Plaintext Awareness, Non-Malleability and Chosen Ciphertext Security: Implications and Separations

Mihir Bellare*, Anand Desai*, David Pointcheval[†] and Phillip Rogaway[‡]

* University of California at San Diego
 † Université de Caen/École Normale Supérieure
 ‡ University of California at Davis

PA, NM and CCS: Implications and Separations

Summary

- Introduction
- Encryption Schemes
 - Definition
 - Notions of Security
- State of the Art
- Goals
- Our Relations
- One Easy Proof
- Some Remarks
- Conclusion

M. Bellare, A. Desai, D. Pointcheval and P. Rogaway

Chosen Ciphertext Security v1 – CCS-1 (Naor-Yung 1990) a.k.a. lunchtime attack. Encryption scheme: $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ Adversary: $A = (A_1, A_2)$ For any $k \in \mathbb{N}$ define $\operatorname{Adv}_{A,\Pi}^{\operatorname{CCS-1}}(k) \stackrel{\text{def}}{=}$ $2 \cdot \Pr[(pk, sk) \leftarrow \mathcal{K}(1^k); (x_0, x_1, s) \leftarrow A_1^{\mathcal{D}_{sk}}(pk);$ $b \leftarrow \{0, 1\}; y \leftarrow \mathcal{E}_{pk}(x_b) : A_2(x_0, x_1, s, y) = b] - 1.$ Π is CCS-1-secure iff $A \operatorname{PPTM} \Longrightarrow \operatorname{Adv}_{A,\Pi}^{\operatorname{CCS-1}}(k)$ negligible.

M. Bellare, A. Desai, D. Pointcheval and P. Rogaway

PA, NM and CCS: Implications and Separations

Chosen Ciphertext Security v2 – CCS-2

(Rackoff-Simon 1991)

Encryption scheme: $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ Adversary: $A = (A_1, A_2)$

For any $k \in \mathbb{N}$ define $\operatorname{Adv}_{A,\Pi}^{\operatorname{ccs-2}}(k) \stackrel{\text{def}}{=}$

$$2 \cdot \Pr\left[(pk, sk) \leftarrow \mathcal{K}(1^k) ; (x_0, x_1, s) \leftarrow A_1^{\mathcal{D}_{sk}}(pk) ; \\ b \leftarrow \{0, 1\} ; y \leftarrow \mathcal{E}_{pk}(x_b) : A_2^{\mathcal{D}_{sk}}(x_0, x_1, s, y) = b] - 1 .$$

$$\square \text{ is } CCS\text{-}2\text{-secure iff}$$

$$A \text{ PPTM } \Longrightarrow \text{Adv}_{A,\Pi}^{\text{CCS-2}}(k) \text{ negligible.}$$

M. Bellare, A. Desai, D. Pointcheval and P. Rogaway

PA, NM and CCS: Implications and Separations

Non-Malleability – *NM*

(Dolev–Dwork–Naor 1991)

Encryption scheme: $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ Adversary: $A = (A_1, A_2)$ Simulator: A_2^*

For any $k \in \mathbb{N}$: $\operatorname{Adv}_{A,A_2^*,\Pi}^{\operatorname{nm}}(k) \stackrel{\text{def}}{=} \operatorname{Succ}_{A,\Pi}^{\operatorname{nm}}(k) - \operatorname{Succ}_{(A_1,A_2^*),\Pi}^{\operatorname{nm}}(k)$, where

$$\begin{aligned} \mathsf{Succ}_{A,\Pi}^{\mathsf{nm}}(k) &= \mathsf{Pr}\left[(pk,sk) \leftarrow \mathcal{K}(1^k) ; \ (M,R,s) \leftarrow A_1(pk) ; \ x \leftarrow M ; \\ \alpha \leftarrow \mathcal{E}_{pk}(x) ; \ \alpha' \leftarrow A_2(\alpha,M,R,s) : \ R(x,\mathcal{D}_{sk}(\alpha'))\right] \\ \mathsf{Succ}_{(A_1,A_2^*),\Pi}^{\mathsf{nm}}(k) &= \mathsf{Pr}\left[(pk,sk) \leftarrow \mathcal{K}(1^k) ; \ (M,R,s) \leftarrow A_1(pk) ; \ x \leftarrow M ; \\ \alpha' \leftarrow A_2^*(|x|,M,R,s,pk) : \ R(x,\mathcal{D}_{sk}(\alpha'))\right]. \end{aligned}$$

$$\Pi \text{ is } NM \text{ iff}$$
$$\forall A \text{ PPTM } \exists A_2^* \text{ PPTM s.t. } \operatorname{Adv}_{A,A_2^*\Pi}^{\operatorname{nm}}(k) \text{ negligible}$$

M. Bellare, A. Desai, D. Pointcheval and P. Rogaway

PA, NM and CCS: Implications and Separations

Plaintext Awareness – PA

(Bellare–Rogaway 1994)

Encryption scheme: $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ Adversary: *B* Knowledge extractor: *K*

For any $k \in \mathbb{N}$ define $\operatorname{Succ}_{K,B,\Pi}^{\operatorname{pa}}(k)$

 $\Pr\left[H \leftarrow \mathsf{Hash}; \ (pk, sk) \leftarrow \mathcal{K}(1^k); \ (Hlist, \mathcal{E}list, y) \leftarrow \mathsf{run} \ B^{H, \mathcal{E}^H_{pk}}(pk) : \\ \mathcal{K}(Hlist, \mathcal{E}list, y, pk) = \mathcal{D}^H_{sk}(y) \& y \notin \mathcal{E}list \right].$

K is a $\lambda(k)$ -extractor $\iff \forall B$, $\operatorname{Succ}_{K,B,\Pi}^{\operatorname{pa}}(k) \geq \lambda(k)$.

 Π is *PA* iff Π is *IND*-secure and $\exists \lambda(k)$ -extractor with $1 - \lambda(k)$ negligible

M. Bellare, A. Desai, D. Pointcheval and P. Rogaway

PA, NM and CCS: Implications and Separations	
State of the Art	
• Semantic Security (basic requirement for encryption schemes) is equivalent to Indistinguishability	
• Many people are aware that $CCS-2 \implies NM$ (no proof has never appeared)	
• Bellare and Rogaway (Eurocrypt '94) hinted that $PA \implies CCS-2$ (and NM).	
Is it true? What about the other direction? What about $CCS-1$ and NM ?	
M. Bellare, A. Desai, D. Pointcheval and P. Rogaway	9
PA, NM and CCS: Implications and Separations	
Goals	
Provide the confirmation of everything is assumed and study the relation between each possible pairs:	
Implication: proofSeparation: counter-example	
We would like everything to be true independently of the model (standard model, random oracle model,)	

M. Bellare, A. Desai, D. Pointcheval and P. Rogaway

Our relations

M. Bellare, A. Desai, D. Pointcheval and P. Rogaway

PA, NM and CCS: Implications and Separations

Proof of theorem 1: $CCS-2 \implies NM$

 $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is *CCS-2*-secure, is it *NM*-secure?

Let $A = (A_1, A_2)$ be an *NM*-adversary against Π , we want to construct a simulator A_2^* :

 $\begin{array}{l} A_2^*(n,M,R,s,pk) \\ x \leftarrow M; \ \alpha \leftarrow \mathcal{E}_{pk}(x) \\ \alpha' \leftarrow A_2(\alpha,M,R,s) \\ \text{Return } \alpha' \end{array}$

 $\operatorname{Adv}_{A,A_2^*,\Pi}^{\operatorname{nm}}(k)$?

M. Bellare, A. Desai, D. Pointcheval and P. Rogaway

PA, NM and CCS: Implications and Separations

Proof (cont'd)

Let us consider the following CCS-2-attacker $B = (B_1, B_2)$:

$B_1^{\mathcal{D}_{sk}}(pk)$	$B_2^{\mathcal{D}_{sk}}(x_0, x_1, s' = (M, R, s), y = \mathcal{E}_{pk}(x_b))$
$(M, R, s) \leftarrow A_1(pk)$	$lpha' \leftarrow A_2(y, M, R, s)$
$x_0 \leftarrow M; \ x_1 \leftarrow M$	if $R(x_0, \mathcal{D}_{sk}(lpha'))$ then $d \leftarrow 0$
$s' \leftarrow (M, R, s)$	else $d \leftarrow \{0, 1\}$
Return (x_0, x_1, s')	Return d

$$\begin{aligned} \mathsf{Adv}_{A,\Pi}^{\mathsf{ccs}-2} &= 2 \cdot \mathsf{Pr}[B_2^{\mathcal{D}_{sk}}(x_0, x_1, s', y) = b] - 1 \\ &= \mathsf{Pr}[B_2^{\mathcal{D}_{sk}}(x_0, x_1, s', y) = 1 | b = 1] - \mathsf{Pr}[B_2^{\mathcal{D}_{sk}}(x_0, x_1, s', y) = 1 | b = 0] \\ &= (\mathsf{Pr}[\neg R(x_0, \mathcal{D}_{sk}(\alpha')) | b = 1] - \mathsf{Pr}[\neg R(x_0, \mathcal{D}_{sk}(\alpha')) | b = 0])/2 \\ &= (\mathsf{Pr}[R(x_0, \mathcal{D}_{sk}(\alpha')) | b = 0] - \mathsf{Pr}[R(x_0, \mathcal{D}_{sk}(\alpha')) | b = 1])/2 \\ &= (\mathsf{Succ}_{A,\Pi}(k) - \mathsf{Succ}_{A,A_2^*,\Pi}(k))/2 = \mathsf{Adv}_{A,A_2^*,\Pi}^{\mathsf{nm}}(k)/2 \end{aligned}$$

M. Bellare, A. Desai, D. Pointcheval and P. Rogaway

PA, NM and CCS: Implications and Separations

• This work showed that the original notion of *PA* was not right: to imply *CCS-2* (and even *NM*), the adversary needs access to an encryption oracle.

Otherwise, one can construct a counter-example.

• Unfortunately, we also proved that *PA* cannot be achieved out of the random oracle model.

PA, NM and CCS: Implications and Separations Conclusion • This work achieves its goal: all the implications are proven as well as the gaps (separations). • It remains an interesting open question to find an analogous but achievable formulation of Plaintext-Awareness for the standard model. M. Bellare, A. Desai, D. Pointcheval and P. Rogaway 15