneously for all f ∈ F → Union bound

a) Concentration inequality The first property is partially answered by the Central Limit Theorem
(CLT) if the variance of the loss exists:

√
n
(
R̂n(f)−R(f)

) law−−−−→
n→∞

N
(
0,Var(`(f(X), Y )

)
.

But this is only valid asymptotically when n goes to∞. To have the result for finite n, we use concentration
inequality such as Chernoff’s bound. The proof will be done in practical session.

Proposition 1 (Chernoff’s inequality). Let (Zi)1≤i≤n i.i.d. from a Bernoulli distribution with parameter
p ∈ [0, 1]. Then, for all ε > 0

P

{
1

n

n∑
i=1

Zi ≥ p+ ε

}
≤ e−2nε2 .

b) Union bound To get the second property, if F is finite or countable, it is possible to use a union
bound: for any family of events (Af )f∈F

P
{
∪f∈F Af

}
≤
∑
f∈F

P{Af} . (4)

Otherwise, we need more sophisticated tools coming from empirical process theory (such as chaining).

2.2 Finite class F
Theorem 2. If F is finite, the ERM satisfies with probability 1− δ

R̂n(f) ≤ inf
f∈F

R(f) +

√
2(log |F|+ log(2/δ)

n
.
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Proof. We first show (∗):

P

{
∀f ∈ F ,

∣∣R(f)− R̂n(f)
∣∣ ≤√ log |F|+ log(2/δ)

2n

}
≥ 1− δ . (5)

Indeed,

P
{
∃f ∈ F , R̂n(f) ≥ R(f) + ε

} (4)

≤
∑
f∈F

P
{
R̂n(f) ≥ R(f) + ε

} Prop. 2

≤ |F|e−2nε2 ,

where the second inequality is by applying Chernoff’s inequality with Zi = `(f(Xi), Yi) and p = R(f).
Similarly, we can show the other way

P
{
∃f ∈ F , R̂n(f) ≤ R(f)− ε

}
≤ |F|e−2nε2 .

Choosing δ := 2|F|e−2nε2 i.e., ε = (log |F|+ log(2/δ))/(2n), we get using again an union bound

P
{
∀f ∈ F , |R̂n −R(f)| ≤ ε

}
= 1− P

{
∃f ∈ F , |R̂n −R(f)| ≥ ε

}
≥ 1− P

{
∃f ∈ F , R̂n(f) ≥ R(f) + ε

}
− P

{
∃f ∈ F , R̂n(f) ≤ R(f)− ε

}
≥ 1− δ ,

which concludes the proof of (5) by substituting ε. The proof of the theorem is obtained similarly to (3):
for any f ∈ cF

R(f̂n) ≤ R̂n(fn) + ε ≤ R̂n(f) + ε ≤ R(f) + 2ε =

√
2(log |F|+ log(2/δ)

n
.

Example: the histogram classifier Consider the classification setting Y = {0, 1}, X = [0, 1]d and
Q = (Qj)1≤j≤m a partition of X . Let

Fm :=
{
f : X → {0, 1} : f(x) =

m∑
j=1

cj1x∈Qj , cj ∈ {0, 1}∀1 ≤ j ≤ m
}

be the class of classification rules that take either 0 or 1 in each of the cells of the partition Q. Let f̂n be
the estimator that predicts in each cell Qj by doing a majority vote in cell Qj . More formally, for all x ∈ X

f̂n(x) =

m∑
j=1

ĉj1x∈Qj where ĉj =

 1 if

∑
i:Xi∈Qj

Yi∑
i:Xi∈Qj

1 ≥ 1/2

0 otherwise

Exercise: show that f̂n ∈ arg minf∈F
{

1
n

∑n
i=1 1Yi 6=f(Xi)

}
is an ERM in Fm.

Then, from Theorem 2 together with |F| = 2m and (1) choosing properly δ, we have

E
[
R̂n(f)

]
≤ min

f∈Fm

R(f) + 2

√
m log 2 + 2 + log(n/2)

n
.

This gives a way to choose m. If we want a vanishing estimation error, we need m/n −−−−→
n→∞

0. But m should

be large to approximate the optimal Bayes classifier well.
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Theorem 3. If the cells are of uniform size, m −−−−→
n→∞

∞ and n/m −−−−→
n→∞

0, then

E
[
R(f̂n)] −−−−→

n→∞
R∗

for all distribution P.

This result can also be obtained by Stoke’s Theorem that we saw in the KNN lecture.

2.3 Countably infinite F
If the class of model is infinite, we need to regularize (otherwise the union bound is infinite). To do so, we
need to assign a positive number c(f) to each f ∈ F such that∑

f∈F

e−c(f) = 1 .

This c(f) can be interpreted as:
– a measure of complexity;
– negative log of prior probability of f : c(f) = log(1/π(f)) where π is a probability distribution on F ;
– length of a codeword describing f in a binary langage.

Theorem 4. Let δ > 0. With probability 1− δ, for all f ∈ F

R(f) ≤ R̂n(f) +

√
c(f) + log(1/δ)

2n
.

The proof left as an exercise is thanks to a union bound together with Chernoff’s inequality. This theorem
provides an inequality similar to (∗), however it is not uniform over all f ∈ F . This motivates the choice of
penalized ERM:

f̂n ∈ arg min
f∈F

{
R̂n(f) +

√
c(f) + log(1/δ)

2n

}
in order to choose the model with the best upper-bound on the risk. With a similar analysis as previously
we can show that with probability 1− δ:

R(f̂n) ≤ R(f∗) +

√
2(c(f∗) + log(2/δ))

n
.

where f∗ ∈ arg minf∈F R(f). This bound is useful if we were able to assign a small complexity to f∗. There

is no free lunch! Furthermore, an important point to note here is that it can be NP hard to find f̂n. To find
it efficiently, good properties on the loss (such as convexity) are needed.

How to choose c(f)? Usually we give more weight π(f) (or smaller complexity c(f)) to simpler func-
tions f ∈ F . Suppose that we encode the elements of F by using a binary code, we can choose c(f) =
codelength(f). From Kraft’s inequality:

∑∞
i=1 e

−c(f) ≤ 1.

Example: histogram Let us go back to the histogram example of the previous section and consider
F = ∪m≥1Fm, where each Fm are the class of 2m classification rules obtained from a partition of size m.
We can encode any function f ∈ F using a binary code as follows:

– use m bits to encode the smallest k such that f ∈ Fm

– use m = log |Fm| bits to encode which of the 2m histograms it corresponds to in Fm.
Then, from Kraft’s inequality together with Theorem 4, with probability 1− δ for all m ≥ 1 and all f ∈ Fm,
we have

R(f) ≤ R̂n(f) +

√
2m log 2 + log(1/δ)

2n
.
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