REACT: Rapid Enhanced-security Asymmetric Cryptosystems Transform

Cryptography Workshop '2001 Monte Verita, Switzerland, March 2001

Tatsuaki Okamoto NTT Yokosuka - Japan David Pointcheval ENS - CNRS Paris - France

David.Pointcheval@ens.fr http://www.di.ens.fr/users/pointche

Overview

- Introduction to Encryption
- Previous conversions
- REACT: the new conversion
 - Description
 - Security Result
 - Sketch of the Proof
- Conclusion

David Pointcheval ENS-CNRS

Security Notions

Depending on the security concerns, one defines

- the goals that an adversary may would like to reach
- the means/information available to the adversary

Goals of an Adversary

 One-Wayness
 Semantic Security (Indistinguishability):
 no polynomial adversary can learn any information about the plaintext from the ciphertext and public data (but the size)

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform Cryptography Workshop - Monte Verita - Switzerland - March 2001 - 5

Kinds of Attacks

Chosen Plaintext: (basic scenario)

in the public-key setting, any adversary can get the encryption of any plaintext of her choice

Basic security level: OW-CPA

Chosen Ciphertext (adaptively):

the adversary has furthermore access to a decryption oracle which decrypts any ciphertext of her choice (excepted the specific challenge!)

Highest security level: IND-CCA

David Pointcheval ENS-CNRS

Example I: RSA Encryption

- n = pq, product of large primes
- *e*, exponent relatively prime to $\varphi(n) = (p-1)(q-1)$
- *n*, *e* : public key

• $d = e^{-1} \mod \varphi(n)$: secret key

public $\mathbf{E}(m) = m^e \mod n$

secret $\mathbf{D}(c) = c^d \mod n$

OW-CPA = RSA problem

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform Cryptography Workshop - Monte Verita - Switzerland - March 2001 - 7

Example II: El Gamal Encryption

x : secret key

• $y=g^x$: public key

public $\mathbf{E}(m) = (g^a, y^a m) \rightarrow (c, d)$

secret $\mathbf{D}(c,d) = d/c^x$

OW-CPA = CDH problem IND-CPA = DDH problem

Rapid Enhanced-security Asymmetric Cryptosystems Transform Cryptography Workshop - Monte Verita - Switzerland - March 2001 - 8

Generic Conversions

Previous Conversions: OAEP

Bellare-Rogaway (at EC '94) proposed the **Optimal Asymmetric Encryption Padding**, a very efficient conversion

It was believed to provide a conversion of any trapdoor one-way permutation into IND-CCA

Actually, it just provides a conversion of any trapdoor **partially** one-way **permutation**

Anyway, RSA is the sole application RSA-OAEP: IND-CCA=RSA [FOPS'00]

David Pointcheval ENS-CNRS

Recent Generic Conversions

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform Cryptography Workshop - Monte Verita - Switzerland - March 2001 - 11

New Conversion: REACT

PK-Cryptosystem $(\mathcal{E}, \mathcal{D})$: $\mathcal{M} \times \mathcal{R} \to C$ Block-Cipher $\mathbf{E}_k, \mathbf{D}_k$: $\{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$ Hash functions G, H

$$\mathbf{E}(m,r||s) = a = \mathcal{E}(r, s) \text{ with } r \in \mathcal{M}, s \in \mathcal{R}$$

$$b = \mathbf{E}_k(m) \text{ where } k = \mathbf{G}(r)$$

$$c = \mathbf{H}(m,r,a,b)$$

$$\mathbf{D}(a,b,c): \text{ Compute } r = \mathcal{D}(a) \text{ and } k = \mathbf{G}(r)$$

$$extract \ m = \mathbf{D}_k(b)$$

$$\text{ if } c = \mathbf{H}(m,r,a,b) \text{ and } r \in \mathcal{M} \text{ then output } m$$

New Conversion: REACT

<u>Efficiency:</u>

optimal encryption (just 2 more hashings)
optimal decryption (just 2 more hashings)

<u>Security:</u> conversion

in the random oracle model
of any *OW-PCA cryptosystem* into an IND-CCA cryptosystem

David Pointcheval ENS-CNRS Rapid Enhanced-security Asymmetric Cryptosystems Transform Cryptography Workshop - Monte Verita - Switzerland - March 2001 - 13

A New Attack: PCA

Plaintext Checking Attack: the adversary

- can get the encryption of any plaintext of her choice (by encrypting it by herself)
- has furthermore access to an oracle which, on input a pair (*m*,*c*), answers whether *c* encrypts *m*, or not

RSA function: OW-PCA = RSA EI Gamal: OW-PCA = GDH

Symmetric Encryption Scheme

One just needs a symmetric encryption (E_k, D_k) semantically secure against passive attacks:
◆ One-Time Pad: perfectly secure (Adv^E = 0)
◆ Any classical scheme (DES, IDEA, AES,...) Adv^E = v (very small)

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform Cryptography Workshop - Monte Verita - Switzerland - March 2001 - 15

$$\begin{split} \textbf{Security Result} \\ \textbf{S}: \mathcal{M} \to \{0,1\}^{\ell_{G}} \quad \textbf{H}: \{0,1\}^{*} \to \{0,1\}^{\ell_{H}} \\ \\ \textbf{If an adversary A against IND-CCA} \\ \textbf{reaches an advantage Adv}^{A} > \textbf{Adv}^{E} \\ \textbf{after } q_{G}, q_{H} \textbf{ and } q_{D} \textbf{ queries} \\ \textbf{to } G, \textbf{ H} \textbf{ and } D \textbf{ resp.} \\ \textbf{one can break the OW-PCA of } (\mathcal{E}, \mathcal{D}) \\ \textbf{with probability greater than} \\ \\ \frac{\textbf{Adv}^{A} - \textbf{Adv}^{E}}{2} - \frac{q_{D}}{2^{\ell_{H}}} \end{split}$$

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform Cryptography Workshop - Monte Verita - Switzerland - March 2001 - 16

Semantic Security (OTP)

Given (a,b,c) such that $a = \mathcal{E}(r,s),$ $k = G(r), b = k \oplus m,$ c = H(m,r,a,b) $\mathbf{E}(m,r||s) = a = \mathcal{E}(r, s) \text{ with } r \in \mathcal{M}, s \in \mathcal{R}$ $b = \mathbf{E}_k(m) \text{ where } k = \mathbf{G}(r)$ $c = \mathbf{H}(m,r,a,b)$ $\mathbf{D}(a,b,c) = \text{ Compute } r = \mathcal{D}(a) \text{ and } k = \mathbf{G}(r)$ $extract \ m = \mathbf{D}_k(b)$ $\text{ if } c = \mathbf{H}(m,r,a,b) \text{ and } r \in \mathcal{M} \text{ then output } m$

In order to guess the bit *d* such that $m = m_d$ an adversary has to ask either

• r to G to get k (and check b)

• (m_0, r, a, b) or (m_1, r, a, b) to H (and check c)

because of the randomness of G and H

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform Cryptography Workshop - Monte Verita - Switzerland - March 2001 - 17

Semantic Security (OTP Cont'd)

Probability that $r (= \mathcal{D}(a))$ has been asked to G or H greater than $Adv^{A}/2$

Simply find the good one with the PC-oracle, into all the G queries and the H queries $\Rightarrow q_{\rm G} + q_{\rm H}$ queries to the PC-oracle

Plaintext Extractor

valid ciphertext \Rightarrow one has asked for (m', r', a', b') to H to get a valid c' or has guessed it, (but with probability less than $1/2^{\ell_H}$) \Rightarrow simply looks into the H queries

C' = (a', b', c')

Correct extraction with probability greater than $1 - 1/2^{\ell_H}$

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform Cryptography Workshop - Monte Verita - Switzerland - March 2001 - 19

 $\mathbf{E}(m,r||s) = a = \mathcal{E}(r, s)$ with $r \in \mathbf{M}$, $s \in \mathcal{R}$

c = H(m, r, a, b)

 $b = \mathbf{E}_{\mu}(m)$ where $k = \mathbf{G}(r)$

 $\mathbf{D}(a,b,c) =$ Compute $r = \mathcal{D}(a)$ and k = G(r)extract $m = \mathbf{D}_k(b)$

Applications

RSA: IND-CCA=RSA alternative to RSA-OAEP

El Gamal: IND-CCA=GDH Rk: On Elliptic Curves = PSEC-3

- REACT-EI Gamal is the most efficient EI Gamal variant:
 - 1 exp./Enc + 2 hashings
 - 2 exp./Dec + 2 hashings

Conclusion on REACT

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform Cryptography Workshop - Monte Verita - Switzerland - March 2001 - 21