Some useful inequalities:

Bounds on \(\binom{n}{k} \)

\[
\frac{n^k}{k^k} \leq \binom{n}{k} \leq \frac{(en)^k}{k!} \\
\frac{1}{k!} \geq \frac{k}{2^k}
\]

Union bound:

\[
\Pr[A \cup B] \leq \Pr[A] + \Pr[B]
\]

(with equality when \(A \) and \(B \) are disjoint.)

Exercise 1.

LINEAR FUNCTION

Let \(p \) be a prime and \(h_{a,b}(i) = ai + b \mod p \) a hash function. To show that if \(a \) and \(b \) are chosen uniformly at random from \(0, 1, 2, \ldots, p-1 \) and \(p > n^2 \), then with probability 1/2, there are no collision for \(n \) items \(i_1, \ldots, i_n \).

Exercise 2.

HASHING WITH CHAINING

Let \(\mathcal{U} \) be a universe, \(S \subset \mathcal{U} \) and \(m \) an integer.

1. Consider a hash table with chaining for the set \(S \) of cardinality \(|S| = n \) built with a hash function \(h \) drawn uniformly at random among all the functions \(\mathcal{U} \rightarrow \{0, 1, \ldots, m-1\} \). Show that for \(m = n \), the length of the longest linked list in the hash table is on the order of \(O(\log n / \log \log n) \) with probability at least \(1 - n^{-1} \) (with respect to the choice of hash functions).

2. (*) Suppose now that we use two hash functions \(h_1 \) and \(h_2 \) drawn independently and uniformly at random among all the functions \(\mathcal{U} \rightarrow \{0, 1, \ldots, m-1\} \) and an element \(x \) is inserted in the hash table at either \(h_1(x) \) or \(h_2(x) \) depending on which has the fewest elements at that time. Show that the length of the longest linked list in on the order of \(O(\log \log n) \) with good probability.

Exercise 3.

CUCKOO HASH FUNCTIONS

Let \(\mathcal{U} \) be a universe, \(S \subset \mathcal{U} \) and \(m \) an integer. We use two hash functions \(h_1 \) and \(h_2 \) drawn independently and uniformly among all the functions \(\mathcal{U} \rightarrow \{0, 1, \ldots, m-1\} \). To insert an element \(x \) in the hash table, we calculate \(h_1(x) \) and \(h_2(x) \) and if one of the two positions is empty, we put \(x \) there. Otherwise, we remove the element \(y \) at \(h_1(x) \), put \(x \) at \(h_1(x) \) and put \(y \) in its other possible position. If this position is occupied by \(z \), \(z \) is moved to its alternate position and so on. If the process fails (i.e. if we move the same element twice), we try to put \(x \) at position \(h_2(x) \) in the same way.

If this process fails, then the entire hash table is rebuilt (by choosing two new new hash functions and re-inserting all the elements in the new table). We suppose that \(n = |S| = m/4 \).
1. Give the worst case complexity for the removal and search operations.

2. Consider the graph (called cuckoo graph) whose vertices are \(V = \{0, \ldots, M - 1\} \) and edges are the pairs \(\{h_1(x), h_2(x)\} \) for \(x \in S \). Show that the hash table is reconstructed (if we try to insert all elements of \(S \)) if and only if there is a set of \(k \) vertices with at least \(k + 1 \) edges between these vertices.

3. Show that if there is a set of \(k \) vertices with at least \(k + 1 \) edges between them in a graph, then there exists a cycle in the graph. (A cycle is a sequence of vertices \(v_1, \ldots, v_\ell \) where all consecutive vertices are adjacent and \(v_1 \) is adjacent to \(v_\ell \).)

4. Show that the probability of having at least one edge between two fixed vertices \(v_1 \) and \(v_2 \) is at most \(\frac{1}{2m} \). Where there is at least one edge, is the probability of having an edge between another pair is lower or greater?

 Find the probability of having an edge between a vertex and itself.

5. Show that the probability the sequence \(v_1, \ldots, v_\ell \) forms a cycle is at most \(\frac{1}{(2m)^\ell} \).

6. Show that the probability of the event in question 2 is at most by \(1/2 \).

7. Deduce from this that the amortized cost of the insertion operation is \(O(1) \) in expectation.