Com²MaC Workshop on Cryptography 26-28 june 2000 - Pohang - South Korea

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Overview

- Introduction
- Security Arguments
- Signature
- Encryption
- Conclusion

Com²MaC Workshop on Cryptography 26-28 june 2000 - Pohang - South Korea

Introduction

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Cryptography

Cryptography:

to solve security concerns

Authentication

Integrity

Confidentiality

 \Rightarrow encryption

David Pointcheval ENS-CNRS

Authentication/Integrity

To build such primitives, one needs *(trapdoor)* **one-way functions**:

 $x \rightarrow y = f(x)$ is easy (Encryption, Verification) $y = f(x) \rightarrow x$ is difficult (Decryption, Signature)

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 7

Conventional Cryptography

 f is an intricate network of permutations/substitutions,
 parameterized by a secret key

 $\mathbf{E}_k = f_k$ $\mathbf{D}_k = f_k^{-1}$

 f_k and f_k^{-1} are both "easy" to compute with k f_k and f_k^{-1} are both "difficult" to compute without kdifficult: heuristic!

David Pointcheval ENS-CNRS

One-Way Functions

NP-complete problems:

hard in the worst-case what about the average case?

 hard asymptotically what about the difficulty of instances of reasonable size (few bytes)?

 \Rightarrow quite few candidates (for signature)

Number Theory:

• factorization \Rightarrow RSA, etc

• discrete logarithm \Rightarrow Diffie-Hellman, etc

The Discrete Logarithm

David Pointcheval ENS-CNRS Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 11

Various Groups

David Pointcheval ENS-CNRS

Any Trapdoor ...?

The Discrete Logarithm is difficult
But no information could make it easier!
The Diffie-Hellman Problem (1976):

- Given $A = g^a$ and $B = g^b$
- Compute $DH(A,B) = C = g^{ab}$

Clearly DH \leq DL: with $a = \text{Log}_g A$, $C = B^a$

C-DH Assumption: the DH-problem is intractable

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 13

Another DL-based Problem

The Decisional Diffie-Hellman Problem:

• Given A, B and C in $\langle g \rangle$

• Decide whether C = DH(A,B)

Clearly $D-DH \le DH \le DL$

D-DH Assumption: the D-DH-problem is intractable

David Pointcheval ENS-CNRS

Application: El Gamal Encryption

• **G** = ($\langle g \rangle$, ×) group of order q

x : secret key

• $y=g^x$: public key

public $\mathbf{E}(m) = (g^a, y^a m) \rightarrow (c, d)$

secret $\mathbf{D}(c,d) = d/c^x$

One-Wayness = C-DH Semantic Security = D-DH

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 15

Com²MaC Workshop on Cryptography 26-28 june 2000 - Pohang - South Korea

Security Arguments

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Security Notions

Depending on the security concerns, one defines

 the goals that an adversary may would like to reach

 the means/information available for the adversary

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 17

Security Proofs

One provides a reduction from a "difficult" problem *P* to an attack *Atk*:

A reaches the "prohibited" goals
 ⇒ A can be used to break P

no further hypothesis: standard model

♦ but that rarely leads to efficiency!
 ⇒ some assumptions

Security Arguments

One provides a reduction from a "difficult" problem *P* to an attack *Atk*, under some ideal assumptions: • ideal random hash function: random oracle model • ideal symmetric encryption: ideal cipher model • ideal group: generic model (generic adversaries) The weakest: Random Oracle Model (ROM)

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 19

Com²MaC Workshop on Cryptography 26-28 june 2000 - Pohang - South Korea

Signature

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Authentication

Security Notions

Total Break: to recover the secret key Universal Forgery: to be able to sign any message Existential Forgery: to produce a new valid pair (m,σ) (possibly *m* is without any meaning)

Kinds of Attacks

no-message: the adversary just knows the public key known-message: she knows some message-signature pairs (adaptively) chosen-message she has access to a signature oracle

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 23

Secure Signature

A Signature Scheme is said SECURE if it prevents any existential forgery even under adaptively chosen-message attacks
Then, the signature guarantees:
the identity of the sender
the non-repudiation: the sender won't be able to deny it later

Schnorr's Signature (1989)

G = $\langle g \rangle$, *q* and *g* : **common data** *x* : **secret** key $y=g^x$: **public** key

Signature of the message m: choose a random $k \in \mathbb{Z}_q$ compute $r=g^k$ get e=h(m,r) and $s=k-xe \mod q$

 $\sigma = (e,s)$

Verification of (m,σ) : $u = g^s y^e (= g^{k-xe} g^{xe})$ test whethere=h(m,u)?

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 25

Security?

Existential Forgery under chosen-message attacks (in the random oracle model) = computation of discrete logarithms

(Pointcheval-Stern EC '96)

Idea: Forking Lemma

Trusted El Gamal Type Signatures Schemes (BPVY PKC '00)

Key-Gen: $x \in \mathbb{Z}_q$ and $y = g^x$

• Two hash functions G and H

- $F_1: \mathbb{Z}_a \times \mathbb{Z}_a \times \mathbb{G} \times \mathbb{H} \to \mathbb{Z}_a$
- $F_2: \mathbb{Z}_q \times \mathbb{G} \times \mathbb{H} \to \mathbb{Z}_a$
- $F_{\mathfrak{Z}}: \mathbf{Z}_{q}^{\mathsf{T}} \times \mathbf{G} \times \mathbf{H} \to \mathbf{Z}_{q}^{\mathsf{T}}$

such that, for all $(k, x, t, u) \in \mathbb{Z}_q \times \mathbb{Z}_q \times \mathbb{G} \times \mathbb{H}$ $F_2(F_1(k, x, t, u), t, u) + x F_3(F_1(k, x, t, u), t, u) = k \mod q$ $\implies g^{E_g} y^{E_y} = g^k \text{ where } s = F_1(k, x, t, u)$ $E_g = F_2(s, t, u) \text{ and } E_y = F_3(s, t, u)$

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 27

TEGTSS - I

Sign(*m*): $k \in \mathbb{Z}_q^*$ and $r = g^k$ t = G(m) and u = H(r)then $s = F_1(k, x, t, u) \longrightarrow \sigma = (s, t, u)$ Ver(*m*, σ): check if t = G(m) and u = H(w), where $w = g^{E_g} y^{E_y}$ with $E_g = F_2(s, t, u)$ and $E_y = F_3(s, t, u)$ and 2 further properties...

TEGTSS - I: Security

KCDSA: $F_1(k, x, t, u) = (k - t \oplus u)/x \mod q$ $F_2(s, t, u) = t \oplus u \mod q$ and $F_3(s, t, u) = s \mod q$

Security Claim:

If *H* behaves like a random oracle but *G* is just collision-resistant then existential forgery = extraction of *x* **Proof:** use of the Forking Lemma [PS96]

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 29

TEGTSS - II

Sign(*m*): $k \in \mathbb{Z}_q^*$ and $r = g^k$ t = G(r) and u = H(m,t)then $s = F_1(k,x,t,u) \rightarrow \sigma = (s,t,u)$ Ver(*m*, σ): check if t = G(w) and u = H(m,t), where $w = g^{E_g} y^{E_y}$ with $E_g = F_2(s,t,u)$ and $E_y = F_3(s,t,u)$ and a further property

TEGTSS - II: Security

DSA-II: $F_1(k,x,t,u) = (u + xt)/k \mod q$ $F_2(s,t,u) = u/s \mod q$ and $F_3(s,t,u) = t/s \mod q$

Security Claim:

If *H* behaves like a random oracle, but • $x \to G(x)$ is (l + 1)-collision-resistant • <u>OR</u> $x \to G(g^x)$ is (l + 1)-collision-free then existential forgery = extraction of x

Proof: an improved forking lemma

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 31

Applications: KCDSA

KCDSA:

provably secure
 if both *G* and *H* behave
 like random oracles

But one can weaken assumptions:

provably secure
 if *H* behaves like a random oracle
 but *G* just collision-resistant

Com²MaC Workshop on Cryptography 26-28 june 2000 - Pohang - South Korea

Encryption

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Asymmetric Encryption

Better security?

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 35

Kinds of Attacks

Chosen Plaintext: (basic scenario)

in the public-key setting, any adversary can get the encryption of any plaintext of her choice (by encrypting it by herself)

Chosen Ciphertext (adaptively):

the adversary has furthermore access to a decryption oracle which decrypts any ciphertext of her choice, but the specific challenge

Required Security

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 37

Main Security Notions

OW-CPA: (the weakest)

 $\Pr_{m,r}[A(c) = m | c = \mathbf{E}(m;r)] = \text{Succ negligible}$

$$2\Pr_{r,b}\left[A_2^{\mathbf{D}}(m_0,m_1,c,s)=b \begin{vmatrix} (m_0,m_1,s) \leftarrow A_1^{\mathbf{D}}(k_e) \\ c \leftarrow \mathbf{E}(m_b,r) \end{vmatrix}\right] - 1$$

= Adv negligible

DL-based Cryptosystems

El Gamal:

- \bullet OW-CPA = C-DH
- IND-CPA = D-DH
- CCA ? No because of malleability

Cramer-Shoup:

- IND-CCA = D-DH
- PSEC (Okamoto-Fujisaki-Morita):
 PSEC-1: IND-CCA = D-DH (+ROM)
 PSEC-2: IND-CCA = C-DH (+ROM)

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 39

Generic Conversions

 Any trapdoor one-way function leads to a OW-CPA cryptosystem

But OW-CPA not enough

How to reach IND-CCA ?

⇒ generic conversions from OW-CPA to IND-CCA

Conversions (1/3)

OAEP (Bellare-Rogaway EC '94)
 optimal conversion of

 any *trapdoor one-way permutation* into an IND-CCA cryptosystem

 <u>Efficiency:</u> optimal (just 2 more hashings)
 <u>Application:</u> RSA

 (the sole candidate as

 trapdoor one-way permutation!)

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 41

Conversions (2/3)

Fujisaki-Okamoto (PKC '99)

conversion of any *IND-CPA cryptosystem*

into an IND-CCA cryptosystem

<u>Drawback:</u> security relative to decisional problems (D-DH, Higher Residuosity, ...) Efficiency:

optimal encryption (just 2 more hashings)

non-optimal decryption (1 re-encryption)

David Pointcheval ENS-CNRS

Conversions (3/3)

PSEC - OCAC

 PSEC 1: Fujisaki-Okamoto (PKC'99) conversion applied on El Gamal

for which IND-CPA = D-DH

PSEC 2: Fujisaki-Okamoto (Crypto'99) conversion applied on El Gamal for which OW-CPA = C-DH

PSEC 3: Okamoto-Pointcheval

new conversion (OCAC) which makes any OW-PCA cryptosystem into an IND-CCA cryptosystem

A New Attack: PCA

Plaintext Checking Attack: the adversary

- can get the encryption of any plaintext of her choice (by encrypting it by herself)
- has furthermore access to an oracle which, on input a pair (*m*,*c*), answers whether *c* encrypts *m*, or not

Remark: IND-PCA cannot be achieved \Rightarrow we will just be interested in OW-PCA

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm

Pohang - South Korea - June 26th 2000 - 45

David Pointcheval ENS-CNRS

A New DL-based Problem: G-DH
Diffie-Hellman Problems:

omputational
Given A=g^a and B=g^b
Compute DH(A,B) = C=g^{ab}

of decisional

Given A, B and C in <g>
Decide whether C = DH(A,B)

Of ap

Solve the computational problem, with access to a decisional oracle

ENS-CNRS

Intractability of the Gap-DH

The Computational Diffie-Hellman problem is believed intractable for suitable groups Gap-DH easy \Rightarrow D-DH = C-DH D-DH easy \Rightarrow G-DH = C-DH The Computational Diffie-Hellman problem is believed strictly stronger than the Decisional version \Rightarrow G-DH intractable El Gamal OW-PCA = G-DH

David Pointcheval ENS-CNRS

Secure Designs for Public-Key Cryptography based on the Discrete Logarithm Pohang - South Korea - June 26th 2000 - 47

PSEC - 3

G and H: two hash functions
E, D: symmetric encryption scheme

David Pointcheval ENS-CNRS

Security Result One just needs a symmetric encryption semantically secure against passive attacks: One-Time Pad: perfectly secure (Adv^E = 0) Any classical scheme (DES, IDEA, AES,...) $Adv^{E} = v$ (very small) If an adversary A against IND-CCA reaches an advantage Adv^A > Adv^E one can break the Gap-DH problem with probability greater than $(Adv^{A} - Adv^{E})/2 - q_{D}/2^{l_{H}}$ **David Pointcheval** Secure Designs for Public-Key Cryptography based on the Discrete Logarithm **ENS-CNRS**

Semantic Security (OTP)

Given $A \leftarrow g^a$, $A' \leftarrow R y^a = R$. DH(A,y)

 $k \leftarrow G(R), B \leftarrow k \oplus m, C \leftarrow H(A, A', R, m)$

In order to guess b such that $m = m_b$

an adversary has to ask either

• R to G to get k

(and check B)

• (A,A',R,m) to H

(and check C)

Pohang - South Korea - June 26th 2000 - 49

because of the randomness of G and H

Probability that R (=A'/DH(A,y)) has been asked to G or H greater than $Adv^{A/2}$

Plaintext Extractor

CCA Security

After $q_{\mathbf{D}}$ queries to the decryption oracle

 all the decryptions are correctly simulated with probability greater than

 $(1 - 1/2^{l_H})^{q_D} \ge 1 - q_D / 2^{l_H}$

R has been asked to G or H with probability greater than

Efficiency

This is the most efficient El Gamal variant: only 2 exp./Enc and just 1 exp./Dec
Tsiounis-Yung (PKC '98) D-DH + ROM + Other 3 exp./Enc - 3 exp./Dec
Shoup-Gennaro (EC '98) D-DH + ROM 5 exp./Enc - 7 exp./Dec
Cramer-Shoup (Crypto '98) D-DH 5 exp./Enc - 3 exp./Dec
PSEC-1/2 (PKC '99/Crypto '99) D/C-DH + ROM 2 exp./Enc - 3 exp./Dec

Com²MaC Workshop on Cryptography 26-28 june 2000 - Pohang - South Korea

Conclusion

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Conclusion

♦ One-Way problem ⇒ Secure Signature

 Trapdoor One-Way problem: Diffie-Hellman problems

- computational
- decisional
- **g**ap

 \Rightarrow Secure Encryption

- All are homomorphic
 - \Rightarrow Efficiency

David Pointcheval ENS-CNRS