Efficient Smooth Projective Hash Functions and Applications

David Pointcheval

Joint work with Olivier Blazy, Céline Chevalier and Damien Vergnaud

Ecole Normale Supérieure

Isaac Newton Institute for Mathematical Sciences, Cambridge, UK Semantics and Syntax: A Legacy of Alan Turing Formal and Computational Cryptographic Proofs – April 12th, 2012

ntroduction ●○○○○○○	Cryptographic Tools	More Languages	Blind Signatures	OSBE 000000	LAKE 000
Motivation					

Conditional Actions

- An authority, or a server, may accept to process a request under some conditions only:
 - Certification of public key: if the associated secret key is known
 - Transmission of private information: if the receiver owns a credential

Blind signature on a message:

if the user knows the message (for the security proof)

 \rightarrow Proof of validity/knowledge

Why should the authority learn the final status?

→ Implicit proof of validity/knowledge?

ΠŤ	ine

ntroduction

2 Cryptographic Tools

Cryptographic Tools

- 3 More Languages
- Blind Signatures
- **5** Oblivious Signature-Based Envelope

Language-based Authenticated Key Exchange

cole Normale Supe	érieure	David Po	ointcheval		2/41
Introduction 0000000	Cryptographic Tools	More Languages	Blind Signatures	OSBE 000000	LAKE 000
Motivation					

More Languages

Blind Signatures

Certification of Public Keys: ZKPoK

In the registered key setting, a user can ask for the certification of a public key *pk*, but only if he knows the associated secret key *sk*:

With an Interactive Zero-Knowledge Proof of Knowledge

- the user *U* sends his public key *pk*;
- U and the authority A run a ZK proof of knowledge of sk
- if convinced, A generates and sends the certificate Cert for *pk*

For extracting *sk* (required in some security proofs), the reduction has to make a rewind (that is not always allowed: *e.g.*, in the UC Framework)

And the authority learns the final status!

David Pointcheval

• L, subset (a language) of this domain

such that, for any point x in L, H(x) can be computed by using

- either a *secret* hashing key hk: $H(x) = \text{Hash}_{L}(hk; x);$
- or a *public* projected key hp: $H(x) = \text{ProjHash}_{L}(\text{hp}; x, w)$

While the former works for all points in the domain X, the latter works for $x \in L$ only, and requires a witness w to this fact.

Public mapping $hk \mapsto hp = ProjKG_L(hk, x)$

For any $x \notin L$, H(x) and hp are independent

Pseudo-Randomness

For any $x \in L$, H(x) is pseudo-random, without a witness w

The latter property requires *L* to be a hard-partitioned subset of *X*:

Hard-Partitioned Subset

L is a hard-partitioned subset of *X* if it is computationally hard to distinguish a random element in *L* from a random element in $X \setminus L$

Introduction ○○○○○●○	Cryptographic Tools	More Languages	Blind Signatures	OSBE 000000	L/ 00
Applications					
Examp	les				
DH Lang	guage		[C	ramer, Shoup,	2002
$L_{g,h} = \{($	$\{u, v\}$ where (g, I)	<i>h</i> , <i>u</i> , <i>v</i>) is DH tu	ple:		

there exists r such that $u = q^r$ and $v = h^r$

→ Public-key Encryption with IND-CCA Security

Algorithms

- HashKG() = hk = $(\gamma_1, \gamma_3) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$
- ProjKG(hk) = hp = $q^{\gamma_1} h^{\gamma_3}$

$$Hash(hk, (u, v)) = u^{\gamma_1} v^{\gamma_3} = hp^r = ProjHash(hp, (u, v); r)$$

Applications Examples (Con'd)

Cryptographic Tools

Introduction

0000000

Commitment/Encryption

 $L_{pk,m} = \{c\}$ where *c* is an encryption of *m* under *pk*: there exists *r* such that $c = \mathcal{E}_{rk}(m; r)$

Password-Authenticated Key Exchange in the Standard Model

Labeled Encryption	[Canetti, Halevi, Katz, Lindell, MacKenzie, 2005]
$L_{\textit{pk},(\ell,m)} = \{c\}$ where <i>c</i> is an encrypt	otion of <i>m</i> under <i>pk</i> , with label ℓ

More Languages

Blind Signatures

[Gennaro, Lindell, 2003]

 \rightarrow PAKE in the UC Framework (passive corruptions)

Extractable/Equivocable Commitment [Abdalla, Chevalier, Pointcheval, 2009] $L_{pk,m} = \{c\}$ where c is an equivocable/extractable commitment of m

\rightarrow PAKE in the UC Framework with Adaptive Corruptions

ole Normale Supe	érieure	David Po	pintcheval		9/41	École Normale Sup	érieure	David Po	intcheval		10/41
Introduction	Cryptographic Tools	More Languages	Blind Signatures	OSBE 000000	LAKE 000	Introduction	Cryptographic Tools ○●○○○○○○	More Languages	Blind Signatures	OSBE 000000	LAKE 000
Computational A	ssumptions					Signature & Enc	ryption				
Assum	ptions: CDF	and DLin				Genera	al Tools: Siar	nature			

 \mathbb{G} a cyclic group of prime order *p* (with or without bilinear map).

Definition (The Computational Diffie-Hellman problem (CDH)) For any generator $g \stackrel{\$}{\leftarrow} \mathbb{G}$, and any scalars $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$, given (q, q^a, q^b) , compute q^{ab} .

Decisional variant easy if a bilinear map is available.

Definition (Decision Linear Problem (DLin) [Boneh, Boyen, Shacham, 2004])

For any generator $g \stackrel{\$}{\leftarrow} \mathbb{G}$, and any scalars $a, b, x, y, c \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$, given $(q, q^x, q^y, q^{xa}, q^{yb}, q^c)$, decide whether c = a + b or not.

Equivalently, given a reference triple $(u = q^x, v = q^y, g)$ and a new triple ($U = u^a = g^{xa}$, $V = v^b = g^{yb}$, $T = g^c$), decide whether $T = g^{a+b}$ or not (that is c = a + b). (U, V, T) is (or not) a linear tuple w.r.t. (u, v, g)

ai 10015. Signature

Definition (Signature Scheme)

- S = (Setup, KeyGen, Sign, Verif):
 - Setup(1^k) \rightarrow global parameters param
 - KeyGen(param) \rightarrow pair of keys (sk, vk)
 - Sign(sk, m; s) \rightarrow signature σ , using the random coins s
 - Verif(vk, m, σ) \rightarrow validity of σ

Definition (Security: EF-CMA

[Goldwasser, Micali, Rivest, 1984])

An adversary should not be able to generate a new valid message-signature pair for a new message (Existential Forgery) even when having access to any signature of its choice (Chosen-Message Attack).

Introduction	Cryptographic Tools ○○●○○○○○	More Languages	Blind Signatures	OSBE 000000	LAKE 000	Introduction	Cryptographic Tools	More Languages	Blind Signatures	OSBE 000000	LAKE 000
Signature & End						Signature & Encry	yption				
Signat	ure: waters					Genera	I IOOIS: Enc	ryption			
$\mathbb{G}=\langle oldsymbol{g} angle$	$=\langle h angle$ group of or	der <i>p</i> , and a bil	inear map <i>e</i> : @	$\mathbf{F} \times \mathbb{G} \to \mathbb{Q}$	T	Definitio	n (Encryption S	cheme)			
Waters	Signature			[Waters,	2005]	$\mathcal{E} = (Set)$	up, KeyGen, Encl	rypt, Decrypt):			
For a k-	bit message $M =$	(M_i) , we define	$\mathcal{F}(M) = u_0 \prod_{i=1}^{N}$	$\sum_{i=1}^{K} u_i^{M_i}$		 Setu 	$p(1^k) \rightarrow \text{glob}$	al parameters	param		
Key	vs: $vk = Y = g^x$, s	$k = X = h^x$, for	$x \stackrel{\bullet}{\leftarrow} \mathbb{Z}_p$			• Key($Gen(param) \rightarrow$	pair of keys	(<i>pk</i> , <i>dk</i>)		
Sigi	n(sk = X, M; s), for x = (x, y = X)	or $M \in \{0,1\}^{\kappa}$ and $\mathcal{T}(M)^{s}$ or $\mathcal{T}(M)^{s}$	and $s \leftarrow \mathbb{Z}_p$			Enci	rypt(pk, m; r) =	 Cipnertext C plaintaxt ar 1 	, using the rand	dom coins	r
• Ver	$= 0 = (0_1 - X)$	(σ_1, σ_2) checks) s whether			Ueci	$fypi(uk, c) \rightarrow$			a is invalid	
	$\mathbf{P}(\mathbf{a})$	$(0, 0, 0, 0)$, $e(F(M), \sigma$	$e_{0} - e(Y h)$			Definitio	n (Security: IND)-CPA	[Goldw	asser, Micali, 1	1984])
	c(g)	$(1)^{+} C(3(m), 0)$	(1, 1) = C(1, 1)		J	An adver	sary should not k	be able to distir	nguish		
Coourity						the encry	/tion of <i>m</i> 0 from t it can encrypt an	he encryption of i	of <i>m</i> 1 (Indistinguistinguistics choice	uishability)
Waters	y signature reaches	EE-CMA unde	r the CDH assi	umption		(Chc	sen-Plaintext Att	tack).			
Valors	signature reaches										
Ecole Normale Sup	Cryptographic Tools	David Po More Languages	intcheval Blind Signatures	OSBE	13/41 LAKE	École Normale Supé Introduction	Cryptographic Tools	David Po More Languages	ointcheval Blind Signatures	OSBE	14/41 LAKE
Signature & Enc	cryption				000	Signature & Encry	yption				
Encryp	otion: Linear					Encryp	tion: Linear	Cramer-Sh	noup		
$\mathbb{G} = \langle \boldsymbol{a} \rangle$	aroup of order p					Garoup	of order <i>p</i> with th	ree independe	ent generators (G
				~ .					sin generatore g	91, 92, 93 C	
		[] ²	[Boneh, Bo	yen, Shacham,	2004]	Linear C		ncryption	- <u> </u>	[Shacham,	2007]
• Key	$(x_1, x_2) \leftarrow (x_1, x_2) \leftarrow (x_$	$\mathbb{Z}_{p}^{-}, p \kappa = (X_{1} = X_{1})$	$=g^{\lambda_1}, \lambda_2 = g^{\lambda_2})$	···) \$ =77	,	• Keys	5. $UK = (x_1, x_2, x_3)$	$, y_1, y_2, y_3, z_1, z_1, z_1, z_1, z_1, z_1, z_1, z_1$	$= a_{x_2}^{x_2} a_{x_3}^{x_3} $		
Enc	$crypt(p\kappa = (X_1, X_2)$), <i>IVI</i> ; (<i>r</i> ₁ , <i>r</i> ₂)), fo	$r M \in \mathbb{G}$ and $(r$	$(1, r_2) \leftarrow \mathbb{Z}_p^*$	5	,	$1^{91}, 0^{1} - 1^{1}$	91,93, 02 -	- 92 93		

$$\rightarrow \quad C = (C_1 = X_1^{r_1}, C_2 = X_2^{r_2}, C_3 = g^{r_1 + r_2} \cdot M)$$

•
$$Decrypt(dk = (x_1, x_2), C = (C_1, C_2, C_3)) \rightarrow M = C_3/C_1^{1/x_1}C_2^{1/x_2}$$

Security

Linear encryption reaches IND-CPA under the DLin assumption

Encryption: CCA Security

Cryptographic Tools

000000

ntroduction

Signature & Encryption

Definition (Security: IND-CCA

[Rackoff, Simon, 1991]

[Shacham, 2007]

OSBE

LAKE

Introduction

Groth-Sahai Methodology

Blind Signatures

An adversary should not be able to distinguish

the encrytion of m_0 from the encryption of m_1 (Indistinguishability)

More Languages

whereas it can encrypt any message of its choice,

and ask any decryption of its choice (Chosen-Ciphertext Attack).

Security: Non-Malleability	[Dolev,Dwork, Naor, 1991
IND-CCA implies Non-Malleability	[Bellare, Desai, Pointcheval, Rogaway, 1998

Security of the Linear Cramer-Shoup

Linear Cramer-Shoup encryption reaches IND-CCA under the *DLin* assumption

Groth-Sahai Proofs

For any pairing product equation of the form:

 $\prod e(A_i, X_i)^{\alpha_i} \prod e(X_i, X_j)^{\gamma_{i,j}} = e(A, B),$

More Languages

Blind Signatures

where the $A, B, A_i \in \mathbb{G}$ are constant group elements,

 $\alpha_i \in \mathbb{Z}_p$, and $\gamma_{i,j} \in \mathbb{Z}_p$ are constant scalars, and X_i are unknowns

 $\bullet\,$ either group elements in $\mathbb{G},$

Cryptographic Tools

• or of the form g^{x_i} ,

one can make a proof of knowledge of values for the X_i 's or x_i 's so that the equation is satisfied:

- one first commits these secret values using random coins,
- and then provides proofs, that are group elements, using the above random coins,
- \rightarrow Under the *DLin* assumption: Efficient NIZK

cole Normale Sup	périeure	David Po	bintcheval		17/41	École Normale Sup	érieure	David Po	intcheval		18/41
Introduction	Cryptographic Tools	More Languages ●oooooo	Blind Signatures	OSBE 000000	LAKE 000	Introduction	Cryptographic Tools	More Languages ○●○○○○○	Blind Signatures	OSBE 000000	LAKE 000
Conjunctions an	nd Disjunctions					Conjunctions an	nd Disjunctions				
Notatio	ons		[Abdalla, Cheval	ier, Pointcheva	ıl, 2009]	Conjur	nction of Lan	quages			

We assume that *G* possesses a group structure, and we denote by \oplus the commutative law of the group (and by \oplus the opposite operation) We assume to be given two smooth hash systems SHS₁ and SHS₂, on the sets *G*₁ and *G*₂ (included in *G*) corresponding to the languages *L*₁ and *L*₂ respectively:

 $SHS_i = \{HashKG_i, ProjKG_i, Hash_i, ProjHash_i\}$

Let $c \in X$, and r_1 and r_2 two random elements:

 $\begin{array}{rcl} \mathsf{hk}_1 &=& \mathsf{HashKG}_1(r_1) & \mathsf{hk}_2 &=& \mathsf{HashKG}_2(r_2) \\ \mathsf{hp}_1 &=& \mathsf{ProjKG}_1(\mathsf{hk}_1, c) & \mathsf{hp}_2 &=& \mathsf{ProjKG}_2(\mathsf{hk}_2, c) \end{array}$

A hash system for the language $L = L_1 \cap L_2$ is defined as follows, if $c \in L_1 \cap L_2$ and w_i is a witness that $c \in L_i$, for i = 1, 2:

 $\begin{aligned} \mathsf{HashKG}_L(r = r_1 \| r_2) &= \mathsf{hk} = (\mathsf{hk}_1, \mathsf{hk}_2) \\ \mathsf{ProjKG}_L(\mathsf{hk}, c) &= \mathsf{hp} = (\mathsf{hp}_1, \mathsf{hp}_2) \\ \mathsf{Hash}_L(\mathsf{hk}, c) &= \mathsf{Hash}_1(\mathsf{hk}_1, c) \oplus \mathsf{Hash}_2(\mathsf{hk}_2, c) \\ \mathsf{ProjHash}_L(\mathsf{hp}, c; (w_1, w_2)) &= \mathsf{ProjHash}_1(\mathsf{hp}_1, c; w_1) \\ &\oplus \mathsf{ProjHash}_2(\mathsf{hp}_2, c; w_2) \end{aligned}$

- if *c* is not in one of the languages, then the corresponding hash value is perfectly random: smoothness
- without one of the witnesses, then the corresponding hash value is computationally unpredictable: pseudo-randomness

LAKE

OSBE

Disjunction of Languages

Cryptographic Tools

Conjunctions and Disjunctions

A hash system for the language $L = L_1 \cup L_2$ is defined as follows, if $c \in L_1 \cup L_2$ and *w* is a witness that $c \in L_i$ for $i \in \{1, 2\}$:

More Languages

Blind Signatures

OSBE

$$\begin{split} \mathsf{HashKG}_L(r = r_1 \| r_2) &= \mathsf{hk} = (\mathsf{hk}_1, \mathsf{hk}_2) \\ \mathsf{ProjKG}_L(\mathsf{hk}, c) &= \mathsf{hp} = (\mathsf{hp}_1, \mathsf{hp}_2, \mathsf{hp}_\Delta) \\ \mathsf{where} \ \mathsf{hp}_\Delta &= \mathsf{Hash}_1(\mathsf{hk}_1, c) \oplus \mathsf{Hash}_2(\mathsf{hk}_2, c) \\ \mathsf{Hash}_L(\mathsf{hk}, c) &= \mathsf{Hash}_1(\mathsf{hk}_1, c) \\ \mathsf{ProjHash}_L(\mathsf{hp}, c; w) &= \mathsf{ProjHash}(\mathsf{hp}_1, c; w) \\ \mathsf{or} \ \mathsf{hp}_\Delta \ominus \mathsf{ProjHash}_2(\mathsf{hp}_2, c; w) \\ \end{split}$$

 hp_{Δ} helps to compute the missing hash value, if and only if at least one can be computed

Pairing Product Equations

Pairing Product Equations

Cryptographic Tools

 $A_i \in \mathbb{G}$ (i = 1, ..., m), $\zeta_i \in \mathbb{Z}_p$ (i = m + 1, ..., n), and $B \in \mathbb{G}_T$ public. One wants to show its knowledge of $X_i \in \mathbb{G}$ (for i = 1, ..., m) and $Z_i \in \mathbb{G}_T$ (for i = m + 1, ..., n) that simultaneously satisfy

More Languages

000000

Blind Signatures

$$\left(\prod_{i=1}^{m} e(X_i, A_i)\right) \cdot \left(\prod_{i=m+1}^{n} Z_i^{\zeta_i}\right) = B$$

One thus commits X_i (linear encryption) in \mathbb{G} , into \vec{c}_i , for i = 1, ..., m, encrypted under $pk = (g, u_1, u_2)$, and Z_i (linear encryption) in \mathbb{G}_T , into \vec{C}_i , for i = m + 1, ..., n, encrypted under $PK_i = (G, U_1, U_2)$ where $G = e(g, g), U_1 = e(u_1, g), U_2 = e(u_2, g)$.

cole Normale Sup	érieure	David Po	pintcheval		21/41	l École Normale Sup	érieure	David Po	intcheval		22/41
Introduction	Cryptographic Tools	More Languages ○○○○●○○	Blind Signatures	OSBE 000000	LAKE 000	Introduction	Cryptographic Tools	More Languages ○○○○○●○	Blind Signatures	OSBE 000000	LAKE 000
Pairing Product	Equations					Pairing Product	Equations				
Commi	itments					Smoot	h Projective	Hash Func	tion		

$$ec{c}_i = (u_1^{r_i}, u_2^{s_i}, g^{r_i + s_i} \cdot X_i)$$
 for $i = 1, ..., m$
 $ec{C}_i = (U_1^{r_i}, U_2^{s_i}, G^{r_i + s_i} \cdot Z_i)$ for $i = m + 1, ..., n$

The \vec{c}_i 's can be transposed into \mathbb{G}_T , for $i = 1, \ldots, m$:

$$ec{C}_{i} = (U_{i,1}^{r_{i}}, U_{i,2}^{s_{i}}, G_{i}^{r_{i}+s_{i}} \cdot Z_{i})$$

where $U_{i,1} = e(u_1, A_i)$, $U_{i,2} = e(u_2, A_i)$, $G_i = e(g, A_i)$, but also, $Z_i = e(X_i, A_i)$, for i = 1, ..., m

We also denote $U_{i,1} = U_1$, $U_{i,2} = U_2$, $G_i = G$, for i = m + 1, ..., n

 $\begin{aligned} &(\lambda, (\eta_i, \theta_i)_{i=1,...,n}) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^{2n+1}, \text{ one sets } \mathsf{hk}_i = (\eta_i, \theta_i, \lambda) \\ &\text{and } \mathsf{hp}_i = (u_1^{\eta_i} g^{\zeta_i \lambda}, u_2^{\theta_i} g^{\zeta_i \lambda}) \in \mathbb{G}^2 \\ &\text{where } \zeta_i = 1 \text{ for } i = 1, \ldots, m. \\ &\text{The associated projection keys in } \mathbb{G}_T \text{ are} \\ &\mathsf{HP}_i = (e(\mathsf{hp}_{i,1}, A_i), e(\mathsf{hp}_{i,2}, A_i)), \text{ for } i = 1, \ldots, n, \\ &\text{where } A_i = g \text{ for } i = m+1, \ldots, n. \end{aligned}$

The hash value is

$$\begin{aligned} H &= \left(\prod_{\substack{i=1 \ n}}^{n} C_{i,1}^{\eta_{i}} \cdot C_{i,2}^{\theta_{i}} \cdot C_{i,3}^{\zeta_{i}\lambda} \right) \times B^{-\lambda} \\ &= \left(\prod_{\substack{i=1 \ n}}^{n} \mathsf{HP}_{i,1}^{r_{i}} \mathsf{HP}_{i,2}^{s_{i}} \right) \qquad \times \left(\prod_{\substack{i=1 \ n}}^{m} e(X_{i}, A_{i}) \prod_{\substack{i=m+1 \ n}}^{n} Z_{i}^{\zeta_{i}} / B \right)^{\lambda} \end{aligned}$$

Equality indeed holds if and only if the equation is satisfied

Cryptographic Tools Introduction More Languages **Blind Signatures** OSBE LAKE Introduction **Cryptographic Tools** More Languages Blind Signatures 000000 **Pairing Product Equations** Introduction

Multiple Equations

We have X_i committed in \mathbb{G} , in \vec{c}_i , for $i = 1, \ldots, m$ and Z_i committed in \mathbb{G}_T , in \vec{C}_i , for $i = m + 1, \ldots, n$. We want to show they simultaneously satisfy

$$\left(\prod_{i\in\mathcal{A}_k}\boldsymbol{e}(\boldsymbol{X}_i,\boldsymbol{A}_{k,i})\right)\cdot\left(\prod_{i\in\mathcal{B}_k}\boldsymbol{Z}_i^{\zeta_{k,i}}\right)=\boldsymbol{B}_k, \text{ for } k=1,\ldots,t$$

where $A_{k,i} \in \mathbb{G}$, $B_k \in \mathbb{G}_T$, and $\zeta_{k,i} \in \mathbb{Z}_p$ are public, as well as $\mathcal{A}_k \subseteq \{1, \ldots, m\}$ and $\mathcal{B}_k \subseteq \{m + 1, \ldots, n\}$

This is a conjunction of languages

Similar Hash Proofs on Linear Cramer-Shoup Commitments \rightarrow

Blind RSA

The easiest way for blind signatures, is to blind the message: To get an RSA signature on *m* under public key (n, e),

- The user computes a blind version of the hash value: M = H(m) and $M' = M \cdot r^e \mod n$
- The signer signs M' into $\sigma' = {M'}^d \mod n$
- The user unblinds the signature: $\sigma = \sigma'/r \mod n$ Indeed,

$$\sigma = \sigma'/r = {M'}^d/r = (M \cdot r^e)^d/r = M^d \cdot r/r = M^d \mod n$$

Proven under the One-More RSA

[Bellare, Namprempre, Pointcheval, Semanko, 2001]

OSBE

LAKE

[Chaum, 1981]

IntroductionCryptographic ToolsMore LanguagesBlind SignaturesOSBELAKE00	IntroductionCryptographic ToolsMore LanguagesBlind SignaturesOSBELAKE○○
Our Constructions	Our Constructions
Blind Signatures	Blind Signature [Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011]
 Such a primitive can be used for a Waters Blind Signature, by encrypting F(M): Unforgeability: one-more forgery would imply a forgery against the signature scheme (<i>CDH</i> assumption) Blindness: a distinguisher would break indistinguishability of the encryption scheme (<i>DLin</i> assumption) Efficiency One obtains a plain Waters Signature 	 In order to get the ℓ-bit message M = {M_i} blindly signed: With Groth-Sahai NIZKP the user U encrypts M into C₁, and F(M) into C₂; U produces a Groth-Sahai NIZK Proof that C₁ and C₂ contain the same M (bit-by-bit proof) if convinced, A generates a signature on C₂ granted the commutativity, U decrypts it into a Waters signature of M, and eventually re-randomizes the signature
Limitation A proof of knowledge of <i>M</i> in $C = \mathcal{E}_{pk}(\mathcal{F}(M))$ has to be sent	$9\ell + 24$ group elements have to be sent: \rightarrow It was the most efficient blind signature up to 2011 Why NIZK, since there are already two flows?
cole Normale Supérieure David Pointcheval 29/41	żcole Normale Supérieure David Pointcheval 30/4
Introduction Cryptographic Tools More Languages Blind Signatures OSBE LAKE 00000000 00000000 0000000 000000 000000 000000	Introduction Cryptographic Tools More Languages Blind Signatures OSBE LAKE 00000000 00000000 0000000 0000000 0000000 000 <td< td=""></td<>
Our Constructions	Definitions
Blind Signature [Blazy, Pointcheval, Vergnaud, 2012]	Oblivious Transfers
In order to get the ℓ -bit message $M = \{M_i\}$ blindly signed: With SPHF The user U and the authority A use a smooth projective back system	Oblivious Transfer[Rabin, 1981]A sender S wants to send a message M to U such that \bullet U gets M with probability 1/2, or pathing

- for L: $C_1 = \mathcal{E}_{pk_1}(M; r)$ and $C_2 = \mathcal{E}_{pk_2}(\mathcal{F}(M); s)$ contain the same M
 - *U* sends encryptions of *M*, into C_1 , and $\mathcal{F}(M)$, into C_2 ;
 - A generates
 - a signature σ on C_2 ,
 - masks it using $Hash = Hash(hk; (C_1, C_2))$
 - U computes Hash = ProjHash(hp; (C₁, C₂), (r, s)), and gets σ. Granted the commutativity, U decrypts it into a Waters signature of M, and eventually re-randomizes it

Such a protocol requires $8\ell+12$ group elements in total only!

1-2 Oblivious Transfer

• S does not learn whereas U gets the message M or not

A sender S owns two messages m_0 and m_1 , and U owns a bit b

• U gets m_b but nothing on the other message

• S does not learn anything about b

[Even, Goldreich, Lempel, 1985]

Definitions	
Oblivious Signature-Based Envelope [Li, Du, Boneh, 2003]	A Stronger Security Model
 A sender S wants to send a message M to U such that U gets M if and only if it owns a signature σ on a message m valid under vk S does not learn whereas U gets the message M or not Correctness: if U owns a valid signature, he learns M Security Notions Oblivious: S does not know whether U owns a valid signature (and thus gets the message) Semantic Security: U does not learn any information about M if he does not own a valid signature 	 S wants to send a message M to U, if U owns/uses a valid signature. Security Notions Oblivious w.r.t. the authority: the authority does not know whether U uses a valid signature (and thus gets the message); Semantic Security: U cannot distinguish multiple interactions with S sending M₀ from multiple interactions with S sending M₁ if he does not own/use a valid signature; Semantic Security w.r.t. the Authority: after the interaction, the authority does not learn any information about M.
École Normale Supérieure David Pointcheval 33/41 Introduction 00000000 Cryptographic Tools 00000000 More Languages 0000000 Blind Signatures 0000000 OSBE 000000 LAKE 0000 Our Scheme Image: State S	École Normale Supérieure David Pointcheval 34/41 Introduction Cryptographic Tools More Languages Blind Signatures OSBE LAKE 0000000 0000000 0000000 000000 000000 000000 Our Scheme 0000000 0000000 000000 000000
	Security Properties

General Construction

ntroduction

Extension to More Languages

Cryptographic Tools

• The user *U* sends a commitment *C* of a word *w*

More Languages

Blind Signatures

- S generates a hk and the associated hp, computes Hash = Hash(hk; C), and sends hp together with c = M ⊕ Hash;
- *U* computes Hash = ProjHash(hp; *C*, *r*), and gets *M*.

U gets *M* iff *w* is in the appropriate language:

- a signature on a public message: OSBE
- a signature on a private message: Anonymous Credential
- a private message (low entropy): Password

Password-based Authenticated Key Exchange

More Languages

Blind Signatures

GL – Generic Approach

Introduction

Definition

Cryptographic Tools

Additional tricks are required for the security!

The language is: valid commitments of pw

cole Normale Supérieure		David Pointcheval		37/41École Normale Supérieure				David Pointcheval		38/41		
Introduction	Cryptographic Tools	More Languages	Blind Signatures	OSBE 000000	LAKE ○●○	Introduction	Cryptographic Tools	More Languages	Blind Signatures	OSBE 000000	LAKE ○○●	
Definition						Our Construction						
Language-based Authenticated Key Exchange						Language-based Authenticated Key Exchange						

Definition

- Alice owns a word w₁ is a language L₁(Pub₁, Priv₁);
- Bob owns a word w₂ is a language L₂(Pub₂, Priv₂);
- If Alice and Bob agree on the languages, and actually own valid words (implicit authentication), they will agree on a common session key (semantic security)
- $Pub = \emptyset$, Priv = pw and $L(Pub, Priv) = \{Priv\}$: PAKE
- Pub = M, Priv = vk, $L(Pub, Priv) = \{\sigma, Verif(Priv, Pub, \sigma) = 1\}$: Secret Handshake
- $Pub = \emptyset$, Priv = (vk, M), $L(Pub, Priv) = \{\sigma, Verif(Priv, \sigma) = 1\}$: CAKE - Credential-based AKE [Camenisch, Casati, Gross, Shoup, 2010]

Our Construction

- With a Linear Cramer-Shoup UC commitment
- [Lindell, 2011]

LAKE

[Gennaro, Lindell, 2003]

[Gennaro, Lindell, 2003]

 $\rightarrow \quad \text{UC Secure LAKE}$

Using the GL approach

Languages

- Password: PAKE secure under DLin
- Waters Signature: Secret Handshake, Credentials secure under *DLin* + *CDH*

Any Linear Pairing Product Equation Systems in both $\mathbb G$ and $\mathbb G_{\mathcal T}$

Conclusion

Smooth Projective Hash Functions can be used as implicit proofs of knowledge or membership

Various Applications

IND-CCA	[Cramer, Shoup, 2002]
• PAKE	[Gennaro, Lindell, 2003]
Certification of Public Keys	[Abdalla, Chevalier, Pointcheval, 2009]
Privacy-preserving protocols	
 Blind signatures 	[Blazy, Pointcheval, Vergnaud, 2012]
Oblivious Signature-Based Envelope	
\rightarrow Round optimal!	

More general: Language-based Authenticated Key Exchange

École Normale Supérieure

David Pointcheval

41/41