
Round-Optimal Privacy-Preserving Protocols
with Smooth Projective Hash Functions

David Pointcheval

Joint work with Olivier Blazy and Damien Vergnaud

Ecole Normale Supérieure

January 13th, 2012
Grenoble

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Outline

1 Blind Signatures

2 Cryptographic Tools

3 Smooth Projective Hash Functions

4 Oblivious Signature-Based Encryption

École Normale Supérieure David Pointcheval 2/28
Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Outline

1 Blind Signatures

2 Cryptographic Tools

3 Smooth Projective Hash Functions

4 Oblivious Signature-Based Encryption

École Normale Supérieure David Pointcheval 3/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Outline

1 Blind Signatures

2 Cryptographic Tools

3 Smooth Projective Hash Functions

4 Oblivious Signature-Based Encryption

École Normale Supérieure David Pointcheval 4/28



Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Outline

1 Blind Signatures

2 Cryptographic Tools

3 Smooth Projective Hash Functions
Intuition
Applications

4 Oblivious Signature-Based Encryption

École Normale Supérieure David Pointcheval 5/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Intuition

Smooth Projective Hash Functions [Cramer, Shoup, 2002]

Family of Hash Function H

Let {H} be a family of functions:
X , domain of these functions
L, subset (a language) of this domain

such that, for any point x in L, H(x) can be computed by using
either a secret hashing key hk: H(x) = HashL(hk; x);
or a public projected key hp: H(x) = ProjHashL(hp; x ,w)

While the former works for all points in the domain X ,
the latter works for x ∈ L only, and requires a witness w to this fact.
There is a public mapping that converts the hashing key hk into the
projected key hp: hp = ProjKGL(hk)

École Normale Supérieure David Pointcheval 6/28
Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Intuition

Properties

For any x ∈ X , H(x) = HashL(hk; x)
For any x ∈ L, H(x) = ProjHashL(hp; x ,w) w witness that x ∈ L

Smoothness
For any x 6∈ L, H(x) and hp are independent

Pseudo-Randomness
For any x ∈ L, H(x) is pseudo-random, without a witness w

The latter property requires L to be a hard-partitioned subset of X :

Hard-Partitioned Subset
L is a hard-partitioned subset of X if it is computationally hard to
distinguish a random element in L from a random element in X \ L

École Normale Supérieure David Pointcheval 7/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Intuition

Element-Based Projection

Initial Definition [Cramer, Shoup, 2002]

The projected key hp depends on the hashing key hk only:
hp = ProjKGL(hk)

New Definition [Gennaro, Lindell, 2003]

The projected key hp depends on the hashing key hk, and x :
hp = ProjKGL(hk; x)

→ More applications

École Normale Supérieure David Pointcheval 8/28



Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Applications

Examples

DH Language [Cramer, Shoup, 2002]

Lg,h = {u, v} such that (g,h,u, v) is DH tuple:
there exists r such that u = gr and v = hr

→ Public-key Encryption with IND-CCA Security

Commitment [Gennaro, Lindell, 2003]

Lpk,m = {c} such that c is a commitment of m
using public parameter pk:

there exists r such that c = compk(m; r)
where com is the committing algorithm

→ Password-Authenticated Key Exchange in the Standard Model

École Normale Supérieure David Pointcheval 9/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Applications

Examples (Con’d)

Labeled Encryption [Canetti, Halevi, Katz, Lindell, MacKenzie, 2005]

Lpk,(`,m) = {c} such that c is an encryption of m
with label `, under the public key pk:

there exists r such that c = E`
pk

(m; r)
where E is the encryption algorithm

→ PAKE in the UC Framework (passive corruptions)

Extractable/Equivocable Commitment [Abdalla, Chevalier, Pointcheval, 2009]

Lpk,m = {c} such that c is a equivocable/extractable commitment of m
using public parameter pk

→ PAKE in the UC Framework secure against Active Corruptions

École Normale Supérieure David Pointcheval 10/28
Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Applications

Smooth Projective HF Family for ElGamal

The CRS: ρ = (G,q,g,pk = h)

Language: L = L(EG+,ρ),M = {C = (u1 ,e) = EG+
pk(M; r), r $← Zq}

L is a hard-partitioned subset of X = G2, under the semantic
security of the ElGamal encryption scheme (DDH assumption)
the random r is the witness to L-membership

Algorithms

HashKG(M) = hk = (γ1, γ3)
$← Zq × Zq

Hash(hk; M,C) = (u1)γ1(eg−M)γ3

ProjKG(hk; M,C) = hp = (g)γ1(h)γ3

ProjHash(hp; M,C; r) = (hp)r

École Normale Supérieure David Pointcheval 11/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Applications

Certification of Public Keys [Abdalla, Chevalier, Pointcheval, 2009]

For the certification Cert of an ElGamal public key y = gx , in most of
the protocols, the simulator needs to be able to extract the secret key:

Classical Process
the user U sends his public key y = gx ;
U and the authority A run a ZK proof of knowledge of x
if convinced, A generates and sends the certificate Cert for y

For extracting x , the reduction requires a rewinding
(that is not always allowed: e.g., in the UC Framework)

École Normale Supérieure David Pointcheval 12/28



Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Applications

Certification of Public Keys [Abdalla, Chevalier, Pointcheval, 2009]

For the certification Cert of an ElGamal public key y = gx , in most of
the protocols, the simulator needs to be able to extract the secret key:

New Process
The user U and the authority A use a smooth projective hash system
for L: y = gx and C = E

pk
(x ; r) contain the same x

U sends y = gx , with C = E
pk

(x ; r), for a random r ;
A generates

a hashing key hk $← HashKG(),
the corresponding projected key on (y ,C),
the hash value Hash = Hash(hk; (y ,C))

and sends hp along with Cert⊕ Hash;
U computes Hash = ProjHash(hp; (y ,C), r), and gets Cert.

École Normale Supérieure David Pointcheval 13/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Applications

Blind Signature [Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011]

In order to get M blindly signed under a Waters’ signature:

Previous Process
the user U encrypts M into C1, and F(M) into C2;
U produces a Groth-Sahai NIZK that

C1 and C2 contain the same M
if convinced, A generates a signature on C2

granted the commutativity, U decrypts it
into a Waters’ signature of M,
and eventually re-randomizes the signature

Such a NIZK requires 9`+ 24 group elements

École Normale Supérieure David Pointcheval 14/28
Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Applications

Blind Signature [Blazy, Pointcheval, Vergnaud, 2012]

In order to get M blindly signed under a Waters’ signature:

Previous Process
The user U and the authority A use a smooth projective hash system
for L: C1 = E

pk1
(M; r) and C2 = E

pk2
(F(M); s) contain the same M

U sends encryptions of M, into C1, and F(M), into C2;
A generates

a signature σ on C2,
masks it using Hash = Hash(hk; (C1,C2))

U computes Hash = ProjHash(hp; (C1,C2), (r , s)), and gets σ.
Granted the commutativity, U decrypts it into a Waters’ signature
of M, and eventually re-randomizes it

Such a protocol requires 8`+ 12 group elements in total

École Normale Supérieure David Pointcheval 15/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Outline

1 Blind Signatures

2 Cryptographic Tools

3 Smooth Projective Hash Functions

4 Oblivious Signature-Based Encryption
Example
Security Notions

École Normale Supérieure David Pointcheval 16/28



Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Example

Linear Encryption

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Linear Encryption [Boneh, Boyen, Shacham, 2004]

EKeyGen: dk = (x1, x2)
$←Z2

p, pk = (X1 = gx1 ,X2 = gx2);

Encrypt(pk = (X1,X2),m; (r1, r2)), for m ∈ G and (r1, r2)
$←Z2

p
→ c =

(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 ·m

)
;

Decrypt(dk = (x1, x2), c = (c1, c2, c3)) → m = c3/c
1/x1
1 c1/x2

2 .

Re-Randomization

RandomE(pk = (X1,X2), c = (c1, c2, c3); (r ′1, r
′
2)), for (r ′1, r

′
2)

$←Z2
p

→ c′ =
(
c′1 = c1 · X r ′1

1 , c
′
2 = c2 · X r ′2

2 , c
′
3 = c3 · gr ′1+r ′2

)
.

École Normale Supérieure David Pointcheval 17/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Example

Waters Signature

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Waters Signature [Waters, 2005]

For a message M = (M1, . . . ,Mk ) ∈ {0,1}k ,
we define F = F(M) = u0

∏k
i=1 uMi

i , where ~u = (u0, . . . ,uk )
$←Gk+1.

For an additional generator h $←G.
SKeyGen: vk = X = gx , sk = Y = hx , for x $←Zp;
Sign(sk = Y ,F ; s), for M ∈ {0,1}k , F = F(M), and s $←Zp
→ σ =

(
σ1 = Y · F s, σ2 = g−s);

Verif(vk = X ,M, σ = (σ1, σ2)) checks whether
e(g, σ1) · e(F , σ2) = e(X ,h).

École Normale Supérieure David Pointcheval 18/28
Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Example

Waters Signature on a Linear Ciphertext: Idea

We define F = F(M) = u0
∏k

i=1 uMi
i , and encrypt it

c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)

KeyGen: vk = X = gx , sk = Y = hx , for x $←Zp
dk = (x1, x2)

$←Z2
p, pk = (X1 = gx1 ,X2 = gx2)

Sign((X1,X2),Y , c; s), for c = (c1, c2, c3)
→ σ =

(
σ1 = Y · cs

3, σ2 = (cs
1, c

s
2), σ3 = (gs,X s

1 ,X
s
2 )
)

Verif((X1,X2),X , c, σ) checks e(g, σ1) = e(X ,h) · e(σ3,0, c3)

e(σ2,0,g) = e(c1, σ3,0) e(σ2,1,g) = e(c2, σ3,0)

e(σ3,1,g) = e(X1, σ3,0) e(σ3,2,g) = e(X2, σ3,0)

σ3 is needed for ciphertext re-randomization

École Normale Supérieure David Pointcheval 19/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Example

Re-Randomization of Ciphertext

c = (c1 = X r1
1 , c2 = X r2

2 , c3 = gr1+r2 · F )

σ = (σ1 = Y · cs
3, σ2 = (cs

1, c
s
2), σ3 = (gs,X s

1 ,X
s
2 ) )

after re-randomization by (r ′1, r
′
2)

c′ = (c′1 = c1 · X r ′1
1 , c′2 = c′2 · X

r ′2
2 , c′3 = c3 · gr ′1+r ′2 )

σ′ = (σ′1 = σ1 · σr ′1+r ′2
3,0 , σ′2 = (σ2,0 · σr ′1

3,1, σ2,1 · σr ′2
3,2), σ′3 = σ3 )

Anybody can publicly re-randomize c into c′

with additional random coins (r ′1, r
′
2),

and adapt the signature σ of c into σ′ of c′

École Normale Supérieure David Pointcheval 20/28



Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Security Notions

Unforgeability under Chosen-Ciphertext Attacks

Chosen-Ciphertext Attacks
The adversary is allowed to ask any valid ciphertext of his choice
to the signing oracle

Because of the re-randomizability of the ciphertext-signature,
we cannot expect resistance to existential forgeries,
but we should allow a restricted malleability only:

Forgery
A valid ciphertext-signature pair, so that the plaintext is different
from all the plaintexts in the ciphertexts sent to the signing oracle

École Normale Supérieure David Pointcheval 21/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Security Notions

Unforgeability

From a valid ciphertext-signature pair:

c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)

σ =
(
σ1 = Y · cs

3, σ2 = (cs
1, c

s
2), σ3 = (gs,X s

1 ,X
s
2 )
)

and the decryption key (x1, x2), one extracts

F = c3/(c1/x1
1 c1/x2

2 )

Σ =
(

Σ1 = σ1/(σ
1/x1
2,0 σ

1/x2
2,1 ), Σ2 = σ3,0

)

=
(

= Y · F s = gs)

Security of Waters signature is for a pair (M,Σ)
→ needs of a proof of knowledge ΠM of M in F = F(M)

bit-by-bit commitment of M and Groth-Sahai proof
École Normale Supérieure David Pointcheval 22/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Security Notions

Chosen-Message Attacks

From a valid ciphertext c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)
,

and the additional proof of knowledge of M,
one extracts M and asks for a Waters signature:

Σ =
(
Σ1 = Y · F s,Σ2 = gs)

In this signature, the random coins s are unknown,
we thus need to know the coins in c
→ needs of a proof of knowledge Πr of r1, r2 in c

bit-by-bit commitment of r1, r2 and Groth-Sahai proof
From the random coins r1, r2 (and the decryption key):
σ =

(
σ1 = Σ1 · Σr1+r2

2 , σ2 = (Σx1r1
2 ,Σx2r2

2 ), σ3 = (Σ2,Σ
r1
2 ,Σ

r2
2 )

)

= Y · cs
3, = (cs

1, c
s
2), = (gs,X s

1 ,X
s
2 )

École Normale Supérieure David Pointcheval 23/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Security Notions

Security

Chosen-Ciphertext Attacks
A valid ciphertext C = (c1, c2, c3,ΠM ,Πr ) is a

ciphertext c = (c1, c2, c3)

a proof of knowledge ΠM of the plaintext M in F = F(M)

a proof of knowledge Πr of the random coins r1, r2

From such a ciphertext and the decryption key (x1, x2),
and a Waters signing oracle, one can generate a signature on C

Forgery
From a valid ciphertext-signature pair (C, σ), where C encrypts M,
one can generate a Waters signature on M

École Normale Supérieure David Pointcheval 24/28



Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Security Notions

Security

From the Waters signing oracle,
we answer Chosen-Ciphertext Signing queries

From a Forgery, we build a Waters Existential Forgery

Security Level
Since the Waters signature is EF-CMA under the CDH assumption,
our signature on randomizable ciphertext is Unforgeable

against Chosen-Ciphertext Attacks
under the CDH assumption

École Normale Supérieure David Pointcheval 25/28

Blind Signatures Cryptographic Tools Smooth Projective HF OSBE

Security Notions

Properties

Proofs
Since we use the Groth-Sahai methodology for the proofs ΠM and Πr

in case of re-randomization of c, one can adapt ΠM and Πr

because of the need of M, but also r1 and r2 in the simulation,
we need bit-by-bit commitments:

M can be short (` bit-long)
r1 and r2 are random in Zp

→ C is large!

Efficiency
We can improve efficiency: shorter signatures

École Normale Supérieure David Pointcheval 26/28

Randomizable Commutative Signature/Encryption

M

σ(M)

S
ig

n S

sk
;s

RandomS

s′

EncryptE
pk, r

C
dk

DecryptE

r

RandomE

r ′

S
ig

n S
E

sk
,p

k,
c;

s

σ(C)

Ran
do

mSE

r′ ,
s

′

SigExtSE

dk

r

École Normale Supérieure David Pointcheval 27/28

Conclusion

Randomizable Commutative Signature/Encryption

Various Applications
non-interactive receipt-free electronic voting scheme
(fair) blind signature

Security relies on the CDH and the DLin assumptions
For an `-bit message, ciphertext-signature:

9`+ 24 group elements

A more efficient variant with asymmetric pairing
on the CDH∗ and the SXDH assumptions

Ciphertext-signature: 6`+ 7 group elements in G1
and 6`+ 5 group elements in G2

École Normale Supérieure David Pointcheval 28/28


