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Intuition

Outline Smooth Projective Hash Functions [Cramer, Shoup, 2002]

Family of Hash Function H

Let {H} be a family of functions:
@ X, domain of these functions
@ L, subset (a language) of this domain
such that, for any point x in L, H(x) can be computed by using
© Smooth Projective Hash Functions o either a secret hashing key hk: H(x) — Hash, (hk; x);

@ Intuition . : .
@ Applications @ or a public projected key hp: H(x) = ProjHash, (hp; x, w) ]

While the former works for all points in the domain X,

the latter works for x € L only, and requires a witness w to this fact.
There is a public mapping that converts the hashing key hk into the
projected key hp: hp = ProjKG; (hk)
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Intuition Intuition

Properties Element-Based Projection

For any x € X, H(x) = Hash,(hk; x)
For any x € L, H(x) = ProjHash, (hp; x, w) w witness that x € L

Initial Definition [Cramer, Shoup, 2002]

The projected key hp depends on the hashing key hk only:
hp = ProjKG, (hk)

For any x ¢ L, H(x) and hp are independent

New Definition [Gennaro, Lindell, 2003]
Pseudo-Randomness The projected key hp depends on the hashing key hk, and x:
For any x € L, H(x) is pseudo-random, without a witness w hp = ProjKG, (hk; x)
The latter property requires L to be a hard-partitioned subset of X: — More applications

Hard-Partitioned Subset

L is a hard-partitioned subset of X if it is computationally hard to
distinguish a random element in L from a random element in X\ L
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Applications Applications
Examples Examples (Con’d)
DH Language [Cramer, Shoup, 2002] Labeled Encryption [Canetti, Halevi, Katz, Lindell, MacKenzie, 2005]
Ly n = {u, v} such that (g, h, u, v) is DH tuple: Lpk,e,my = {c} such that ¢ is an encryption of m
there exists r suchthatu =g"and v = h" with label ¢, under the public key pk:
. _ . _ there exists r such that ¢ = 6’" (m; r)
Commitment s, LATIEl, 0] — PAKE in the UC Framework (passive corruptions)
Lok m = {c} such that ¢ is a commitment of m
using public parameter pk: Extractable/Equivocable Commitment [Abdalla, Chevalier, Pointcheval, 2009]
there exists r such that ¢ = comp(m; r) Lok m = {c} such that c is a equivocable/extractable commitment of m
where com is the committing algorithm using public parameter pk
— Password-Authenticated Key Exchange in the Standard Model — PAKE in the UC Framework secure against Active Corruptions
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Applications Applications
Smooth Projective HF Family for EIGamal Certification of Public Keys [Abdalla, Chevalier, Pointcheval, 2009]
The CRS: p = (G, q,9,pk = h) For the certification Cert of an EIGamal public key y = g%, in most of
Language: L = Ligg+ ym = {C = (u,, ) = EG* (M r),r 52 Zq} the protocols, the simulator needs to be able to extract the secret key:
@ L is a hard-partitioned subset of X = G?, under the semantic Classical Process
security of the EIGamal encryption scheme (DDH assumption) @ the user U sends his public key y = g*;
@ the random r is the witness to L-membership @ U and the authority A run a ZK proof of knowledge of x
_ @ if convinced, A generates and sends the certificate Cert for y
o HashKG(M) = hk = (1, 73) S Zqg % Lq For extracting x, the reduction requires a rewinding

o Hash(hk: M. C) = (u,)" (eg-M) (that is not always allowed: e.g., in the UC Framework)
1 5 - 1

@ ProjKG(hk; M, C) = hp = (g)"(h)»
@ ProjHash(hp; M, C; r) = (hp)"
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Certification of Public Keys

[Abdalla, Chevalier, Pointcheval, 2009]

For the certification Cert of an EIGamal public key y = g%, in most of
the protocols, the simulator needs to be able to extract the secret key:

New Process

The user U and the authority A use a smooth projective hash system
forL: y=g¥and C = Spk(x; r) contain the same x

@ Usends y = g*, with C =& (x;r), forarandom r;
pk
@ Agenerates

o a hashing key hk & HashKG(),

e the corresponding projected key on (y, C),

e the hash value Hash = Hash(hk; (y, C))
and sends hp along with Cert & Hash;

@ U computes Hash = ProjHash(hp; (y, C), r), and gets Cert.
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Blind Signature

[Blazy, Pointcheval, Vergnaud, 2012]

In order to get M blindly signed under a Waters’ signature:

Previous Process

The user U and the authority A use a smooth projective hash system
for L: Cy = 8pk1 (M;r)and C; = Spk2 (F(M); s) contain the same M

@ U sends encryptions of M, into Cy, and F(M), into C,;

@ Agenerates
@ a signature o on G,
e masks it using Hash = Hash(hk; (Cy, Cy))

@ U computes Hash = ProjHash(hp; (Cy, Co), (r, s)), and gets o.
Granted the commutativity, U decrypts it into a Waters’ signature
of M, and eventually re-randomizes it

Such a protocol requires 8/ + 12 group elements in total
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Blind Signature

[Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011]

In order to get M blindly signed under a Waters’ signature:

Previous Process

@ the user U encrypts M into Cy, and F(M) into Cy;

@ U produces a Groth-Sahai NIZK that
C; and C, contain the same M

@ if convinced, A generates a signature on Co

@ granted the commutativity, U decrypts it
into a Waters’ signature of M,
and eventually re-randomizes the signature

Such a NIZK requires 9/ + 24 group elements
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Example
Linear Encryption Waters Signature
In a group G of order p, with a generator g, In a group G of order p, with a generator g,
and a bilinearmap e: G x G — Gr and a bilinearmap e: G x G — Gr
Linear Encryption [Boneh, Boyen, Shacham, 2004] Waters Signature [Waters, 2005]
@ EKeyGen: dk = (xy, X2) &Zg, pk = (X; = g%, Xo = g*); For a message M = (My,..., My) € {0,1}%,

we define F = F(M) = uo [T<, u™, where i = (up, ..., ux) & GK*1.
For an additional generator h < G.
@ SKeyGen: vk =X = gX,sk=Y = h*, forx&Zp;

@ Encrypt(pk = (Xi, X2), m; (ry,r2)), for m € G and (ry, r2) iZ,%
- Cc= (01 = X1r1,02 = X£2,C3 =ghtr. m);

1% 1
o Decrypt(dk = (x1,x2), ¢ = (01,02, C3))  — m=03/c;" 6y ) o Sign(sk=Y,F;s), for M € {0,1}%, F = F(M), and s & Z
- 9 1 ) 9 ’ - L] P
Re-Randomization = o= (01=Y -F02=0"%);
$ @ Verifivk = X,M,o = (01, 02)) checks whether
® Randoms(pk = (X1, X2), ¢ = (1, 2, Ga); (14, 13)), for (ry, 13) < Z ' e(.ci 1) .B(F 02) = e(X, h)

r/ r/
- d=(c\=c1-X',ch=0-Xz2,¢,=c3-git%).
1 1,02 2 C3
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Waters Signature on a Linear Ciphertext: Idea Re-Randomization of Ciphertext

We define F = F(M) = up [T, u, and encrypt it

r- I r r
c= (o1 =X"0=Xc3=g""F) c=(c1=X{", C2 = Xp, =gt F )

o KeyGen: vk=X =g, sk=Y =h* forx& 7, o=(oy=Y-c35, o2=(cc3), o3 =(9° X7, X3) )

dk = (x1,x) & Z2, pk = (X = 9", Xz = g%)

L ;o
@ Sign((Xq,X2),Y,c;s), for c = (cy, co, C3) after re-randomization by  (ry, 15)

/ /
50 S (01— Y- 68,02 = (cF,C5). s — (%, X5 X5)) GRS SR G=cs- g )
[ — . /! / /
o Veril(X:, %), X, c,0) checks  e(g, 1) = (X, h) - &(0s,0. Cs) o' = (0] =0y 'UQ,cJ)rrzy o5 = (02,0 UQ,1702,1 ‘ng,z)a 03 =03 )
e(02,0,9) = e(c1,030) e(02,1,9) = e(C2,03))

Anybody can publicly re-randomize c into ¢’
with additional random coins (ry, r3),
and adapt the signature o of ¢ into ¢’ of ¢/

e(os,1,9) = e(X1,030) (032, 9) = €(X2,03,0)
o3 is needed for ciphertext re-randomization
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Unforgeability under Chosen-Ciphertext Attacks Unforgeability

From a valid ciphertext-signature pair:

Chosen-Ciphertext Attacks

The adversary is allowed to ask any valid ciphertext of his choice c=(ci=X"co=Xp,c3=g"""2 - F)
to the signing oracle o= (o4 =Y c§ 00=(c5,c5),03 = (95 X5, X5))

Because of the re-randomizability of the ciphertext-signature,
we cannot expect resistance to existential forgeries,

and the decryption key (x1, X2), one extracts

but we should allow a restricted malleability only: F— c3/(c11 /X1 C;/XZ)
. : : Y = ( 21 = 0'1/(0';’/0)(1 0';’/1)(2), 22 = 0'3,0)
A valid ciphertext-signature pair, so that the plaintext is different = ( _Y.FS = ¢°)

from all the plaintexts in the ciphertexts sent to the signing oracle

Security of Waters signature is for a pair (M, ¥)
— needs of a proof of knowledge My, of M in F = F(M)
bit-by-bit commitment of M and Groth-Sahai proof
21/28Ecole Normale Supérieure David Pointcheval 22/28
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Chosen-Message Attacks Security

From a valid ciphertext ¢ = (¢y = X{",co = X3?,c3 = g"*"2 - F),

and the additional proof of knowledge of M, Chosen-Ciphertext Attacks

one extracts M and asks for a Waters signature: A valid ciphertext C = (c¢y, Co, c3, My, ;) is a
Y= (T1=Y F % =9 @ ciphertext ¢ = (cy, ¢, C3)
In this signature, the random coins s are unknown, @ a proof of knowledge My, of the plaintext M in F = F(M)
we thus need to know the coins in ¢ . @ a proof of knowledge I, of the random coins ry, r»
. ?ee_d's of a proof of knowledge I, of r1_, faInc From such a ciphertext and the decryption key (X1, X2),
bit-by-bit commitment of 1, r> and Groth-Sahai proof and a Waters signing oracle, one can generate a signature on C

From the random coins ry, ro (and the decryption key):

o= (o1 =%y -T57% oo = (L5, 227), 03 = (X2, X3, %2) ) Forgery
— S _ S S _ S S S
=Y, = (1, ¢2), = (g% X7, X5) From a valid ciphertext-signature pair (C, o), where C encrypts M,
one can generate a Waters signature on M
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Properties

Security Notions
Security
Since we use the Groth-Sahai methodology for the proofs Iy, and I,

@ From the Waters signing oracle,
we answer Chosen-Ciphertext Signing queries
@ in case of re-randomization of ¢, one can adapt Ny, and I,

@ From a Forgery, we build a Waters Existential Forgery
@ because of the need of M, but also ry and r» in the simulation,
we need bit-by-bit commitments:
@ M can be short (¢ bit-long)

Security Level
Since the Waters signature is EF-CMA under the CDH assumption,

e ry and r» are random in Zp
— Cislarge!

our signature on randomizable ciphertext is Unforgeable
against Chosen-Ciphertext Attacks
under the CDH assumption
We can improve efficiency: shorter signatures l
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Randomizable Commutative Signature/Encryption

Randome Randomizable Commutative Signature/Encryption

Encrypte
pk, r
p— — r Various Applications
dk , . , . .
@ non-interactive receipt-free electronic voting scheme

Decrypte
@ (fair) blind signature
Security relies on the CDH and the DLin assumptions

For an /-bit message, ciphertext-signature:
9¢ + 24 group elements

k; s
Signs
sk, pk, c; S
Signse

A more efficient variant with asymmetric pairing
on the CDH* and the SXDH assumptions

SigExtse
(ow) e
S < mmemmm e
C P o Ciphertext-signature: 6¢ + 7 group ellements in Gy
and 6/ + 5 group elements in G»

Q{b
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