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Intuition

Smooth Projective Hash Functions [Cramer, Shoup, 2002]

Family of Hash Function H

Let {H} be a family of functions:
X , domain of these functions
L, subset (a language) of this domain

such that, for any point x in L, H(x) can be computed by using
either a secret hashing key hk: H(x) = HashL(hk; x);
or a public projected key hp: H(x) = ProjHashL(hp; x ,w)

While the former works for all points in the domain X ,
the latter works for x ∈ L only, and requires a witness w to this fact.
There is a public mapping that converts the hashing key hk into the
projected key hp: hp = ProjKGL(hk)
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Intuition

Properties

For any x ∈ X , H(x) = HashL(hk; x)
For any x ∈ L, H(x) = ProjHashL(hp; x ,w) w witness that x ∈ L

Smoothness
For any x 6∈ L, H(x) and hp are independent

Pseudo-Randomness
For any x ∈ L, H(x) is pseudo-random, without a witness w

The latter property requires L to be a hard-partitioned subset of X :

Hard-Partitioned Subset
L is a hard-partitioned subset of X if it is computationally hard to
distinguish a random element in L from a random element in X \ L
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Intuition

Element-Based Projection

Initial Definition [Cramer, Shoup, 2002]

The projected key hp depends on the hashing key hk only:
hp = ProjKGL(hk)

New Definition [Gennaro, Lindell, 2003]

The projected key hp depends on the hashing key hk, and x :
hp = ProjKGL(hk; x)

→ More applications
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Applications

Examples

DH Language [Cramer, Shoup, 2002]

Lg,h = {u, v} such that (g,h,u, v) is DH tuple:
there exists r such that u = gr and v = hr

→ Public-key Encryption with IND-CCA Security

Commitment [Gennaro, Lindell, 2003]

Lpk,m = {c} such that c is a commitment of m
using public parameter pk:

there exists r such that c = compk(m; r)
where com is the committing algorithm

→ Password-Authenticated Key Exchange in the Standard Model
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Applications

Examples (Con’d)

Labeled Encryption [Canetti, Halevi, Katz, Lindell, MacKenzie, 2005]

Lpk,(`,m) = {c} such that c is an encryption of m
with label `, under the public key pk:

there exists r such that c = E`
pk

(m; r)
where E is the encryption algorithm

→ PAKE in the UC Framework (passive corruptions)

Extractable/Equivocable Commitment [Abdalla, Chevalier, Pointcheval, 2009]

Lpk,m = {c} such that c is a equivocable/extractable commitment of m
using public parameter pk

→ PAKE in the UC Framework secure against Active Corruptions

École Normale Supérieure David Pointcheval 10/28
Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Applications

Smooth Projective HF Family for ElGamal

The CRS: ρ = (G,q,g,pk = h)

Language: L = L(EG+,ρ),M = {C = (u1 ,e) = EG+
pk(M; r), r $← Zq}

L is a hard-partitioned subset of X = G2, under the semantic
security of the ElGamal encryption scheme (DDH assumption)
the random r is the witness to L-membership

Algorithms

HashKG(M) = hk = (γ1, γ3)
$← Zq × Zq

Hash(hk; M,C) = (u1)γ1(eg−M)γ3

ProjKG(hk; M,C) = hp = (g)γ1(h)γ3

ProjHash(hp; M,C; r) = (hp)r
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Applications

Certification of Public Keys [Abdalla, Chevalier, Pointcheval, 2009]

For the certification Cert of an ElGamal public key y = gx , in most of
the protocols, the simulator needs to be able to extract the secret key:

Classical Process
the user U sends his public key y = gx ;
U and the authority A run a ZK proof of knowledge of x
if convinced, A generates and sends the certificate Cert for y

For extracting x , the reduction requires a rewinding
(that is not always allowed: e.g., in the UC Framework)
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Applications

Certification of Public Keys [Abdalla, Chevalier, Pointcheval, 2009]

For the certification Cert of an ElGamal public key y = gx , in most of
the protocols, the simulator needs to be able to extract the secret key:

New Process
The user U and the authority A use a smooth projective hash system
for L: y = gx and C = E

pk
(x ; r) contain the same x

U sends y = gx , with C = E
pk

(x ; r), for a random r ;
A generates

a hashing key hk $← HashKG(),
the corresponding projected key on (y ,C),
the hash value Hash = Hash(hk; (y ,C))

and sends hp along with Cert⊕ Hash;
U computes Hash = ProjHash(hp; (y ,C), r), and gets Cert.
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Applications

Blind Signature [Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011]

In order to get M blindly signed under a Waters’ signature:

Previous Process
the user U encrypts M into C1, and F(M) into C2;
U produces a Groth-Sahai NIZK that

C1 and C2 contain the same M
if convinced, A generates a signature on C2

granted the commutativity, U decrypts it
into a Waters’ signature of M,
and eventually re-randomizes the signature

Such a NIZK requires 9`+ 24 group elements
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Applications

Blind Signature [Blazy, Pointcheval, Vergnaud, 2012]

In order to get M blindly signed under a Waters’ signature:

Previous Process
The user U and the authority A use a smooth projective hash system
for L: C1 = E

pk1
(M; r) and C2 = E

pk2
(F(M); s) contain the same M

U sends encryptions of M, into C1, and F(M), into C2;
A generates

a signature σ on C2,
masks it using Hash = Hash(hk; (C1,C2))

U computes Hash = ProjHash(hp; (C1,C2), (r , s)), and gets σ.
Granted the commutativity, U decrypts it into a Waters’ signature
of M, and eventually re-randomizes it

Such a protocol requires 8`+ 12 group elements in total
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Example

Linear Encryption

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Linear Encryption [Boneh, Boyen, Shacham, 2004]

EKeyGen: dk = (x1, x2)
$←Z2

p, pk = (X1 = gx1 ,X2 = gx2);

Encrypt(pk = (X1,X2),m; (r1, r2)), for m ∈ G and (r1, r2)
$←Z2

p
→ c =

(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 ·m

)
;

Decrypt(dk = (x1, x2), c = (c1, c2, c3)) → m = c3/c
1/x1
1 c1/x2

2 .

Re-Randomization

RandomE(pk = (X1,X2), c = (c1, c2, c3); (r ′1, r
′
2)), for (r ′1, r

′
2)

$←Z2
p

→ c′ =
(
c′1 = c1 · X r ′1

1 , c
′
2 = c2 · X r ′2

2 , c
′
3 = c3 · gr ′1+r ′2

)
.
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Example

Waters Signature

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Waters Signature [Waters, 2005]

For a message M = (M1, . . . ,Mk ) ∈ {0,1}k ,
we define F = F(M) = u0

∏k
i=1 uMi

i , where ~u = (u0, . . . ,uk )
$←Gk+1.

For an additional generator h $←G.
SKeyGen: vk = X = gx , sk = Y = hx , for x $←Zp;
Sign(sk = Y ,F ; s), for M ∈ {0,1}k , F = F(M), and s $←Zp
→ σ =

(
σ1 = Y · F s, σ2 = g−s);

Verif(vk = X ,M, σ = (σ1, σ2)) checks whether
e(g, σ1) · e(F , σ2) = e(X ,h).
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Example

Waters Signature on a Linear Ciphertext: Idea

We define F = F(M) = u0
∏k

i=1 uMi
i , and encrypt it

c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)

KeyGen: vk = X = gx , sk = Y = hx , for x $←Zp
dk = (x1, x2)

$←Z2
p, pk = (X1 = gx1 ,X2 = gx2)

Sign((X1,X2),Y , c; s), for c = (c1, c2, c3)
→ σ =

(
σ1 = Y · cs

3, σ2 = (cs
1, c

s
2), σ3 = (gs,X s

1 ,X
s
2 )
)

Verif((X1,X2),X , c, σ) checks e(g, σ1) = e(X ,h) · e(σ3,0, c3)

e(σ2,0,g) = e(c1, σ3,0) e(σ2,1,g) = e(c2, σ3,0)

e(σ3,1,g) = e(X1, σ3,0) e(σ3,2,g) = e(X2, σ3,0)

σ3 is needed for ciphertext re-randomization

École Normale Supérieure David Pointcheval 19/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Example

Re-Randomization of Ciphertext

c = (c1 = X r1
1 , c2 = X r2

2 , c3 = gr1+r2 · F )

σ = (σ1 = Y · cs
3, σ2 = (cs

1, c
s
2), σ3 = (gs,X s

1 ,X
s
2 ) )

after re-randomization by (r ′1, r
′
2)

c′ = (c′1 = c1 · X r ′1
1 , c′2 = c′2 · X

r ′2
2 , c′3 = c3 · gr ′1+r ′2 )

σ′ = (σ′1 = σ1 · σr ′1+r ′2
3,0 , σ′2 = (σ2,0 · σr ′1

3,1, σ2,1 · σr ′2
3,2), σ′3 = σ3 )

Anybody can publicly re-randomize c into c′

with additional random coins (r ′1, r
′
2),

and adapt the signature σ of c into σ′ of c′
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Security Notions

Unforgeability under Chosen-Ciphertext Attacks

Chosen-Ciphertext Attacks
The adversary is allowed to ask any valid ciphertext of his choice
to the signing oracle

Because of the re-randomizability of the ciphertext-signature,
we cannot expect resistance to existential forgeries,
but we should allow a restricted malleability only:

Forgery
A valid ciphertext-signature pair, so that the plaintext is different
from all the plaintexts in the ciphertexts sent to the signing oracle
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Security Notions

Unforgeability

From a valid ciphertext-signature pair:

c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)

σ =
(
σ1 = Y · cs

3, σ2 = (cs
1, c

s
2), σ3 = (gs,X s

1 ,X
s
2 )
)

and the decryption key (x1, x2), one extracts

F = c3/(c1/x1
1 c1/x2

2 )

Σ =
(

Σ1 = σ1/(σ
1/x1
2,0 σ

1/x2
2,1 ), Σ2 = σ3,0

)

=
(

= Y · F s = gs)

Security of Waters signature is for a pair (M,Σ)
→ needs of a proof of knowledge ΠM of M in F = F(M)

bit-by-bit commitment of M and Groth-Sahai proof
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Security Notions

Chosen-Message Attacks

From a valid ciphertext c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)
,

and the additional proof of knowledge of M,
one extracts M and asks for a Waters signature:

Σ =
(
Σ1 = Y · F s,Σ2 = gs)

In this signature, the random coins s are unknown,
we thus need to know the coins in c
→ needs of a proof of knowledge Πr of r1, r2 in c

bit-by-bit commitment of r1, r2 and Groth-Sahai proof
From the random coins r1, r2 (and the decryption key):
σ =

(
σ1 = Σ1 · Σr1+r2

2 , σ2 = (Σx1r1
2 ,Σx2r2

2 ), σ3 = (Σ2,Σ
r1
2 ,Σ

r2
2 )

)

= Y · cs
3, = (cs

1, c
s
2), = (gs,X s

1 ,X
s
2 )
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Security Notions

Security

Chosen-Ciphertext Attacks
A valid ciphertext C = (c1, c2, c3,ΠM ,Πr ) is a

ciphertext c = (c1, c2, c3)

a proof of knowledge ΠM of the plaintext M in F = F(M)

a proof of knowledge Πr of the random coins r1, r2

From such a ciphertext and the decryption key (x1, x2),
and a Waters signing oracle, one can generate a signature on C

Forgery
From a valid ciphertext-signature pair (C, σ), where C encrypts M,
one can generate a Waters signature on M
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Security Notions

Security

From the Waters signing oracle,
we answer Chosen-Ciphertext Signing queries

From a Forgery, we build a Waters Existential Forgery

Security Level
Since the Waters signature is EF-CMA under the CDH assumption,
our signature on randomizable ciphertext is Unforgeable

against Chosen-Ciphertext Attacks
under the CDH assumption
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Security Notions

Properties

Proofs
Since we use the Groth-Sahai methodology for the proofs ΠM and Πr

in case of re-randomization of c, one can adapt ΠM and Πr

because of the need of M, but also r1 and r2 in the simulation,
we need bit-by-bit commitments:

M can be short (` bit-long)
r1 and r2 are random in Zp

→ C is large!

Efficiency
We can improve efficiency: shorter signatures
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Randomizable Commutative Signature/Encryption
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Conclusion

Randomizable Commutative Signature/Encryption

Various Applications
non-interactive receipt-free electronic voting scheme
(fair) blind signature

Security relies on the CDH and the DLin assumptions
For an `-bit message, ciphertext-signature:

9`+ 24 group elements

A more efficient variant with asymmetric pairing
on the CDH∗ and the SXDH assumptions

Ciphertext-signature: 6`+ 7 group elements in G1
and 6`+ 5 group elements in G2
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