	Cryptography 00000	Game-based Proofs 00000000000	Assumptions 00	BF IB-Encryption 00000000000	Conclusion o
	Outline				
The Game-based Methodology for Computational Security Proofs	 Crypto Intro Provi 	graphy duction able Security			
David Pointcheval Ecole normale supérieure, CNRS & INRIA	 Game-I Gam Trans 	based Methodolo e-based Approach sition Hops	gy າ		
Computational and Symbolic Proofs of Security Atagawa Heights – Japan April 6th, 2009	 3 Assum 4 Identity • Defir • Desc • Secu 5 Conclu 	ptions /-Based Encrypti hition ription of BF rity Proof Ision	on		
plography Game-based Proofs Assumptions BFIB-Encryption Conclusion No cocococococo o cocococococo o	Cryptography •••••	Game-based Proofs 000000000000	Assumptions oo	Day BF IB-Encryption occosocococo	id Pointcheval – 2/ Conclusion o

Outline

Cryptography

- Introduction
- Provable Security
- 2 Game-based Methodology
 - Game-based Approach
 - Transition Hops
- Assumptions
- Identity-Based Encryption
 - Definition
 - Description of BF
 - Security Proo
- Conclusion

Public-Key Cryptography

Cryptography 00000	Game-based Proofs coccocccocco	Assumptions oo	BF IB-Encryption 00000000000	Conclusion o	Cryptography 00000	Game-based Proofs	Assumptions 00	BF IB-Encryption 00000000000	Conclusion o
Introduction					Provable Security				
Strong St	Security Notio	ns			Provable	e Security			

Signature

Existential Unforgeability under Chosen-Message Attacks

An adversary, allowed to ask for signature on any message of its choice, cannot generate a new valid message-signature pair

Encryption

Semantic Security against Chosen-Ciphertext Attacks

An adversary that chooses 2 messages, and receives the encryption of one of them, is not able to guess which message has been encrypted, even if it is able to ask for decryption of any ciphertext of its choice (except the challenge ciphertext)

One can prove that:

- if an adversary is able to break the cryptographic scheme
- then one can break the underlying problem (integer factoring, discrete logarithm, 3-SAT, etc)

David Pointcheval – 5/39 David Point										
Cryptography 000e0	Game-based Proofs 000000000000	Assumptions oo	BF IB-Encryption 00000000000	Conclusion o	Cryptography 00000	Game-based Proofs 000000000000	Assumptions oo	BF IB-Encryption 00000000000	Conclusion o	
Provable Security					Provable Security					
Direct Re	duction				Game-b	ased Method	oloav			

Direct Reduction

Unfortunately

- Security may rely on several assumptions
- Proving that the view of the adversary, generated by the simulator, in the reduction is the same as in the real attack game is not easy to do in such a one big step

Illustration: OAEP

[Bellare-Rogaway EC '94]

 Reduction proven indistinguishable for an IND-CCA adversary (actually IND-CCA1, and not IND-CCA2) but widely believed for IND-CCA2, without any further analysis of the reduction The direct-reduction methodology

[Shoup - Crypto '01] Shoup showed the gap for IND-CCA2, under the OWP Granted his new game-based methodology

[Fuiisaki-Okamoto-Pointcheval-Stern - Crypto '01] FOPS proved the security for IND-CCA2, under the PD-OWP Using the game-based methodology

Cryptography 00000	Game-based Proofs	Assumptions 00	BF IB-Encryption 00000000000	Conclusion o	Cryptography 00000	Game-based Proofs 000000000000	Assumptions 00	BF IB-Encryption 00000000000	Conclusion o
					Game-based Approx	ach			
Outline					Sequend	ce of Games			
 Cryptog Introc Prova 	g raphy luction able Security				Real Attac The advers	c <mark>k Game</mark> sary plays a game	, against a cha	Illenger (security I	notion)
 2 Game-b Game-b Game-b 	ased Methodolog -based Approach ition Hops -Based Encryption ition -iption of BF rity Proof	y			Gan	ne 0	Dracles	lienger contraction to the second sec	0/1
6 Conclu	sion								
Cryptography cooco Game-based Approar Sequenc	Game-based Proofs ceocococcoccocco ch e of Games	Assumptions co	David BF IB-Encryption 00000000000	Pointcheval – 9/39 Conclusion O	Cryptography 00000 Game-based Approx Sequence	Game-based Proofs coecococcocco ach ce of Games	Assumptions oo	Davis BF IB-Encryption 000000000000	Pointcheval – 10/3 Conclusion o
Simulation	l				Simulation	n			
The advers	ary plays a game, a	against a sequ	uence of simulator	s	The advers	sary plays a game	against a seq	uence of simulate	ors
Game	e 1	acles	Sintato Catholic	às,	Gan	ne 2	Dracles		110n 2

David Pointcheval - 11/39

0/1

Challenger

David Pointcheval - 12/39

0/1

Challenger

Adversary

Cryptography 00000	Game-based Proofs	Assumptions co	BF IB-Encryption 00000000000	Conclusion o	Cryptography 00000	Game-based Proofs	Assumptions oo	BF IB-Encryption 00000000000	Conclusion o
Game-based Approach					Game-based Approach				
Sequence	of Games				Output				

- The output of the simulator in Game 1 is related to the output of the challenger in Game 0 (adversary's winning probability)
- The output of the simulator in Game 3 is easy to evaluate (e.g. always zero, always 1, probability of one-half)
- The gaps (Game 1 ↔ Game 2, Game 2 ↔ Game 3, etc) are clearly identified with specific events

David Pointcheval – 13/39									Pointcheval – 14/39
Cryptography 00000	Game-based Proofs	Assumptions oo	BF IB-Encryption 00000000000	Conclusion o	Cryptography 00000	Game-based Proofs	Assumptions oo	BF IB-Encryption	Conclusion o
Transition Hops					Transition Hops				
Two Simu	lators				Two Dis	tributions			

Two Simulators

perfectly identical behaviors

Game 2

[Hop-S-Perfect]

- different behaviors, only if event Ev happens
 - Ev is negligible
 - Ev is non-negligible
 - and independent of the output in Game 4
 - → Simulator B terminates in case of event Ev
- [Hop-S-Negl] [Hop-S-Non-Negl]

- different distributions
 - statistically close
 - computationally close

[Hop-D-Perfect]

[Hop-D-Stat] [Hop-D-Comp]

المعالمة معاما	hahariaan Dalo				a data asti			1 0	
Two Simu	lations				Two Sim	ulations			
Transition Hops					Transition Hops				
00000	0000000000000	00	0000000000000	0	00000	0000000000000	00	0000000000000	0

- Identical behaviors: Pr[Game_A] Pr[Game_B] = 0
 The behaviors differ only if Ev happens:
 - Ev is negligible, one can ignore it Shoup's Lemma: Pr[Game_A] – Pr[Game_B] ≤ Pr[Ev]

 Ev is non-negligible and independent of the output in Game_A, Simulator B terminates in case of event Ev

- Identical behaviors: Pr[Game_A] Pr[Game_B] = 0
- The behaviors differ only if Ev happens:
 - Ev is negligible, one can ignore it
 - Ev is non-negligible and independent of the output in Game_A, Simulator B terminates and outputs 0, in case of event Ev:

$$\begin{split} \mathsf{Pr}[\mathbf{Game}_{\mathcal{B}}] = & \mathsf{Pr}[\mathbf{Game}_{\mathcal{B}}|\mathbf{Ev}] \, \mathsf{Pr}[\mathbf{Ev}] + \mathsf{Pr}[\mathbf{Game}_{\mathcal{B}}|\neg \mathbf{Ev}] \, \mathsf{Pr}[\neg \mathbf{Ev}] \\ = & 0 \times \mathsf{Pr}[\mathbf{Ev}] + \mathsf{Pr}[\mathbf{Game}_{\mathcal{A}}|\neg \mathbf{Ev}] \times \mathsf{Pr}[\neg \mathbf{Ev}] \\ = & \mathsf{Pr}[\mathbf{Game}_{\mathcal{A}}] \times \mathsf{Pr}[\neg \mathbf{Ev}] \end{split}$$

Simulator B terminates and flips a coin, in case of event Ev:

$$\begin{aligned} \Pr[\mathsf{Game}_B] &= \Pr[\mathsf{Game}_B | \mathbf{E}\mathbf{v}] \Pr[\mathbf{E}\mathbf{v}] + \Pr[\mathsf{Game}_B | \neg \mathbf{E}\mathbf{v}] \Pr[\neg \mathbf{E}\mathbf{v}] \\ &= \frac{1}{2} \times \Pr[\mathbf{E}\mathbf{v}] + \Pr[\mathsf{Game}_A | \neg \mathbf{E}\mathbf{v}] \times \Pr[\neg \mathbf{E}\mathbf{v}] \\ &= \frac{1}{2} + (\Pr[\mathsf{Game}_A] - \frac{1}{2}) \times \Pr[\neg \mathbf{E}\mathbf{v}] \end{aligned}$$

David Pointcheval – 17/39									
Cryptography 00000	Game-based Proofs	Assumptions oo	BF IB-Encryption 00000000000	Conclusion o	Cryptography 00000	Game-based Proofs	Assumptions oo	BF IB-Encryption	Conclusion o
Transition Hops					Transition Hops				
Two Sim	ulations				Two Dis	tributions			

- Identical behaviors: Pr[Game_A] Pr[Game_B] = 0
- The behaviors differ only if Ev happens:
 - Ev is negligible, one can ignore it
 - Ev is non-negligible and independent of the output in Game_A, Simulator B terminates in case of event Ev

Event Ev

- Either Ev is negligible, or the output is independent of Ev
- For being able to terminate simulation B in case of event Ev, this event must be *efficiently* detectable
- For evaluating Pr[Ev], one re-iterates the above process, with an initial game that outputs 1 when event Ev happens

 $\mathsf{Pr}[\textit{Game}_{\textit{A}}] - \mathsf{Pr}[\textit{Game}_{\textit{B}}] \leq Adv(\mathcal{D}^{\text{oracles}})$

Cryptography 00000	Game-based Proofs	Assumptions co	BF IB-Encryption 00000000000	Conclusion o	Cryptography 00000	Game-based Proofs 00000000000	Assumptions 00	BF IB-Encryption 00000000000	Conclusion o
Transition Hops									
Two Dist	tributions				Outline				
	Pr[Game _A] – F	$\Pr[\mathbf{Game}_B] \leq A$	$\mathbf{Adv}(\mathcal{D}^{oracles})$		 Crypto Intro Prov 	graphy duction able Security			
For identified	entical/statistically	close distributi	ons, for any oracl	le:	Game-	based Methodolo	ogy		
Pr[G	ame _A] – Pr[Game	e _B] = Dist(Dis	$trib_A$, Distrib _B) =	= negl()	• Tran	sition Hops			
For co	 For computationally close distributions, in general, we need to 					ptions			
exclud	de additional oracle	access:			Identit	y-Based Encrypti			
	Pr[Game _A]	- Pr[Game _B]	$\leq \mathbf{Adv}^{Distrib}(t)$		 Defil Desil Secil 	nition cription of BF urity Proof			
where	t is the computati	onal time of the	e distinguisheur		Conclu				
Cryptography	Game,based Proofe	Accumptions	David RE IB-Encruation	d Pointcheval – 21/39	Countography	Game-based Proofs	Accumptions	David.	Pointcheval – 22/39
oooco Difeeer Mana	000000000000000000000000000000000000000	eo	0000000000000	o	oocoo Biineer Mene	000000000000000000000000000000000000000	oe	000000000000000000000000000000000000000	o
Con Gro	upo				Dilinoor	Diffic Hollma	n Droblom		
Gab Gro	ups				Битеаг	Dime-Hellma	in Problem	S	

Gap Groups

Definition (Pairing Setting)

- Let G1 and G2 be two cyclic groups of prime order p
- Let g_1 and g_2 be generators of \mathbb{G}_1 and \mathbb{G}_2 respectively
- Let $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}^T$, be a bilinear map

Definition (Admissible Bilinear Map)

Let $(p, \mathbb{G}_1, g_1, \mathbb{G}_2, g_2, \mathbb{G}^T, e)$ be a pairing setting, with $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}^T$ a non-degenerated bilinear map

• Bilinear: for any $q \in \mathbb{G}_1$, $h \in \mathbb{G}_2$ and $u, v \in \mathbb{Z}$,

$$e(g^u,h^v)=e(g,h)^u$$

• Non-degenerated: $e(g_1, g_2) \neq 1$

We focus on the symmetric case: $\mathbb{G}_1 = \mathbb{G}_2 = \mathbb{G}$

Diffie-Hellman Problems

- CDH in G: Given g, g^a, g^b ∈ G, compute g^{ab}
- **DDH** in G: Given $g, g^a, g^b, g^c \in \mathbb{G}$, decide whether c = ab or not

CDH can be hard to solve, but DDH is easy in gap-groups

Bilinear Diffie-Hellman Problems

- **CBDH** in \mathbb{G} : Given $q, q^a, q^b, q^c \in \mathbb{G}$, compute $e(g,g)^{abc}$
- DBDH in G: Given g, g^a, g^b, g^c ∈ G and h ∈ G^T decide whether $h \stackrel{?}{=} e(q, q)^{abc}$

Cryptography 00000	Game-based Proofs cooccoccocco	Assumptions co	BF IB-Encryption	Conclusion o	Cryptography 00000	Game-based Proofs 00000000000	Assumptions 00	BF IB-Encryption	Conclusion o				
					Definition								
Outline					Identity-	Based Crypt	ography	[Shami	ir – Crypto '84]				
 Crypto Intro Prov Game- Game- Game- 	ography duction able Security based Methodolo ne-based Approact sition Hops	'gy 1			Public-Ke Each user a pub a cert a prive	y Cryptography <i>ID</i> owns ic key pk ificate that guarani ate key sk, related	ees the link be to pk	etween \mathcal{ID} and place					
AssumIdentit	ptions y-Based Encrypti	on			One has to access a dictionary in order to get pk, the public key of $\mathcal{ID},$ together with the certificate, in order to encrypt a message to \mathcal{ID}								
 Defi Desi Seci Sconchi 	nition cription of BF urity Proof usion				Identity-Based Cryptography Each user ID owns a private key sk, related to ID the public key pk is indeed ID itself								
Cryptography 00000	Game-based Proofs	Assumptions oo	David BF IB-Encryption 000000000000	Pointcheval – 25/39 Conclusion o	Cryptography 00000	Game-based Proofs	Assumptions oo	David BF IB-Encryption OCOCOCCCCCC	Pointcheval – 26/3 Conclusion o				
Identity-	Based Encry	ption			Security	Model: IND	– ID – CCA	4					
Setup The autho and pub	rity generates a ma lishes the public pa	aster secret ke arameters, PK	y msk,		Definition • A rec • A ask	(IND – ID – CCA eives the global pa s any extraction-q	. Security) trameters uery, and any c	decryption-query					
Extraction Given an i the priva	dentity \mathcal{ID} , the aut ate key sk granted	hority compute the master sec	es iret key msk		 A out The challe A ask 	outs a target identi nger flips a bit <i>b</i> , a s any extraction-g	ty \mathcal{ID}^* and two and encrypts <i>m</i> uery, and any o	to messages $(m_0, m_b$ for \mathcal{ID}^* into c^* decryption-query	m ₁)				

Encryption

Any one can encrypt a message m to a user IDusing only m, ID and the public parameters PK

Decryption

Given a ciphertext, user $\mathcal{I}\mathcal{D}$ can recover the plaintext, with sk

CPA: no decryption-oracle access

Restriction: ID^* never asked to the extraction oracle.

and (\mathcal{ID}^*, c^*) never asked to the decryption oracle.

• A outputs its guess b' for b

$$Adv^{ind-id-cca} = 2 \times Pr[b' = b] - 1$$

The BLS signature achieves EUF - CMA security, under the *CDH* assumption in \mathbb{G} , in the Random Oracle Model

ooooo	cooccoccocco	co	000000000000000000000000000000000000000	o	ooooo	00000000000000000000000000000000000000	Assumptions 00	000000000000000000000000000000000000000	o		
Security Proof					Security Proof						
Simulatio	ons				H-Query Selection						
							P				

- Game_0: use of the oracles $\mathcal{S}etup$, $\mathcal{E}xt$, and \mathcal{H}
- Game1: use of the simulation of the Random Oracle

Simulation of \mathcal{H}

 $\mathcal{H}(\mathcal{ID}): \mu \stackrel{R}{\leftarrow} \mathbb{Z}_p$, output $M = g^{\mu}$

 \implies Hop-D-Perfect: $Pr[Game_1] = Pr[Game_0]$

• Game2: use of the simulation of the Extraction Oracle

Simulation of Ext

 $\mathcal{E}xt(\mathcal{ID})$: find μ such that $M = \mathcal{H}(\mathcal{ID}) = g^{\mu}$, output sk = P^{μ}

 \implies Hop-S-Perfect: Pr[Game₂] = Pr[Game₁]

• **Game**₃: random index $t \stackrel{H}{\leftarrow} \{1, \ldots, q_H\}$

Event Ev

If the *t*-th query to \mathcal{H} is not the challence \mathcal{ID}

We terminate the game and flip a coin if Ev happens $\implies \textbf{Hop-S-Non-Negl}$

$$\begin{split} \mathsf{Pr}[\mathsf{Game}_3] &= \frac{1}{2} + \left(\mathsf{Pr}[\mathsf{Game}_2] - \frac{1}{2}\right) \times \mathsf{Pr}[\neg\mathsf{Ev}] \quad \mathsf{Pr}[\mathsf{Ev}] = 1 - 1/q_\mathcal{H} \\ \\ \mathsf{Pr}[\mathsf{Game}_3] &= \frac{1}{2} + \left(\mathsf{Pr}[\mathsf{Game}_2] - \frac{1}{2}\right) \times \frac{1}{q_\mathcal{H}} \end{split}$$

David Pointcheval – 33/39									
Cryptography 00000	Game-based Proofs cooccoccocco	Assumptions oo	BF IB-Encryption	Conclusion o	Cryptography 00000	Game-based Proofs 00000000000	Assumptions oo	BF IB-Encryption	Conclusion o
Security Proof					Security Proof				
Challenge	ID				Challen	ae Ciphertext			

 Game₄: True DBDH instance (g, g^α, g^β, g^γ) with h = e(g, g)^{αβγ} Use of the simulation of the Setup Oracle

Simulation of Setup

Setup(): set $P \leftarrow g^{\alpha}$

Modification of the simulation of the Random Oracle

Simulation of \mathcal{H}

If this is the *t*-th query, $\mathcal{H}(\mathcal{ID})$: $M \leftarrow g^{\beta}$, output M

Difference for the *t*-th simulation of the random oracle: we cannot extract the secret key. Since this is the challenge \mathcal{ID} , it cannot be queried to the extraction oracle:

 \implies Hop-D-Perfect: $Pr[Game_4] = Pr[Game_3]$

 Game₅: True DBDH instance (g, g^α, g^β, g^γ) with h = e(g, g)^{αβγ} We have set P ← g^α, and for the *t*-th query to H: M = g^β

Ciphertext

- Set $A \leftarrow g^{\gamma}$ and $K \leftarrow h$ to generate the encryption of m_b under \mathcal{ID}
 - \implies Hop-D-Perfect: $Pr[Game_5] = Pr[Game_4]$
 - Game₆: Random DBDH instance (g, g^α, g^β, g^γ) with h ^R ⊂ C^T ⇒ Hop-D-Comp:

 $|\Pr[\text{Game}_6] - \Pr[\text{Game}_5]| \le Adv^{dbdh}(t + q_{HT_e})$

Cryptography 00000	Game-based Proofs 00000000000	Assumptions oo	BF IB-Encryption	Conclusion o	Cryptography 00000	Game-based Proofs 00000000000	Assumptions 00	BF IB-Encryption 00000000000	© Conclusion	
Security Proof										
Conclus	ion				Outline					
In this last	Game ₆ , it is clear	that Pr[Game ∉	$] = \frac{1}{2}$		Crypto	graphy				
$ \Pr[Game_6] - \Pr[Game_5] \leq \mathrm{Adv}^{dbdh}(t + q_H \tau_{\theta})$					 Introduction Provable Security 					
$Pr[Game_5] = Pr[Game_4]$ $Pr[Game_4] = Pr[Game_3]$					Game-based Methodology Game-based Approach					

Transition Hops

David Pointcheval - 38/39

Definition
Description of BF
Security Proof

$$\mathbf{Adv}^{\mathsf{ind}-\mathsf{id}-\mathsf{cpa}}(\mathcal{A}) \leq q_{H} imes \mathbf{Adv}^{\mathsf{dbdh}}(t+q_{H} au_{e})$$

			David Pointcheval – 37/39		
Cryptography 00000	Game-based Proofs 00000000000	Assumptions oo	BF IB-Encryption 00000000000	Conclusion •	
Conclusion					
Conclus	ion				

- The game-based methodology uses a sequence of games
- The transition hops
 - are simple
 - easy to check

It leads to easy-to-read and easy-to-verify security proofs:

· Some mistakes have been found granted this methodology

[Analysis of OAEP]

· Some security analyses became possible to handle

[Analysis of EKE]

This approach can be automized

[CryptoVerif]