David Pointcheval

David.Pointcheval@info.unicaen.fr

GREYC Université de Caen

Strengthened Security for Blind Signatures

Summary

- Blind Signatures
 - Definition
 - Security
- Previous Results
- New Scheme
 - Presentation
 - Security
- Conclusion

Blind Signatures

An authority helps a user to get a valid signature

the message and the signature must remain unknown for the authority

- \Rightarrow (revokable) anonymity
- electronic cash schemes
- electronic voting
- ...

David Pointcheval 1

Strengthened Security for Blind Signatures

Security Properties

• $(\ell, \ell+1)$ -forgery: after ℓ interactions with the authority the attacker can forge $\ell+1$ message—signature valid pairs.

Attacks

- **Sequential attack:** the attacker interacts sequentially with the signer.
- Parallel attack: the attacker can initiate several interactions at the same time with the signer, in any order he wants.

Previous Results

- Complexity-Based Security: at last Crypto, [JLO-97] proved the existence of secure schemes using secure signature schemes and multi-party computation
 - \implies totally inefficient, and even impractical.
- Random Oracle Model: [PS-96] proposed first proofs for witness-indistinguishable-based schemes (WI is needed for simulation of the signer).

David Pointcheval 3

Strengthened Security for Blind Signatures

Okamoto-Schnorr Blind Scheme

Authority – Σ Alice public: p, q, g, h, y $\mathrm{secret}: \ y = g^{-r} h^{-s} \bmod p$ $t, u \in (\mathbb{Z}/q\mathbb{Z})^*$ $a = g^t h^u \mod p$ $\beta, \gamma, \delta \in \mathbb{Z}/q\mathbb{Z}$ $\alpha = ag^{\beta}h^{\gamma}y^{\delta} \bmod p$ $\varepsilon = H(m, \alpha)$ $e = \varepsilon - \delta \mod q$ $R = t + er \mod q$ R, S $S = u + es \mod q$ $g^R h^S y^e \stackrel{?}{=} a \mod p$ $\rho = R + \beta \mod q$ $\sigma = S + \gamma \mod q$ $(m, \alpha, \varepsilon, \rho, \sigma)$ s.t. $\alpha = q^{\rho} h^{\sigma} y^{\varepsilon} \mod p$ with $\varepsilon = H(m, \alpha)$.

Security Result [PS-96]

If \mathcal{A} is a PPTM which can perform an $(\ell, \ell+1)$ -forgery, under a parallel attack,

- after Q queries to the random oracle,
- with probability $\varepsilon \geq 4Q^{\ell+1}/q$.

The Discrete Logarithm Problem can be solved

- after 2 calls to A
- with probability greater than

$$\frac{1}{4\ell} \times \left(\frac{\varepsilon}{12\ell Q^{\ell+1}}\right)^3$$
.

Remark: there are less than $Q^{\ell+1}$ possibilities to choose $\ell+1$ hash values among Q.

David Pointcheval 5

Strengthened Security for Blind Signatures

Extension

(Extension of the non-uniform reduction of [P-96]) If $\mathcal A$ is a PPTM which can perform an $(\ell,\ell+1)$ -forgery, under a parallel attack,

- after Q queries to the random oracle,
- after R initiated interactions, (but only ℓ ended ones),
- with probability $\varepsilon \geq 4Q^{\ell+1}R^{\ell}/q$.

The Discrete Logarithm Problem can be solved

- after $33Q\ell/\varepsilon$ calls to $\mathcal A$
- with probability greater than $\frac{1}{72\ell^2}$.

Remark: there are less than $Q^{\ell+1} \times R^\ell$ possibilities to choose $\ell+1$ hash values among Q and ℓ ended interactions among R initiated ones.

Asymptotically

k is the security parameter.

If |q| = k and $\ell \ll k/\log k$, for any polynomial P, Q and A,

 $4Q^{\ell+1}R^{\ell}/q \le 1/A$, for k large enough.

 $\implies \ell$ poly-logarithmically bounded.

David Pointcheval 7

Strengthened Security for Blind Signatures

Generic Transformation

It is a kind of "cut-and-choose":

- we duplicate everything except the final answer;
- we ask the user to commit its "blinding" factors;
- after the 2 queries:

the authority randomly chooses one, $I \in_R \{0,1\}$ and checks its well-construction then answers the other query, e_{1-I} .

Authority Alice public: p, q, g, h, ysecret: $y = g^{-r}h^{-s} \mod p$ for i = 0, 1, $\beta_i, \gamma_i, \delta_i \in \mathbb{Z}/q\mathbb{Z}$ ϕ_i, ψ_i random, $\mu_i = H(m, \phi_i)$ h_0, h_1 $h_i = H(\beta_i, \gamma_i, \delta_i, \mu_i, \psi_i)$ for i = 0, 1, $t_i, u_i \in \mathbb{Z}/q\mathbb{Z}$ a_0, a_1 $a_i = q^{t_i} h^{u_i} \mod p$ for i = 0, 1, $\alpha_i = a_i g^{\beta_i} h^{\gamma_i} y^{\delta_i} \mod p$ e_0, e_1 $e_i = H(\mu_i, \alpha_i) - \delta_i \mod q$ Ι $I \in \{0, 1\}$ $eta_I, \gamma_I, \delta_I, \mu_I, \psi_I$ Verification of h_I and e_I $R = t_{1-I} + e_{1-I} \cdot r \mod q$ R, S $S = u_{1-I} + e_{1-I} \cdot s \mod q$ $a_{1-I} \stackrel{?}{=} g^R h^S y^{e_{1-I}} \mod p$ $\rho = R + \beta_{1-I} \bmod q$ $\sigma = S + \gamma_{1-I} \bmod q$

David Pointcheval 9

Then $\alpha = g^{\rho}h^{\sigma}y^{\varepsilon} \mod p$, $\mu = H(m, \phi)$ and $\varepsilon = H(\mu, \alpha)$ where $\alpha = \alpha_{1-I}$ and $\phi = \phi_{1-I}$

Strengthened Security for Blind Signatures

Claim

 Synchronized Parallel Attack: the attacker can initiate several interactions at the same time with the signer, but for each round, indexes follow the same order.

seq. attack < synchr. parallel attack < parallel attack

- Security: If there exist polynomials ℓ , Q and P, and a PPTM $\mathcal A$ which can perform an $(\ell,\ell+1)$ -forgery, under a synchronized parallel attack,
 - ullet after Q queries to the random oracle,
 - with probability $\varepsilon \geq 1/P$.

The Discrete Logarithm Problem can be solved

- after $\mathcal{O}(\log k)Q/\varepsilon$ calls to \mathcal{A}
- with probability greater than $\Omega(1/(\log k)^2)$.

Reduction

- New scheme
- Signer signer
- \mathcal{S} Simulator

- OS scheme
- \mathcal{A} attacker Σ signer
- f random oracle H S-controled
- Attacker attacker
- random oracle

David Pointcheval

11

Strengthened Security for Blind Signatures

- \mathcal{A} sends h_0 and h_1 ;
- S randomly chooses $i \in \{0, 1\}$:
 - 1. \mathcal{S} begins an alone simulation: a_{1-i} , challenge w \mathcal{S} looks, in the table of f, for j: $h_{1-i} = \rho_j$. j exists: $\mathcal{Q}_j = (\beta, \gamma, \delta, \mu, \psi) \implies \alpha$ \mathcal{S} defines $H(\mu, \alpha) = w + \delta$ and $E_{1-i} = w$.

Otherwise, it lets $E_{1-i} = \infty$;

2. $\mathcal S$ asks to Σ : a_i

As above:
$$Q_j = (\beta, \gamma, \delta, \mu, \psi)$$
, $\Longrightarrow \alpha$ and define $E_i = f(\mu, \alpha) - \delta$, or $E_i = \infty$;

 \mathcal{S} :

- 3. It sends a_0 and a_1 to \mathcal{A} ;
- \mathcal{A} sends the challenges e_0 and e_1 ;
- If $(e_0, e_1) = (E_0, E_1)$ then \mathcal{S} defines I = i, asks I; else it lets I = 1 i.
- \mathcal{A} answers $\beta', \gamma', \delta', \mu', \psi'$;
- \mathcal{S} checks whether $h_I = f(\beta', \gamma', \delta', \mu', \psi')$.

False: S stops the game;

True: if I=i then $\mathcal S$ ends its simulation else $\mathcal S$ sends $\Sigma(e_{1-I})=(R,S)$.

Properties

Let us assume that $\mathcal A$ can perform an $(\ell,\ell+1)$ -forgery against Signer under a **synchronized parallel attack** for ℓ polynomially bounded.

The number of initiated interactions with Σ is equal to ℓ . We denote by λ the number of complete interactions with Σ .

- 1. \mathcal{A} cannot distinguish $\mathcal{S} \cup \Sigma$ from Signer;
- 2. The number of valid signatures (w.r.t. f) is greater than $\lambda + 1$;
- 3. With probability greater than 1/16, $\lambda \leq \log(4/\epsilon)$

David Pointcheval 13

Strengthened Security for Blind Signatures

Property 1

 \mathcal{A} cannot distinguish $\mathcal{S} \cup \Sigma$ from Signer:

- a_0 and a_1 follow an identical distribution;
- H looks like a random oracle, except if some (μ, α) has yet been asked to f. This occurs with probability less than $Q\ell/q$;
- the challenge "I" is equal to $i \oplus v$, where $i \in_R \{0,1\}$ and $v = [(e_0,e_1) = (E_0,E_1)]$. (v is independent of i).

Property 2

The number of really valid signatures is greater than $\lambda + 1$:

$$\varepsilon_i = H(\mu_i, \alpha_i) \neq f(\mu_i, \alpha_i) \Longrightarrow \mathcal{S} \text{ imposed } \varepsilon_i = w + \delta$$

Then $g^{\rho_i - \beta} h^{\sigma_i - \gamma} = a y^{-w} = g^u h^v$

- either \mathcal{A} received (u, v) from \mathcal{S} ;
- or \mathcal{A} had computed ρ_i and σ_i from ay^{-w} : with probability greater than 1/q, $\rho_i \neq u + \beta \implies \log_q h$

 $\implies \mathcal{S}$ has simulated everything (otherwise we have $\log_g h$).

 $\#\{\text{valid signatures}\} = \ell + 1 - \#\{\varepsilon_i \neq f(\mu_i, \alpha_i)\} \geq \ell + 1 - (\ell - \lambda) \geq \lambda + 1.$

David Pointcheval 15

Strengthened Security for Blind Signatures

Property 3

 λ is logarithmically bounded:

$$2^3 = 2^0 \cdot 1 + 2^1 \cdot 1 + 2^2 \cdot 1$$

$$2^{\ell} = \sum_{i} 2^{i} \times \#\{\text{paths with } i \bullet \}$$

Then $\#\{\text{paths } \geq s \bullet\} \leq 2^{\ell-s}$ \implies Pr[more than $s \bullet |OK| \le 2^{-s}/\varepsilon$

Help of $\Sigma \implies (e_0, e_1) \neq (E_0, E_1)$ \implies single node (or collision for f).

So Pr[less than $\log(2/\varepsilon) \bullet |OK| \ge 1/2$.

Consequences

- ullet Assumption: ${\cal A}$ can perform an $(\ell,\ell+1)$ -forgery against Signer under a synchronized parallel attack
 - after Q queries to the random oracle,
 - with probability ε .
- Consequence: $S \cup A$ can perform an $(\lambda, \lambda + 1)$ -forgery against Σ under a parallel attack
 - after Q queries to the random oracle,
 - after ℓ initiated interactions but only $\lambda \leq \log(4/\varepsilon)$ ended ones
 - with probability $\varepsilon' \ge \varepsilon/16$.

As soon as $\varepsilon \geq 1/P$, for any k large enough, $\varepsilon' \geq \varepsilon/16 \geq 4Q^{\lambda+1}\ell^{\lambda}/q$

Then the DLP can be solved

- with probability greater then $\Omega(1/(\log k)^2)$
- after less than $\mathcal{O}(\log k)Q/\varepsilon$ steps.

David Pointcheval 17

Strengthened Security for Blind Signatures

Conclusion

With a kind of cut-and-choose, we impose the user to play honestly.

A dishonest user will be detected before it is too late.

We have presented a generic transformation which

- makes secure:
 - after poly. many synchronized interactions with poly-log. many attackers.
- lets practical and efficient.
 the output signature is an OS signature

This transformation can be adapted to any other WI-based blind signature schemes.