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Motivation

Conditional Actions

An authority, or a server, may accept to process a request
under some conditions only:
Certification of public key: if the associated secret key is known
Transmission of private information:

if the receiver owns a credential
Blind signature on a message:

if the user knows the message (for the security proof)

→ Proof of validity/knowledge

Why should the authority learn the final status?

→ Implicit proof of validity/knowledge?
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Motivation

Certification of Public Keys: ZKPoK

In the registered key setting, a user can ask for the certification of a
public key pk, but only if he knows the associated secret key sk:
With an Interactive Zero-Knowledge Proof of Knowledge

the user U sends his public key pk;
U and the authority A run a ZK proof of knowledge of sk
if convinced, A generates and sends the certificate Cert for pk

For extracting sk (required in some security proofs),
the reduction has to make a rewind
(that is not always allowed: e.g., in the UC Framework)

And the authority learns the final status!
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Motivation

Certification of Public Keys: ZK and NIZK Proofs

In the registered key setting, a user can ask for the certification of a
public key pk, but only if he knows the associated secret key sk:
With an Interactive Zero-Knowledge Proof of Membership

the user U sends his public key pk, and an encryption C of sk;
U and the authority A run a ZK proof

that C contains the secret key sk associated to pk
if convinced, A generates and sends the certificate Cert for pk

With a Non-Interactive Zero-Knowledge Proof of Membership
the user U sends his public key pk, and an encryption C of sk

together with a NIZK proof
that C contains the secret key sk associated to pk

if convinced, A generates and sends the certificate Cert for pk
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Motivation

Certification of Public Keys: SPHF
[Abdalla, Chevalier, Pointcheval, 2009]

In the registered key setting, a user can ask for the certification of a
public key pk, but only if he knows the associated secret key sk:

With a Smooth Projective Hash Function
The user U and the authority A use a smooth projective hash system
for L: pk and C = E

pk′
(sk; r) are associated to the same sk

the user U sends his public key pk, and an encryption C of sk;
A generates the certificate Cert for pk, and sends it,

masked by Hash = Hash(hk; (pk,C))

U computes Hash = ProjHash(hp; (pk,C), r)), and gets Cert

Implicit proof of knowledge of sk
→ the authority does not learn the final status!
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Smooth Projective Hash Functions

Smooth Projective Hash Functions [Cramer, Shoup, 2002]

Definition [Cramer, Shoup, 2002] [Gennaro, Lindell, 2003]

Let {H} be a family of functions:
X , domain of these functions
L, subset (a language) of this domain

such that, for any point x in L, H(x) can be computed by using
either a secret hashing key hk: H(x) = HashL(hk; x);
or a public projected key hp: H(x) = ProjHashL(hp; x ,w)

While the former works for all points in the domain X ,
the latter works for x ∈ L only, and requires a witness w to this fact.

Public mapping hk 7→ hp = ProjKGL(hk, x)
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Smooth Projective Hash Functions

Properties

For any x ∈ X , H(x) = HashL(hk; x)
For any x ∈ L, H(x) = ProjHashL(hp; x ,w) w witness that x ∈ L

Smoothness
For any x 6∈ L, H(x) and hp are independent

Pseudo-Randomness
For any x ∈ L, H(x) is pseudo-random, without a witness w

The latter property requires L to be a hard-partitioned subset of X :

Hard-Partitioned Subset
L is a hard-partitioned subset of X if it is computationally hard to
distinguish a random element in L from a random element in X \ L

École Normale Supérieure David Pointcheval 8/41



Introduction Cryptographic Tools More Languages Blind Signatures OSBE LAKE

Applications

Examples

DH Language [Cramer, Shoup, 2002]

Lg,h = {(u, v)} where (g,h,u, v) is DH tuple:
there exists r such that u = gr and v = hr

→ Public-key Encryption with IND-CCA Security

Algorithms

HashKG() = hk = (γ1, γ3)
$← Z2

p

ProjKG(hk) = hp = gγ1hγ3

Hash(hk, (u, v)) = uγ1vγ3 = hpr = ProjHash(hp, (u, v); r)
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Applications

Examples (Con’d)

Commitment/Encryption [Gennaro, Lindell, 2003]

Lpk,m = {c} where c is an encryption of m under pk:
there exists r such that c = E

pk
(m; r)

→ Password-Authenticated Key Exchange in the Standard Model

Labeled Encryption [Canetti, Halevi, Katz, Lindell, MacKenzie, 2005]

Lpk,(`,m) = {c} where c is an encryption of m under pk, with label `

→ PAKE in the UC Framework (passive corruptions)

Extractable/Equivocable Commitment [Abdalla, Chevalier, Pointcheval, 2009]

Lpk,m = {c} where c is an equivocable/extractable commitment of m

→ PAKE in the UC Framework with Adaptive Corruptions
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Computational Assumptions

Assumptions: CDH and DLin

G a cyclic group of prime order p (with or without bilinear map).

Definition (The Computational Diffie-Hellman problem (CDH))
For any generator g $←G, and any scalars a,b $←Z∗p,

given (g,ga,gb), compute gab.

Decisional variant easy if a bilinear map is available.

Definition (Decision Linear Problem (DLin) [Boneh, Boyen, Shacham, 2004])
For any generator g $←G, and any scalars a,b, x , y , c $←Z∗p,

given (g,gx ,gy ,gxa,gyb,gc), decide whether c = a + b or not.

Equivalently, given a reference triple (u = gx , v = gy ,g)
and a new triple (U = ua = gxa,V = vb = gyb,T = gc),

decide whether T = ga+b or not (that is c = a + b).
(U,V ,T ) is (or not) a linear tuple w.r.t. (u, v ,g)
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Signature & Encryption

General Tools: Signature

Definition (Signature Scheme)
S = (Setup,KeyGen,Sign,Verif):

Setup(1k ) → global parameters param
KeyGen(param) → pair of keys (sk, vk)
Sign(sk,m; s) → signature σ, using the random coins s
Verif(vk,m, σ) → validity of σ

Definition (Security: EF-CMA [Goldwasser, Micali, Rivest, 1984])
An adversary should not be able to generate a new valid
message-signature pair for a new message (Existential Forgery)
even when having access to any signature of its choice

(Chosen-Message Attack).
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Signature & Encryption

Signature: Waters

G = 〈g〉 = 〈h〉 group of order p, and a bilinear map e : G×G→ GT

Waters Signature [Waters, 2005]

For a k -bit message M = (Mi), we define F(M) = u0
∏k

i=1 uMi
i

Keys: vk = Y = gx , sk = X = hx , for x $←Zp

Sign(sk = X ,M; s), for M ∈ {0,1}k and s $←Zp
→ σ =

(
σ1 = X · F(M)s, σ2 = g−s)

Verif(vk = X ,M, σ = (σ1, σ2)) checks whether

e(g, σ1) · e(F(M), σ2) = e(Y ,h)

Security
Waters signature reaches EF-CMA under the CDH assumption
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Signature & Encryption

General Tools: Encryption

Definition (Encryption Scheme)
E = (Setup,KeyGen,Encrypt,Decrypt):

Setup(1k ) → global parameters param
KeyGen(param) → pair of keys (pk,dk)
Encrypt(pk,m; r) → ciphertext c, using the random coins r
Decrypt(dk, c) → plaintext, or ⊥ if the ciphertext is invalid

Definition (Security: IND-CPA [Goldwasser, Micali, 1984])
An adversary should not be able to distinguish
the encrytion of m0 from the encryption of m1 (Indistinguishability)
whereas it can encrypt any message of its choice

(Chosen-Plaintext Attack).
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Signature & Encryption

Encryption: Linear

G = 〈g〉 group of order p

Linear Encryption [Boneh, Boyen, Shacham, 2004]

Keys: dk = (x1, x2)
$←Z2

p, pk = (X1 = gx1 ,X2 = gx2)

Encrypt(pk = (X1,X2),M; (r1, r2)), for M ∈ G and (r1, r2)
$←Z2

p
→ C =

(
C1 = X r1

1 ,C2 = X r2
2 ,C3 = gr1+r2 ·M

)

Decrypt(dk = (x1, x2),C = (C1,C2,C3))→ M = C3/C
1/x1
1 C1/x2

2

Security
Linear encryption reaches IND-CPA under the DLin assumption
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Signature & Encryption

Encryption: Linear Cramer-Shoup

G group of order p, with three independent generators g1,g2,g3 ∈ G

Linear Cramer-Shoup Encryption [Shacham, 2007]

Keys: dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3)
$←Z9

p,

pk =




g1, c1 = gx1
1 gx3

3 , c2 = gx2
2 gx3

3
g2, d1 = gy1

1 gy3
3 , d2 = gx2

2 gy3
3 , H

g3, h1 = gz1
1 gz3

3 , h2 = gz2
2 gz3

3




Encrypt(pk = (g1,g2,g3, c1, c2,d1,d2,h1,h2,H),m; (r , s)), for
M ∈ G:
C =

(
~u = (u1 = gr

1,u2 = gs
2,u3 = gr+s

3 ),e = M · hr
1hs

2, v = v r
1vs

2

)

where v1 = c1dξ1 , v2 = c2dξ2 , and ξ = H(~u,e)
Decrypt(dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3),C = (~u,e, v))
one checks v ?

= ux1+ξy1
1 ux2+ξy2

2 ux3+ξy3
3 → M = e/uz1

1 uz3
2 uz3

2
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Signature & Encryption

Encryption: CCA Security

Definition (Security: IND-CCA [Rackoff, Simon, 1991])
An adversary should not be able to distinguish
the encrytion of m0 from the encryption of m1 (Indistinguishability)
whereas it can encrypt any message of its choice,
and ask any decryption of its choice (Chosen-Ciphertext Attack).

Security: Non-Malleability [Dolev,Dwork, Naor, 1991]

IND-CCA implies Non-Malleability [Bellare, Desai, Pointcheval, Rogaway, 1998]

Security of the Linear Cramer-Shoup [Shacham, 2007]

Linear Cramer-Shoup encryption reaches IND-CCA
under the DLin assumption
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Groth-Sahai Methodology

Groth-Sahai Proofs [Groth, Sahai, 2008]

For any pairing product equation of the form:∏
e(Ai ,Xi)

αi
∏

e(Xi ,Xj)
γi,j = e(A,B),

where the A,B,Ai ∈ G are constant group elements,
αi ∈ Zp, and γi,j ∈ Zp are constant scalars, and Xi are unknowns

either group elements in G,
or of the form gxi ,

one can make a proof of knowledge of values for the Xi ’s or xi ’s
so that the equation is satisfied:

one first commits these secret values using random coins,
and then provides proofs, that are group elements, using the
above random coins,
→ Under the DLin assumption: Efficient NIZK
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Conjunctions and Disjunctions

Notations [Abdalla, Chevalier, Pointcheval, 2009]

We assume that G possesses a group structure, and we denote by ⊕
the commutative law of the group (and by 	 the opposite operation)
We assume to be given two smooth hash systems SHS1 and SHS2,
on the sets G1 and G2 (included in G) corresponding to the
languages L1 and L2 respectively:

SHSi = {HashKGi ,ProjKGi ,Hashi ,ProjHashi}

Let c ∈ X , and r1 and r2 two random elements:

hk1 = HashKG1(r1) hk2 = HashKG2(r2)
hp1 = ProjKG1(hk1, c) hp2 = ProjKG2(hk2, c)
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Conjunctions and Disjunctions

Conjunction of Languages

A hash system for the language L = L1 ∩ L2 is defined as follows,
if c ∈ L1 ∩ L2 and wi is a witness that c ∈ Li , for i = 1,2:

HashKGL(r = r1‖r2)=hk = (hk1,hk2)
ProjKGL(hk, c)=hp = (hp1,hp2)

HashL(hk, c)=Hash1(hk1, c)⊕ Hash2(hk2, c)
ProjHashL(hp, c; (w1,w2))=ProjHash1(hp1, c;w1)

⊕ ProjHash2(hp2, c;w2)

if c is not in one of the languages, then the corresponding hash
value is perfectly random: smoothness
without one of the witnesses, then the corresponding hash value
is computationally unpredictable: pseudo-randomness
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Conjunctions and Disjunctions

Disjunction of Languages

A hash system for the language L = L1 ∪ L2 is defined as follows,
if c ∈ L1 ∪ L2 and w is a witness that c ∈ Li for i ∈ {1,2}:

HashKGL(r = r1‖r2) = hk = (hk1,hk2)
ProjKGL(hk, c) = hp = (hp1,hp2,hp∆)

where hp∆ = Hash1(hk1, c)⊕ Hash2(hk2, c)
HashL(hk, c) = Hash1(hk1, c)

ProjHashL(hp, c;w) = ProjHash(hp1, c;w) if c ∈ L1
or hp∆ 	 ProjHash2(hp2, c;w) if c ∈ L2

hp∆ helps to compute the missing hash value,
if and only if at least one can be computed
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Pairing Product Equations

Pairing Product Equations

Ai ∈ G (i = 1, . . . ,m), ζi ∈ Zp (i = m + 1, . . . ,n), and B ∈ GT public.
One wants to show its knowledge of Xi ∈ G (for i = 1, . . . ,m)
and Zi ∈ GT (for i = m + 1, . . . ,n) that simultaneously satisfy

(
m∏

i=1

e(Xi ,Ai)

)
·




n∏

i=m+1

Z ζi
i


 = B

One thus commits Xi (linear encryption) in G, into ~ci , for i = 1, . . . ,m,
encrypted under pk = (g,u1,u2),

and Zi (linear encryption) in GT , into ~Ci , for i = m + 1, . . . ,n,
encrypted under PKi = (G,U1,U2)
where G = e(g,g), U1 = e(u1,g), U2 = e(u2,g).
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Pairing Product Equations

Commitments

~ci = (uri
1 ,u

si
2 ,g

ri +si · Xi) for i = 1, . . . ,m
~Ci = (U ri

1 ,U
si
2 ,G

ri +si · Zi) for i = m + 1, . . . ,n

The ~ci ’s can be transposed into GT , for i = 1, . . . ,m:

~Ci = (U ri
i,1,U

si
i,2,G

ri +si
i · Zi)

where Ui,1 = e(u1,Ai), Ui,2 = e(u2,Ai), Gi = e(g,Ai),
but also, Zi = e(Xi ,Ai), for i = 1, . . . ,m

We also denote Ui,1 = U1, Ui,2 = U2, Gi = G, for i = m + 1, . . . ,n
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Pairing Product Equations

Smooth Projective Hash Function

(λ, (ηi , θi)i=1,...,n)
$←Z2n+1

p , one sets hki = (ηi , θi , λ)

and hpi = (uηi
1 gζiλ,uθi

2 gζiλ) ∈ G2

where ζi = 1 for i = 1, . . . ,m.
The associated projection keys in GT are

HPi = (e(hpi,1,Ai),e(hpi,2,Ai)), for i = 1, . . . ,n,
where Ai = g for i = m + 1, . . . ,n.

The hash value is

H =

(
n∏

i=1

Cηi
i,1 · C

θi
i,2 · C

ζiλ
i,3

)
× B−λ

=

(
n∏

i=1

HPri
i,1HPsi

i,2

)
×




m∏

i=1

e(Xi ,Ai)
n∏

i=m+1

Z ζi
i /B



λ

Equality indeed holds if and only if the equation is satisfied
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Pairing Product Equations

Multiple Equations

We have Xi committed in G, in ~ci , for i = 1, . . . ,m
and Zi committed in GT , in ~Ci , for i = m + 1, . . . ,n.
We want to show they simultaneously satisfy


∏

i∈Ak

e(Xi ,Ak ,i)


 ·


∏

i∈Bk

Z ζk,i
i


 = Bk , for k = 1, . . . , t

where Ak ,i ∈ G, Bk ∈ GT , and ζk ,i ∈ Zp are public,
as well as Ak ⊆ {1, . . . ,m} and Bk ⊆ {m + 1, . . . ,n}

This is a conjunction of languages

→ Similar Hash Proofs on Linear Cramer-Shoup Commitments
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Introduction

Blind RSA [Chaum, 1981]

The easiest way for blind signatures, is to blind the message:
To get an RSA signature on m under public key (n,e),

The user computes a blind version of the hash value:
M = H(m) and M ′ = M · re mod n

The signer signs M ′ into σ′ = M ′d mod n
The user unblinds the signature: σ = σ′/r mod n

Indeed,

σ = σ′/r = M ′d/r = (M · re)d/r = Md · r/r = Md mod n

→ Proven under the One-More RSA
[Bellare, Namprempre, Pointcheval, Semanko, 2001]
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Randomizable Commutative Signature/Encryption

Blind Signatures

Randomizable Commutative Signature/Encryption
[Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011]

The user ”blinds” M into C, under random coins r
The signer signs C into σ(C), under random coins s
The user ”unblinds” the signature σ(M), granted the coins r

Weakness
The signer can recognize his signature: the random coins s in σ(M)
→ Randomizable Signature

Security
Encryption hides M (blinding of the message)
Re-randomization hides σ(M) (blinding of the signature)
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Randomizable Commutative Signature/Encryption

Randomizable Commutative Signature/Encryption
[Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011]

M

σ(M)

S
ig

n S

sk
;s

RandomS

s′

EncryptE
pk, r

C
dk

DecryptE

r

RandomE

r ′

S
ig

n S
E

sk
,p

k,
c;

s

σ(C)

Ran
do

mSE

r′ ,
s

′

SigExtSE

dk

r
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Our Constructions

Blind Signatures

Such a primitive can be used for a Waters Blind Signature,
by encrypting F(M):

Unforgeability: one-more forgery would imply a forgery
against the signature scheme (CDH assumption)

Blindness: a distinguisher would break indistinguishability
of the encryption scheme (DLin assumption)

Efficiency
One obtains a plain Waters Signature

Limitation
A proof of knowledge of M in C = Epk(F(M)) has to be sent
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Our Constructions

Blind Signature [Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011]

In order to get the `-bit message M = {Mi} blindly signed:

With Groth-Sahai NIZKP
the user U encrypts M into C1, and F(M) into C2;
U produces a Groth-Sahai NIZK Proof that

C1 and C2 contain the same M (bit-by-bit proof)
if convinced, A generates a signature on C2

granted the commutativity, U decrypts it
into a Waters signature of M,
and eventually re-randomizes the signature

9`+ 24 group elements have to be sent:
→ It was the most efficient blind signature up to 2011

Why NIZK, since there are already two flows?
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Our Constructions

Blind Signature [Blazy, Pointcheval, Vergnaud, 2012]

In order to get the `-bit message M = {Mi} blindly signed:

With SPHF
The user U and the authority A use a smooth projective hash system
for L: C1 = E

pk1
(M; r) and C2 = E

pk2
(F(M); s) contain the same M

U sends encryptions of M, into C1, and F(M), into C2;
A generates

a signature σ on C2,
masks it using Hash = Hash(hk; (C1,C2))

U computes Hash = ProjHash(hp; (C1,C2), (r , s)), and gets σ.
Granted the commutativity, U decrypts it into a Waters signature
of M, and eventually re-randomizes it

Such a protocol requires 8`+ 12 group elements in total only!
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Definitions

Oblivious Transfers

Oblivious Transfer [Rabin, 1981]

A sender S wants to send a message M to U such that
U gets M with probability 1/2, or nothing
S does not learn whereas U gets the message M or not

1-2 Oblivious Transfer [Even, Goldreich, Lempel, 1985]

A sender S owns two messages m0 and m1, and U owns a bit b
U gets mb but nothing on the other message
S does not learn anything about b
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Definitions

Oblivious Signature-Based Envelope [Li, Du, Boneh, 2003]

A sender S wants to send a message M to U such that
U gets M if and only if it owns a signature σ

on a message m valid under vk
S does not learn whereas U gets the message M or not

Correctness: if U owns a valid signature, he learns M

Security Notions
Oblivious: S does not know whether U owns a valid signature

(and thus gets the message)
Semantic Security: U does not learn any information about M

if he does not own a valid signature
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Our Scheme

A Stronger Security Model

S wants to send a message M to U, if U owns/uses a valid signature.

Security Notions
Oblivious w.r.t. the authority:

the authority does not know whether U uses a valid signature
(and thus gets the message);

Semantic Security: U cannot distinguish
multiple interactions with S sending M0
from multiple interactions with S sending M1
if he does not own/use a valid signature;

Semantic Security w.r.t. the Authority: after the interaction,
the authority does not learn any information about M.
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Our Scheme

A New OSBE [Blazy, Pointcheval, Vergnaud, 2012]

S wants to send a message M to U, if U owns a valid signature σ
on m under vk:

With a Smooth Projective Hash Function
The user U and the sender S use a smooth projective hash system
for L: C = E

pk
(σ; r) contains a valid signature σ of m under vk

the user U sends an encryption C of σ;
S generates a hk and the associated hp,

computes Hash = Hash(hk;C),
and sends hp together with c = M ⊕ Hash;

U computes Hash = ProjHash(hp;C, r), and gets M.
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Our Scheme

Security Properties

Oblivious (even w.r.t. the Authority):
IND-CPA of the encryption scheme

(Hard-partitioned Subset of the SPHF);
Semantic Security: Smoothness of the SPHF
Semantic Security w.r.t. the Authority:

Pseudo-randomness of the SPHF

Semantic Security w.r.t. the Authority requires one interaction
→ round-optimal

Standard model with Waters Signature + Linear Encryption
→ CDH and DLin assumptions
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Extension to More Languages

General Construction

The user U sends a commitment C of a word w
S generates a hk and the associated hp,

computes Hash = Hash(hk;C),
and sends hp together with c = M ⊕ Hash;

U computes Hash = ProjHash(hp;C, r), and gets M.

U gets M iff w is in the appropriate language:
a signature on a public message: OSBE
a signature on a private message: Anonymous Credential
a private message (low entropy): Password
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Definition

Password-based Authenticated Key Exchange

GL – Generic Approach [Gennaro, Lindell, 2003]

Additional tricks are required for the security!

Alice Bob
C1 = Commit(pw ; r1)

C1−−−−−−−−−−−−−→ C2 = Commit(pw ; r2)
C2,hp1←−−−−−−−−−−−−− hk1,hp1 on C1

hk2,hp2 on C2
hp2←−−−−−−−−−−−−−

ProjHash(hp1;C1, r1) = H1 = Hash(hk1;C1)
Hash(hk2;C2) = H2 = ProjHash(hp2;C2, r2)

K = H1 · H2

The language is: valid commitments of pw
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Definition

Language-based Authenticated Key Exchange

Definition
Alice owns a word w1 is a language L1(Pub1,Priv1);
Bob owns a word w2 is a language L2(Pub2,Priv2);
If Alice and Bob agree on the languages,
and actually own valid words (implicit authentication),
they will agree on a common session key (semantic security)

Pub = ∅, Priv = pw and L(Pub,Priv) = {Priv}: PAKE
Pub = M, Priv = vk, L(Pub,Priv) = {σ,Verif(Priv ,Pub, σ) = 1}:

Secret Handshake
Pub = ∅, Priv = (vk,M), L(Pub,Priv) = {σ,Verif(Priv , σ) = 1}:

CAKE – Credential-based AKE [Camenisch, Casati, Gross, Shoup, 2010]
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Our Construction

Language-based Authenticated Key Exchange

Our Construction
With a Linear Cramer-Shoup UC commitment [Lindell, 2011]

Using the GL approach [Gennaro, Lindell, 2003]

→ UC Secure LAKE

Languages
Password: PAKE secure under DLin
Waters Signature: Secret Handshake, Credentials

secure under DLin + CDH

Any Linear Pairing Product Equation Systems in both G and GT
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Conclusion

Smooth Projective Hash Functions
can be used as implicit proofs of knowledge or membership

Various Applications
IND-CCA [Cramer, Shoup, 2002]

PAKE [Gennaro, Lindell, 2003]

Certification of Public Keys [Abdalla, Chevalier, Pointcheval, 2009]

Privacy-preserving protocols
Blind signatures [Blazy, Pointcheval, Vergnaud, 2012]

Oblivious Signature-Based Envelope
→ Round optimal!

More general: Language-based Authenticated Key Exchange
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