The Twist-Augmented Approach for Diffie-Hellman Key Exchange Entropy Smoothing and Key Derivation

David Pointcheval

CNRS - Ecole normale supérieure, FRANCE Workshop on Cryptography CIRM-Luminy, France

Joint work with Olivier Chevassut, Pierre-Alain Fouque and Pierrick Gaudry

Overview

- Authenticated Diffie-Hellman Key Exchange
- Security Model
- Usual Flaw in the Security Analysis
- The Twist-Augmented Approach

David Pointcheval - CNRS-ENS

The Twist-Augmented Approach - Luminy - November 2004

Overview

- Authenticated Diffie-Hellman Key Exchange
- Security Model
- Usual Flaw in the Security Analysis
- The Twist-Augmented Approach

Diffie-Hellman Key Exchange

Semantic security:

K is indistinguishable from a random key

- ⇒ a random bit-string
- Man-in-the-middle attacks
 - ⇒ authentication

David Pointcheval - CNRS-ENS

Authenticated Diffie-Hellman Key Exchange

 Replay attacks are still possible ⇒ explicit authentication: key confirmation rounds MACs using a key derived from K

David Pointcheval - CNRS-ENS

The Twist-Augmented Approach - Luminy - November 2004

Explicit Authentication

 Two keys (Ke and Km) have to be derived from the common secret K

David Pointcheval - CNRS-ENS

The Twist-Augmented Approach - Luminy - November 2004

Key Derivation A Classical Technique

- The usual way for the key derivation $K \rightarrow Ke$. Km is
 - $Ke = PRF_{\nu}(0)$
 - $Km = PRF_{\kappa}(1)$
- $K = g^{xy}$ is a random element in the group, (under the Decisional Diffie-Hellman assumption), but not a random bit-string in $\{0,1\}^n$
 - While this is a requirement for the PRF security!

Overview

- Authenticated Diffie-Hellman Key Exchange
- Security Model

David Pointcheval - CNRS-ENS

- Usual Flaw in the Security Analysis
- The Twist-Augmented Approach

Security Model

Two parties (Alice and Bob) agree on a **common** secret key *Ke*, in order to establish a secret channel

- Intuitive goal: implicit authentication
 - only the intended partners can compute the session key
- Formally: semantic security
 - the session key Ke is indistinguishable from a random string r, to anybody else

David Pointcheval - CNRS-ENS

The Twist-Augmented Approach - Luminy - November 2004

Semantic Security

 For breaking the semantic security, the adversary asks one **test**-query which is answered, according to a random bit b, by

• the actual secret key Ke (if b=0)

• a random bit-string r (if b=1)

 \Rightarrow the adversary has to guess this bit b

David Pointcheval - CNRS-ENS

The Twist-Augmented Approach - Luminy - November 2004

10

Security Model

As many **execute**, **send** and **reveal** queries as the adversary wants

But one **test**-query, with *b* to be guessed...

Overview

- Authenticated Diffie-Hellman Key Exchange
- Security Model
- Usual Flaw in the Security Analysis
- The Twist-Augmented Approach

David Pointcheval - CNRS-ENS

Security Analysis

- Key derivation from $K=g^{xy}$
 - $Ke = PRF_{\nu}(0)$
 - $Km = PRF_{\nu}(1)$
- Usual security analysis [SigMa:Kr02]
 - REAL: $K=g^{xy}$ $Ke=PRF_{\kappa}(0)$ $Km=PRF_{\kappa}(1)$

 X, σ

 Y, σ_{R}, μ_{R}

- RPRF: K=rand $Ke=PRF_{\kappa}(0)$ $Km=PRF_{\kappa}(1)$

- ALLR:
- Ke=rand
- Km = rand• HYBR: K=rand Ke=rand $Km=PRF_{\nu}(1)$
- RAND: $K=g^{xy}$ Ke=rand
- $Km = PRF_{\nu}(1)$

David Pointcheval - CNRS-ENS

David Pointcheval - CNRS-ENS

The Twist-Augmented Approach - Luminy - November 2004

Security Analysis: Intuition

- **REAL**: $K=g^{xy}$ $Ke=PRF_{\nu}(0)$ $Km = PRF_{\nu}(1)$
 - This the real attack game
- **RPRF**: K=rand $Ke=PRF_{\nu}(0)$ $Km = PRF_{\nu}(1)$
 - DDH assumption
- ALLR: Ke=randKm=rand
 - ◆ PRF property (2 queries), since *K=rand*
- **HYBR**: *K*=rand *Ke*=rand $Km = PRF_{\nu}(1)$
 - ◆ PRF property (1 query), since *K*=*rand*
- **RAND**: $K=g^{xy}$ Ke=rand $Km = PRF_{\nu}(1)$
 - DDH assumption
- ⇒ Ideal attack: advantage = 0

David Pointcheval - CNRS-ENS

David Pointcheval - CNRS-ENS

The Twist-Augmented Approach - Luminy - November 2004

Security Analysis: Flaw

- **REAL**: $K=g^{xy}$ $Ke=PRF_{\nu}(0)$
- $Km = PRF_{\nu}(1)$
- This the real attack game
- **RPRF**: K=rand $Ke=PRF_{\nu}(0)$ $Km = PRF_{\nu}(1)$
 - DDH assumption: K random in the group
- ALLR: *Ke=rand* Km = rand
 - PRF property (2 queries), since K random bit-string
- Idem between ALLR-HYBR & HYBR-RAND
- ⇒ One more step is needed: derive a random bit-string from a random group element

Random Group Element vs. Random Bit String

- The DDH assumption just says that (g^x, g^y, g^{xy}) and (g^x, g^y, g^z) are indistinguishable
- But (g^x, g^y, g^{xy}) and (g^x, g^y, R) (for a random bit string *R*) are not indistinguishable:
 - If the group is of even order, Legendre's symbol helps to distinguish them

The Leftover Hash Lemma

- Family of Universal Hash Functions (H)
- Leftover Hash Lemma (LHL)
 - $(H_r(g^z),r)\approx (R,r)$, statistically indistinguishable: the bias is bounded by $2^{-(e+1)}$
 - if g^z has an entropy of m bits
 - $\blacksquare H_r: \{0,1\}^n \to \{0,1\}^{m-2e},$ uniformly drawn from (H)
 - R uniformly drawn from $\{0,1\}^{m-2e}$

E.g. One wants to extract 160 bits (m-2e=160), with bias 2^{-80} (e = 80) $\Rightarrow m = 320$

David Pointcheval - CNRS-ENS

The Twist-Augmented Approach - Luminy - November 2004

17

Improvements

- Main drawback of the LHL:
 - For practical requirements, the order of the group has to be guite large
- 1st Improvement: [GKR] Eurocrypt '04
 - $(r, g, g^x, g^y, H(r,g^{xy})) \approx (r, g, g^x, g^y, H(r,g^z))$
 - Non-standard assumption: Hash-Diffie-Hellman Assumption
- 2nd Improvement: [DGHKR] Crypto '04
 - Cascade methods (E.g. CBC, HMAC)
 - Non-standard assumption: Some primitives are ideal = random
 - ⇒ Ideal-cipher/random-oracle model

David Pointcheval - CNRS-ENS

The Twist-Augmented Approach - Luminy - November 2004

Overview

- Authenticated Diffie-Hellman Key Exchange
- Security Model

David Pointcheval - CNRS-ENS

- Usual Flaw in the Security Analysis
- The Twist-Augmented Approach

Elliptic Curve and Quadratic Twist

Elliptic curve

David Pointcheval - CNRS-ENS

$$E_{ab} = \{(x,y) \mid y^2 = x^3 + ax + b \mod p\}$$

Quadratic twist, for some c∉QR(F_p)

$$\mathbf{E}_{a,b} = \{(x,y) \mid cy^2 = x^3 + ax + b \bmod p\}$$

Let x be an element in F

• If
$$x^3 + ax + b \in QR(\mathbf{F}_p)$$
,
there is $y \in \mathbf{F}_p$ such that $Q = (x,y) \in E_{a,b}$

• Else,
$$c(x^3 + ax + b) \in QR(\mathbf{F}_p)$$
,
there is $y \in \mathbf{F}_p$ such that $Q = (x,y) \in \mathbf{E}_{a,b}$

Elliptic Curve and Quadratic Twist

$$X = \{x \mid (x,y) \in E_{a,b}\}$$
 and $\mathbf{X} = \{x \mid (x,y) \in \mathbf{E}_{a,b}\}$
 $\mathbf{F}_p = X \cup \mathbf{X}$

- Hasse's Theorem: $\#X \approx \#X \approx p/2$ (bias in \sqrt{p})
- Random points $P, \mathbb{Q} \rightarrow \text{random scalar } x$
 - P (**Q** resp.) a random point on E_{ab} (**E**_{ab} resp.)
 - x_n (x_n resp.) is randomly distributed in X (**X** resp.)
 - One flips a bit $b: b=0 \Rightarrow x=x_p$, else $x=x_p$
 - x is "almost" uniformly distributed in **F** the bias is bounded by $1/\sqrt{p}$

David Pointcheval - CNRS-ENS

The Twist-Augmented Approach - Luminy - November 2004

Elliptic Curve and Quadratic Twist

- Random points P.Q
 - \rightarrow random scalar x in **F** (bias bounded by $1/\sqrt{p}$)
- Random scalar x
 - \rightarrow random bit string s in $\{0,1\}^k$
 - With a particular p: if $\frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \frac{1}{2} = \frac{1}{2$ (bias bounded by $1/\sqrt{p}$)

David Pointcheval - CNRS-ENS

The Twist-Augmented Approach - Luminy - November 2004

TAU: Twist AUgmentation

- From any AKE scheme:
 - One runs 2 executions in parallel
 - One on the curve $E_{ab} \rightarrow K$
 - One on the twist $\mathbf{E}_{\perp} \to \mathbf{K}$
 - One randomly chooses between x_{ν} and x_{ν}
 - One gets a random bit-string, a k-bit long string where k is the bit-length of p
- With a 160-bit finite field. one gets a random 160-bit string (with a bias bounded by 2⁻⁸⁰)

Explicit Authentication

The two keys (Ke and Km) are bit-strings "almost" uniformly distributed, under the DDH assumption only

David Pointcheval - CNRS-ENS

Conclusion

- Key derivation for AKE
 - Flaw in the usual technique
- New practical alternative to the LHL
 - Under the DDH assumption
 - In the standard model

David Pointcheval - CNRS-ENS

25		