| 0000000 000000                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outline                                                                                                                                                                                                            |
| <ol> <li>Blind Signatures</li> <li>Cryptographic Tools</li> <li>Smooth Projective Hash Functions</li> <li>Oblivious Signature-Based Encryption</li> </ol>                                                          |
| École Normale Supérieure     David Pointcheval     2/28       Blind Signatures     Cryptographic Tools     Smooth Projective HF     OSBE       0000000000     00000000000     000000000000000000000000000000000000 |
| Outline                                                                                                                                                                                                            |
| 1 Blind Signatures                                                                                                                                                                                                 |
| 2 Cryptographic Tools                                                                                                                                                                                              |
| 3 Smooth Projective Hash Functions                                                                                                                                                                                 |
| Oblivious Signature-Based Encryption                                                                                                                                                                               |
| É                                                                                                                                                                                                                  |

Rlind Signat

anhia Taa

OSBE

| Blind Signatures                                                                                                        | Cryptographic tools                      |       | 0000000 | Blind Signatures                                                                                                                               | Cryptographic tools                                                                                                                                         |                                                                                  | 00000                             |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|
| Outline                                                                                                                 |                                          |       |         | Intuition<br>Smooth Pr                                                                                                                         | ojective Hash Fu                                                                                                                                            | nctions                                                                          | [Cramer, Shoup, 2002]             |
| <ol> <li>Blind Signatu</li> <li>Cryptographi</li> <li>Smooth Projet</li> <li>Intuition</li> <li>Applications</li> </ol> | ires<br>ic Tools<br>ective Hash Function | ns    |         | Family of Has<br>Let { <i>H</i> } be a f<br>• <i>X</i> , domai<br>• <i>L</i> , subset<br>such that, for<br>• either a s<br>• or a <i>publi</i> | sh Function $H$<br>family of functions:<br>n of these functions<br>(a language) of this dom<br>any point x in L, $H(x)$ ca<br>secret hashing key hk: $H(x)$ | nain<br>n be computed by<br>$f(x) = Hash_L(hk; x)$<br>$f(x) = ProjHash_L(hp; x)$ | γ using<br>′);<br>; <i>x</i> , w) |
| 4 Oblivious Sig                                                                                                         | Inature-Based Encry                      | ption |         | While the form<br>the latter work<br>There is a put<br>projected key                                                                           | ner works for all points in<br>$x = x \in L$ only, and requestic mapping that converting<br>hp: hp = ProjKG <sub>L</sub> (hk)                               | the domain <i>X</i> ,<br>uires a witness <i>w</i><br>is the hashing key          | to this fact.<br>hk into the      |

| École Normale Supérieure | male Supérieure David Pointcheval |                                   | 5/28École Normale Supérieure |                  | Da                  | David Pointcheval    |                       |
|--------------------------|-----------------------------------|-----------------------------------|------------------------------|------------------|---------------------|----------------------|-----------------------|
| Blind Signatures         | Cryptographic Tools               | Smooth Projective HF<br>○●○○○○○○○ | <b>OSBE</b>                  | Blind Signatures | Cryptographic Tools | Smooth Projective HF | <b>OSBE</b><br>000000 |
| Intuition                |                                   |                                   |                              | Intuition        |                     |                      |                       |
| Properties               |                                   |                                   |                              | Element-Ba       | ased Projection     |                      |                       |

For any  $x \in X$ ,  $H(x) = \text{Hash}_L(hk; x)$ For any  $x \in L$ ,  $H(x) = \text{ProjHash}_L(hp; x, w)$  witness that  $x \in L$ 

### Smoothness

For any  $x \notin L$ , H(x) and hp are independent

### Pseudo-Randomness

For any  $x \in L$ , H(x) is pseudo-random, without a witness w

The latter property requires *L* to be a hard-partitioned subset of *X*:

# Hard-Partitioned Subset

*L* is a hard-partitioned subset of *X* if it is computationally hard to distinguish a random element in *L* from a random element in  $X \setminus L$ 

| Initial Definition                                      | [Cramer, Shoup, 2002]    |
|---------------------------------------------------------|--------------------------|
| The projected key hp depends on the $hp = ProjKG_L(hk)$ | e hashing key hk only:   |
|                                                         |                          |
| New Definition                                          | [Gennaro, Lindell, 2003] |

 $\rightarrow$  More applications

| Dinita Signatures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cryptographic roots                                                 | 000000000                             | 0000000     | billio Signatures                                |                                                                | 000000000                             | 000000          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------|-------------|--------------------------------------------------|----------------------------------------------------------------|---------------------------------------|-----------------|
| Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |                                       |             | Applications                                     |                                                                |                                       |                 |
| Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                       |             | Examples                                         | (Con'd)                                                        |                                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |                                       |             |                                                  |                                                                |                                       |                 |
| DH Language                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     | [Cramer, Sh                           | oup, 2002]  | Labeled Enc                                      | cryption                                                       | [Canetti, Halevi, Katz, Lindell, MacK | enzie, 2005]    |
| $L_{g,h} = \{u, v\}$ such there explicitly the set of th | th that $(g, h, u, v)$ is DH kists $r$ such that $u = g^r$          | tuple:<br>and $v = h^r$               |             | $L_{pk,(\ell,m)} = \{c$<br>with label $\ell$ , u | <pre>such that c is an encl<br/>under the public key pk:</pre> | ryption of $m$                        |                 |
| ightarrow Public-key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | encryption with IND-C                                               | CA Security                           |             | where $\mathcal{E}$                              | is the encryption algori                                       | $\mathcal{E}_{pk}(m;r)$               |                 |
| Commitment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     | [Gennaro, Lin                         | dell, 2003] |                                                  | in the UC Framework (                                          | passive corruptions)                  |                 |
| $L_{pk,m} = \{c\}$ such using public para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | that <i>c</i> is a commitment<br>Imeter <i>pk</i> :                 | t of <i>m</i>                         |             | Extractable/                                     | Equivocable Commitr                                            | nent [Abdalla, Chevalier, Pointc      | heval, 2009]    |
| there ex<br>where com i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tists <i>r</i> such that <i>c</i> = cor<br>s the committing algorit | n <sub>pk</sub> ( <i>m</i> ; r)<br>hm |             | $L_{pk,m} = \{c\}$ susing public p               | such that <i>c</i> is a equivoca<br>parameter <i>pk</i>        | able/extractable commitm              | ent of <i>m</i> |
| $\rightarrow$ Password                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -Authenticated Key Exc                                              | hange in the Standard                 | Model       | $\rightarrow$ PAKE                               | in the UC Framework s                                          | ecure against Active Cor              | ruptions        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |                                       |             |                                                  |                                                                |                                       |                 |

| cole Normale Supérieure David Pointcheval |                     | 9/28É                              | cole Normale Supérieure | David            | Pointcheval         | 10/28                      |               |
|-------------------------------------------|---------------------|------------------------------------|-------------------------|------------------|---------------------|----------------------------|---------------|
| Blind Signatures                          | Cryptographic Tools | Smooth Projective HF<br>○○○○○●○○○○ | <b>OSBE</b>             | Blind Signatures | Cryptographic Tools | Smooth Projective HF       | <b>OSBE</b>   |
| Applications                              |                     |                                    |                         | Applications     |                     |                            |               |
| Smooth Pro                                | iective HF Fami     | ilv for ElGamal                    |                         | Certification    | n of Public Kevs    | [Abdalla, Chevalier, Point | cheval. 20091 |

The CRS:  $\rho = (G, q, g, pk = h)$ 

Language:  $L = L_{(\mathbf{EG}^+, \rho), M} = \{C = (u_1, e) = \mathbf{EG}^+_{pk}(M; r), r \stackrel{\$}{\leftarrow} \mathbb{Z}_q\}$ 

- *L* is a hard-partitioned subset of  $X = G^2$ , under the semantic security of the ElGamal encryption scheme (DDH assumption)
- the random *r* is the witness to *L*-membership

# Algorithms

- HashKG(M) = hk =  $(\gamma_1, \gamma_3) \stackrel{\$}{\leftarrow} \mathbb{Z}_q \times \mathbb{Z}_q$
- Hash(hk; M, C) =  $(u_1)^{\gamma_1} (eg^{-M})^{\gamma_3}$
- ProjKG(hk; M, C) = hp =  $(g)^{\gamma_1}(h)^{\gamma_3}$
- ProjHash(hp; M, C; r) = (hp)<sup>r</sup>

For the certification Cert of an ElGamal public key  $y = g^x$ , in most of the protocols, the simulator needs to be able to extract the secret key:

## **Classical Process**

- the user *U* sends his public key  $y = g^x$ ;
- U and the authority A run a ZK proof of knowledge of x
- if convinced, A generates and sends the certificate Cert for y

For extracting *x*, the reduction requires a rewinding (that is not always allowed: *e.g.*, in the UC Framework)

| Blind Signatures                                                                                                                                                                      | Cryptographic Tools                                 | Smooth Projective HF<br>○○○○○○●○○                                 | <b>OSBE</b>               | Blind Signatures                                                                                                                               | Cryptographic Tools      | Smooth Projective HF<br>○○○○○○○●○                      | <b>OSBE</b>          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------|----------------------|--|
| Applications                                                                                                                                                                          |                                                     |                                                                   |                           | Applications                                                                                                                                   |                          |                                                        |                      |  |
| Certificatio                                                                                                                                                                          | on of Public Keys                                   | [Abdalla, Chevalier, Poin                                         | tcheval, 2009]            | Blind Signa                                                                                                                                    | ture                     | [Blazy, Fuchsbauer, Pointcheval, Ve                    | rgnaud, 2011]        |  |
| For the certific the protocols,                                                                                                                                                       | cation Cert of an ElGamal the simulator needs to be | public key $y = g^x$ , in random block able to extract the second | most of<br>cret key:      | In order to get <i>I</i> Previous Proc                                                                                                         | W blindly signed und     | der a Waters' signature:                               |                      |  |
| New Process                                                                                                                                                                           | ;                                                   |                                                                   |                           | the user U                                                                                                                                     | encrypts $M$ into $C_1$  | , and $\mathcal{F}(M)$ into $C_2$ ;                    |                      |  |
| The user <i>U</i> and the authority <i>A</i> use a smooth projective hash system<br>for <i>L</i> : $y = g^x$ and $C = \mathcal{E}_{_{pk}}(x; r)$ contain the same <i>x</i>            |                                                     |                                                                   |                           | • U produces a Groth-Sahai NIZK that $C_1$ and $C_2$ contain the same M                                                                        |                          |                                                        |                      |  |
| <ul> <li>U sends</li> </ul>                                                                                                                                                           | $y = g^x$ , with $C = \mathcal{E}_{pk}(x; r)$ ,     | for a random <i>r</i> ;                                           |                           | • if convinced, A generates a signature on $C_2$                                                                                               |                          |                                                        |                      |  |
| <ul> <li>A generates</li> <li>a hashing key hk <sup>\$</sup> HashKG(),</li> <li>the corresponding projected key on (y, C),</li> <li>the hash value Hash – Hash(bk: (y, C))</li> </ul> |                                                     |                                                                   |                           | <ul> <li>granted the commutativity, U decrypts it<br/>into a Waters' signature of M,<br/>and eventually re-randomizes the signature</li> </ul> |                          |                                                        |                      |  |
| and send                                                                                                                                                                              | s hp along with $Cert \oplus Has$                   | sh;                                                               |                           | Such a NIZK re                                                                                                                                 | quires 9 $\ell+$ 24 grou | p elements                                             |                      |  |
| • U compu                                                                                                                                                                             | tes Hash = ProjHash(hp; (                           | (y, C), r), and gets Ce                                           | ert.                      |                                                                                                                                                |                          |                                                        |                      |  |
| cole Normale Supérieure<br>Blind Signatures                                                                                                                                           | David P<br>Cryptographic Tools                      | ointcheval<br>Smooth Projective HF<br>○○○○○○○○○●                  | 13/288<br>OSBE<br>0000004 | cole Normale Supérieure<br>Blind Signatures                                                                                                    | Cryptographic Tools      | David Pointcheval<br>Smooth Projective HF<br>ooocoocoo | 14/<br>OSBE<br>○○○○○ |  |
| Applications                                                                                                                                                                          |                                                     |                                                                   |                           |                                                                                                                                                |                          |                                                        |                      |  |
| <b>Blind Sign</b>                                                                                                                                                                     | ature                                               | [Blazy, Pointcheval, Ve                                           | rgnaud, 2012]             | Outline                                                                                                                                        |                          |                                                        |                      |  |

In order to get *M* blindly signed under a Waters' signature:

#### **Previous Process**

The user *U* and the authority *A* use a smooth projective hash system for L:  $C_1 = \mathcal{E}_{_{pk_1}}(M; r)$  and  $C_2 = \mathcal{E}_{_{pk_2}}(\mathcal{F}(M); s)$  contain the same M

- U sends encryptions of M, into  $C_1$ , and  $\mathcal{F}(M)$ , into  $C_2$ ;
- A generates
  - a signature  $\sigma$  on  $C_2$ ,
  - masks it using  $Hash = Hash(hk; (C_1, C_2))$
- U computes Hash = ProjHash(hp;  $(C_1, C_2), (r, s)$ ), and gets  $\sigma$ . Granted the commutativity, U decrypts it into a Waters' signature of M, and eventually re-randomizes it

Such a protocol requires  $8\ell + 12$  group elements in total

**Blind Signatures** 

Example

Security Notions

**Cryptographic Tools** 

**Smooth Projective Hash Functions** 

**Oblivious Signature-Based Encryption** 

| Blind Signatures                                                            | Cryptographic Tools                                                                                                                                                                   | Smooth Projective HF                                                                                                                                                                              | <b>OSBE</b><br>●0000000                                        | Blind Signatures                                                                                                                 | Cryptographic Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Smooth Projective HF                                                                                                                                                                                    | <b>OSBE</b><br>○●○○○○○                      |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Example                                                                     |                                                                                                                                                                                       |                                                                                                                                                                                                   |                                                                | Example                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                             |
| Linear Enc                                                                  | ryption                                                                                                                                                                               |                                                                                                                                                                                                   |                                                                | Waters Sig                                                                                                                       | nature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                         |                                             |
| In a group $\mathbb G$ c<br>and a bilinear                                  | f order $p$ , with a generation map $e : \mathbb{G} 	imes \mathbb{G} 	o \mathbb{G}_T$                                                                                                 | itor <i>g</i> ,                                                                                                                                                                                   |                                                                | In a group $\mathbb{G}$ c and a bilinear                                                                                         | of order $p$ , with a generation $p$ of $r$ order $p$ , with a generation $p$ of | ator g,                                                                                                                                                                                                 |                                             |
| Linear Encry                                                                | otion                                                                                                                                                                                 | [Boneh, Boyen, Sha                                                                                                                                                                                | cham, 2004]                                                    | Waters Signa                                                                                                                     | ture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                         | [Waters, 2005]                              |
| <ul> <li>EKeyGen</li> <li>Encrypt(p<br/>→ c =</li> <li>Decrypt(c</li> </ul> | $: dk = (x_1, x_2) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2, pk$<br>$= (X_1, X_2), m; (r_1, r_2))$<br>$= (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3$<br>$dk = (x_1, x_2), c = (c_1, c_2)$ | $= (X_1 = g^{x_1}, X_2 = g^{x_2});$<br>, for $m \in \mathbb{G}$ and $(r_1, r_2) \notin (r_1, r_2) \notin (r_1, r_2)$<br>$= g^{r_1 + r_2} \cdot m);$<br>, $(r_3)) \rightarrow m = c_3 / c_1^{1/2}$ | $\overset{\$}{} \mathbb{Z}_p^2$ $\overset{x_1}{} c_2^{1/x_2}.$ | For a message<br>we define $F =$<br>For an addition<br>• <i>SKeyGen</i><br>• <i>Sign</i> ( <i>sk</i> =<br>$\rightarrow \sigma =$ | e $M = (M_1, \dots, M_k) \in \{$<br>$= \mathcal{F}(M) = u_0 \prod_{i=1}^k u_i^{M_i}, w_i$<br>nal generator $h \leftarrow \mathbb{G}$ .<br>e: $vk = X = g^x, sk = Y$<br>$= Y, F; s), \text{ for } M \in \{0, 1\}$<br>$= (\sigma_1 = Y \cdot F^s, \sigma_2 = g^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\{0, 1\}^k$ ,<br>where $\vec{u} = (u_0, \dots, u_k)$<br>$= h^x$ , for $x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ ;<br>$\{b\}^k, F = \mathcal{F}(M)$ , and $s \stackrel{\$}{\leftarrow}$<br>$\{c^s\}$ ; | $\overset{\$}{\leftarrow} \mathbb{G}^{k+1}$ |
| Re-Randomiz                                                                 |                                                                                                                                                                                       |                                                                                                                                                                                                   | در<br>۲۰۰۶ س                                                   | Verif(vk =                                                                                                                       | $X, M, \sigma = (\sigma_1, \sigma_2)$ ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ecks whether                                                                                                                                                                                            |                                             |

$$\begin{aligned} & \textit{Random}_{\mathcal{E}}(\textit{pk} = (X_1, X_2), \textit{c} = (\textit{c}_1, \textit{c}_2, \textit{c}_3); (\textit{r}_1', \textit{r}_2')), \text{ for } (\textit{r}_1', \textit{r}_2') \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2 \\ & \rightarrow \quad \textit{c}' = (\textit{c}_1' = \textit{c}_1 \cdot X_1^{\textit{r}_1'}, \textit{c}_2' = \textit{c}_2 \cdot X_2^{\textit{r}_2'}, \textit{c}_3' = \textit{c}_3 \cdot \textit{g}^{\textit{r}_1' + \textit{r}_2'}). \end{aligned}$$

 $\boldsymbol{e}(\boldsymbol{g},\sigma_1)\cdot\boldsymbol{e}(\boldsymbol{F},\sigma_2)=\boldsymbol{e}(\boldsymbol{X},\boldsymbol{h}).$ 

| École Normale Supérieure | Da                  | vid Pointcheval      | 17/288                 | École Normale Supérieure | Da                  | David Pointcheval    |                       |
|--------------------------|---------------------|----------------------|------------------------|--------------------------|---------------------|----------------------|-----------------------|
| Blind Signatures         | Cryptographic Tools | Smooth Projective HF | <b>OSBE</b><br>00●0000 | Blind Signatures         | Cryptographic Tools | Smooth Projective HF | <b>OSBE</b><br>000●00 |
| Example                  |                     |                      |                        | Example                  |                     |                      |                       |
| Waters Sign              | ature on a Line     | ar Ciphertext: Ide   | a                      | <b>Re-Random</b>         | ization of Ciphe    | ertext               |                       |

We define  $F = \mathcal{F}(M) = u_0 \prod_{i=1}^k u_i^{M_i}$ , and encrypt it

$$c = (c_{1} = X_{1}^{r_{1}}, c_{2} = X_{2}^{r_{2}}, c_{3} = g^{r_{1}+r_{2}} \cdot F)$$
  
• KeyGen:  $vk = X = g^{x}, sk = Y = h^{x}, \text{ for } x \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}$   
 $dk = (x_{1}, x_{2}) \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}^{2}, pk = (X_{1} = g^{x_{1}}, X_{2} = g^{x_{2}})$   
• Sign( $(X_{1}, X_{2}), Y, c; s$ ), for  $c = (c_{1}, c_{2}, c_{3})$   
 $\rightarrow \sigma = (\sigma_{1} = Y \cdot c_{3}^{s}, \sigma_{2} = (c_{1}^{s}, c_{2}^{s}), \sigma_{3} = (g^{s}, X_{1}^{s}, X_{2}^{s}))$   
• Verif( $(X_{1}, X_{2}), X, c, \sigma$ ) checks  $e(g, \sigma_{1}) = e(X, h) \cdot e(\sigma_{3,0}, c_{3})$   
 $e(\sigma_{2,0}, g) = e(c_{1}, \sigma_{3,0})$   
 $e(\sigma_{3,1}, g) = e(X_{1}, \sigma_{3,0})$   
 $e(\sigma_{3,2}, g) = e(X_{2}, \sigma_{3,0})$ 

 $\sigma_3$  is needed for ciphertext re-randomization

$$c = (c_1 = X_1^{r_1}, \qquad c_2 = X_2^{r_2}, \qquad c_3 = g^{r_1 + r_2} \cdot F )$$
  

$$\sigma = (\sigma_1 = Y \cdot c_3^s, \qquad \sigma_2 = (c_1^s, c_2^s), \qquad \sigma_3 = (g^s, X_1^s, X_2^s) )$$

after re-randomization by 
$$(r'_1, r'_2)$$
  
 $c' = (c'_1 = c_1 \cdot X_1^{r'_1}, \quad c'_2 = c'_2 \cdot X_2^{r'_2}, \quad c'_3 = c_3 \cdot g^{r'_1 + r'_2} )$   
 $\sigma' = (\sigma'_1 = \sigma_1 \cdot \sigma_{3,0}^{r'_1 + r'_2}, \sigma'_2 = (\sigma_{2,0} \cdot \sigma_{3,1}^{r'_1}, \sigma_{2,1} \cdot \sigma_{3,2}^{r'_2}), \sigma'_3 = \sigma_3 )$ 

Anybody can publicly re-randomize *c* into *c'* with additional random coins  $(r'_1, r'_2)$ , and adapt the signature  $\sigma$  of *c* into  $\sigma'$  of *c'* 

۰

# Blind Signatures Cryptographic Tools Smooth Projective HF OSBE Blind Signatures Cryptographic Tools Smooth Projective HF OSBE OSBE Blind Signatures Cryptographic Tools Smooth Projective HF OSBE OSBE Security Notions Unforgeability Unforgeability Security Notions Security N

#### Chosen-Ciphertext Attacks

The adversary is allowed to ask any valid ciphertext of his choice to the signing oracle

Because of the re-randomizability of the ciphertext-signature, we cannot expect resistance to existential forgeries, but we should allow a restricted malleability only:

#### Forgery

A valid ciphertext-signature pair, so that the plaintext is different from all the plaintexts in the ciphertexts sent to the signing oracle

# From a valid sinh artavt signatur

From a valid ciphertext-signature pair:

$$c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1 + r_2} \cdot F)$$
  
$$\sigma = (\sigma_1 = Y \cdot c_3^s, \sigma_2 = (c_1^s, c_2^s), \sigma_3 = (g^s, X_1^s, X_2^s))$$

and the decryption key  $(x_1, x_2)$ , one extracts

$$\begin{split} F &= & c_3/(c_1^{1/x_1}c_2^{1/x_2}) \\ \Sigma &= ( & \Sigma_1 = \sigma_1/(\sigma_{2,0}^{1/x_1}\sigma_{2,1}^{1/x_2}), & \Sigma_2 = \sigma_{3,0}) \\ &= ( & = Y \cdot F^s & = g^s) \end{split}$$

Security of Waters signature is for a pair  $(M, \Sigma)$ 

→ needs of a proof of knowledge  $\Pi_M$  of M in  $F = \mathcal{F}(M)$  bit-by-bit commitment of M and Groth-Sahai proof

| cole Normale Supérieure | Da                  | avid Pointcheval     | 21/28É      | cole Normale Supérieure | Da                  | vid Pointcheval      | 22/2        |
|-------------------------|---------------------|----------------------|-------------|-------------------------|---------------------|----------------------|-------------|
| Blind Signatures        | Cryptographic Tools | Smooth Projective HF | <b>OSBE</b> | Blind Signatures        | Cryptographic Tools | Smooth Projective HF | <b>OSBE</b> |
| Security Notions        |                     |                      |             | Security Notions        |                     |                      |             |
| <b>Chosen-Mes</b>       | sage Attacks        |                      |             | Security                |                     |                      |             |

# From a valid ciphertext $c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1+r_2} \cdot F)$ , and the additional proof of knowledge of M,

one extracts *M* and asks for a Waters signature:

$$\Sigma = (\Sigma_1 = Y \cdot F^s, \Sigma_2 = g^s)$$

In this signature, the random coins s are unknown, we thus need to know the coins in c

 $\rightarrow$  needs of a proof of knowledge  $\Pi_r$  of  $r_1, r_2$  in c

bit-by-bit commitment of  $r_1$ ,  $r_2$  and Groth-Sahai proof From the random coins  $r_1$ ,  $r_2$  (and the decryption key):

$$\sigma = (\sigma_1 = \Sigma_1 \cdot \Sigma_2^{r_1 + r_2}, \qquad \sigma_2 = (\Sigma_2^{x_1 r_1}, \Sigma_2^{x_2 r_2}), \ \sigma_3 = (\Sigma_2, \Sigma_2^{r_1}, \Sigma_2^{r_2}) )$$
  
=  $Y \cdot c_3^s, \qquad = (c_1^s, c_2^s), \qquad = (g^s, X_1^s, X_2^s)$ 

#### Chosen-Ciphertext Attacks

A valid ciphertext  $C = (c_1, c_2, c_3, \Pi_M, \Pi_r)$  is a

- ciphertext  $c = (c_1, c_2, c_3)$
- a proof of knowledge  $\Pi_M$  of the plaintext M in  $F = \mathcal{F}(M)$
- a proof of knowledge  $\Pi_r$  of the random coins  $r_1, r_2$

From such a ciphertext and the decryption key  $(x_1, x_2)$ , and a Waters signing oracle, one can generate a signature on *C* 

#### Forgery

From a valid ciphertext-signature pair  $(C, \sigma)$ , where *C* encrypts *M*, one can generate a Waters signature on *M* 

| Blind Signatures               | Cryptographic Tools    | Smooth Projective HF | 0SBE<br>000000 | Blind Signatures | Cryptographic Tools | Smooth Projective HF | <b>OSBE</b><br>0000 |
|--------------------------------|------------------------|----------------------|----------------|------------------|---------------------|----------------------|---------------------|
| Security Notions               |                        |                      |                | Security Notions |                     |                      |                     |
| Security                       |                        |                      |                | Properties       |                     |                      |                     |
| <ul> <li>From the V</li> </ul> | Vaters signing oracle, | yt Signing queries   |                | Proofs           |                     |                      |                     |
| wean                           |                        | AL OIGHING QUELLES   |                | 0.               |                     |                      |                     |

• From a Forgery, we build a Waters Existential Forgery

#### **Security Level**

Since the Waters signature is EF-CMA under the *CDH* assumption, our signature on randomizable ciphertext is <u>Unforgeable</u> against <u>Chosen-Ciphertext Attacks</u> under the *CDH* assumption Since we use the Groth-Sahai methodology for the proofs  $\Pi_M$  and  $\Pi_r$ 

- in case of re-randomization of c, one can adapt  $\Pi_M$  and  $\Pi_r$
- because of the need of *M*, but also r<sub>1</sub> and r<sub>2</sub> in the simulation, we need bit-by-bit commitments:
  - *M* can be short (*l* bit-long)
  - $r_1$  and  $r_2$  are random in  $\mathbb{Z}_p$
  - $\rightarrow$  *C* is large!

#### Efficiency

We can improve efficiency: shorter signatures

École Normale Supérieure

David Pointcheval

25/28École Normale Supérieure

David Pointcheval

26/28

# Randomizable Commutative Signature/Encryption Conclusion



### Randomizable Commutative Signature/Encryption

Various Applications

- non-interactive receipt-free electronic voting scheme
- (fair) blind signature

Security relies on the *CDH* and the *DLin* assumptions For an  $\ell$ -bit message, ciphertext-signature:  $9\ell + 24$  group elements

A more efficient variant with asymmetric pairing on the *CDH*<sup>\*</sup> and the *SXDH* assumptions Ciphertext-signature:  $6\ell + 7$  group elements in  $\mathbb{G}_1$ and  $6\ell + 5$  group elements in  $\mathbb{G}_2$