# Outline

| <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header> |                   | <ol> <li>Game-based Proofs         <ul> <li>Provable Security</li> <li>Game-based Approach</li> <li>Transition Hops</li> </ul> </li> <li>Advanced Security for Encryption         <ul> <li>Advanced Security Notions</li> <li>Cramer-Shoup Encryption Scheme</li> </ul> </li> <li>Conclusion</li> </ol> |                                                                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| ENS/CNRS/INRIA Paris, France                                                                                                                                                                                                                                                                                                                     | David Pointcheval | 1/48ENS/CNRS/INRIA Paris, France                                                                                                                                                                                                                                                                        | David Pointcheval                                                                      |  |
| Outline                                                                                                                                                                                                                                                                                                                                          |                   | Provable Security                                                                                                                                                                                                                                                                                       |                                                                                        |  |
| <ol> <li>Game-based Proofs</li> <li>Provable Security</li> <li>Game-based Approach</li> <li>Transition Hops</li> <li>Advanced Security for Encryption</li> </ol>                                                                                                                                                                                 |                   | One can prove that:<br>if an adversary is able t<br>then one can break the<br>(integer factoring, discr                                                                                                                                                                                                 | to break the cryptographic scheme<br>underlying problem<br>rete logarithm, 3-SAT, etc) |  |

3 Conclusion

3/48ENS/CNRS/INRIA Paris, France

hard

instance

0

С

 $\rightarrow$  solution

2/48

# Outline



## **Real Attack Game**

The adversary plays a game, against a challenger (security notion)



## Simulation

The adversary plays a game, against a sequence of simulators



ENS/CNRS/INRIA Paris, France

**David Pointcheval** 

7/48ENS/CNRS/INRIA Paris, France

# **Sequence of Games**

# **Sequence of Games**

#### Simulation

The adversary plays a game, against a sequence of simulators



#### Simulation

The adversary plays a game, against a sequence of simulators



# Output

- The output of the simulator in Game 1 is related to the output of the challenger in Game 0 (adversary's winning probability)
- The output of the simulator in Game 3 is easy to evaluate (e.g. always zero, always 1, probability of one-half)
- The gaps (Game 1 ↔ Game 2, Game 2 ↔ Game 3, etc) are clearly identified with specific events





## 1 Game-based Proofs

- Provable Security
- Game-based Approach
- Transition Hops
- 2 Advanced Security for Encryption
- 3 Conclusion

# **Two Simulators**

# **Two Distributions**



- Identical behaviors:  $\Pr[\mathbf{Game}_A] \Pr[\mathbf{Game}_B] = 0$
- The behaviors differ only if **Ev** happens:
  - Ev is negligible, one can ignore it Shoup's Lemma: Pr[Game<sub>A</sub>] - Pr[Game<sub>B</sub>] ≤ Pr[Ev]

```
\begin{aligned} |\Pr[\mathsf{Game}_{A}] - \Pr[\mathsf{Game}_{B}]| \\ &= \left| \begin{array}{c} \Pr[\mathsf{Game}_{A}|\mathsf{Ev}]\Pr[\mathsf{Ev}] + \Pr[\mathsf{Game}_{A}|\neg\mathsf{Ev}]\Pr[\neg\mathsf{Ev}] \\ -\Pr[\mathsf{Game}_{B}|\mathsf{Ev}]\Pr[\mathsf{Ev}] - \Pr[\mathsf{Game}_{B}|\neg\mathsf{Ev}]\Pr[\neg\mathsf{Ev}] \end{array} \right| \\ &= \left| \begin{array}{c} (\Pr[\mathsf{Game}_{A}|\mathsf{Ev}] - \Pr[\mathsf{Game}_{B}|\mathsf{Ev}]) \times \Pr[\mathsf{Ev}] \\ + (\Pr[\mathsf{Game}_{A}|\neg\mathsf{Ev}] - \Pr[\mathsf{Game}_{B}|\neg\mathsf{Ev}]) \times \Pr[\neg\mathsf{Ev}] \end{array} \right| \\ &\leq |1 \times \Pr[\mathsf{Ev}] + 0 \times \Pr[\neg\mathsf{Ev}]| \leq \Pr[\mathsf{Ev}] \end{aligned}
```

Ev is non-negligible and independent of the output in Game<sub>A</sub>, Simulator B terminates in case of event Ev

- Identical behaviors:  $Pr[Game_A] Pr[Game_B] = 0$
- The behaviors differ only if **Ev** happens:
  - **Ev** is negligible, one can ignore it
  - **Ev** is non-negligible and independent of the output in **Game**<sub>A</sub>, Simulator B terminates and outputs 0, in case of event **Ev**:

 $\begin{aligned} \Pr[\text{Game}_B] &= \Pr[\text{Game}_B | \textbf{Ev}] \Pr[\textbf{Ev}] + \Pr[\text{Game}_B | \neg \textbf{Ev}] \Pr[\neg \textbf{Ev}] \\ &= 0 \times \Pr[\textbf{Ev}] + \Pr[\text{Game}_A | \neg \textbf{Ev}] \times \Pr[\neg \textbf{Ev}] \\ &= \Pr[\text{Game}_A] \times \Pr[\neg \textbf{Ev}] \end{aligned}$ 

Simulator B terminates and flips a coin, in case of event Ev:

$$\begin{aligned} \Pr[\mathbf{Game}_B] &= \Pr[\mathbf{Game}_B | \mathbf{Ev}] \Pr[\mathbf{Ev}] + \Pr[\mathbf{Game}_B | \neg \mathbf{Ev}] \Pr[\neg \mathbf{Ev}] \\ &= \frac{1}{2} \times \Pr[\mathbf{Ev}] + \Pr[\mathbf{Game}_A | \neg \mathbf{Ev}] \times \Pr[\neg \mathbf{Ev}] \\ &= \frac{1}{2} + (\Pr[\mathbf{Game}_A] - \frac{1}{2}) \times \Pr[\neg \mathbf{Ev}] \end{aligned}$$

# **Two Simulations**

# **Two Distributions**

- Identical behaviors:  $Pr[Game_A] Pr[Game_B] = 0$
- The behaviors differ only if **Ev** happens:
  - **Ev** is negligible, one can ignore it
  - Ev is non-negligible and independent of the output in Game<sub>A</sub>, Simulator B terminates in case of event Ev

#### Event Ev

- Either Ev is negligible, or the output is independent of Ev
- For being able to terminate simulation B in case of event Ev, this event must be *efficiently* detectable
- For evaluating Pr[**Ev**], one re-iterates the above process, with an initial game that outputs 1 when event **Ev** happens



```
\mathsf{Pr}[\textbf{Game}_{\textit{A}}] - \mathsf{Pr}[\textbf{Game}_{\textit{B}}] \leq Adv(\mathcal{D}^{\mathsf{oracles}})
```

| ENS/CNRS/INRIA Paris, France | David Pointcheval | 17/48ENS/CNRS/INRIA Paris, France | David Pointcheval | 18/48 |
|------------------------------|-------------------|-----------------------------------|-------------------|-------|
| Two Distributions            |                   | Outline                           |                   |       |

 $\Pr[\text{Game}_A] - \Pr[\text{Game}_B] \leq Adv(\mathcal{D}^{\text{oracles}})$ 

For identical/statistically close distributions, for any oracle:

 $Pr[Game_A] - Pr[Game_B] = Dist(Distrib_A, Distrib_B) = negl()$ 

For computationally close distributions, in general, we need to exclude additional oracle access:

 $\Pr[\operatorname{Game}_{A}] - \Pr[\operatorname{Game}_{B}] \leq \operatorname{Adv}^{\operatorname{Distrib}}(t)$ 

where t is the computational time of the distinguisheur

## Game-based Proofs

- 2 Advanced Security for Encryption
  - Advanced Security Notions
  - Cramer-Shoup Encryption Scheme

**3** Conclusion

# **Public-Key Encryption**

## **IND** – CPA Security Game



Goal: Privacy/Secrecy of the plaintext



The adversary cannot get any information about a plaintext of a specific ciphertext (validity, partial value, etc)

ENS/CNRS/INRIA Paris, France **David Pointcheval** 21/48ENS/CNRS/INRIA Paris, France David Pointcheval 22/48

# Malleability

- Semantic security (ciphertext indistinguishability) guarantees that no information is leaked from c about the plaintext m But it may be possible to derive a ciphertext c'
- such that the plaintext m' is related to m in a meaningful way:
  - ElGamal ciphertext:  $c_1 = g^r$  and  $c_2 = m \times y^r$
  - Malleability:  $c'_1 = c_1 = g^r$  and  $c'_2 = 2 \times c_2 = (2m) \times y^r$

From an encryption of *m*, one can build an encryption of 2*m*, or a random ciphertext of *m*, etc

A formal security game for NM - CPA has been defined, but we ignore it for the moment

# **Additional Information**

More information modeled by oracle access

unlimited oracle access

- reaction attacks: oracle which answers, on c, whether the ciphertext c is valid or not
- plaintext-checking attacks: oracle which answers, on a pair (m, c), whether the plaintext m is really encrypted in c or not (whether  $m = \mathcal{D}_{sk}(c)$ )
- chosen-ciphertext attacks (CCA): decryption oracle (with the restriction not to use it on the challenge ciphertext)  $\implies$  the adversary can obtain the plaintext of any ciphertext of its choice (excepted the challenge)
  - non-adaptive (CCA 1) [Naor-Yung – STOC '90] only before receiving the challenge **adaptive** (CCA - 2) [Rackoff-Simon – Crypto '91]

ENS/CNRS/INRIA Paris, France

**David Pointcheval** 

## Relations



## Encryption

$$u_1 = g_1^r, \ u_2 = g_2^r, \ e = m \times h^r, \ v = c^r d^{r\alpha}$$
 where  $\alpha = \mathcal{H}(u_1, u_2, e)$ 

$$u_1 = g_1^r, \ u_2 = g_2^r, \ e = m imes h^r, \ v = c^r d^{r\alpha}$$
 where  $\alpha = \mathcal{H}(u_1, u_2, e)$ 

 $(u_1, e)$  is an ElGamal ciphertext, with public key  $h = g_1^z$ 

## Decryption

- since  $h = g_1^z$ ,  $h^r = u_1^z$ , thus  $m = e/u_1^z$
- since  $c = g_1^{x_1} g_2^{x_2}$  and  $d = g_1^{y_1} g_2^{y_2}$

$$c^{r} = g_{1}^{rx_{1}}g_{2}^{rx_{2}} = u_{1}^{x_{1}}u_{2}^{x_{2}}$$
  $d^{r} = u_{1}^{y_{1}}u_{2}^{y_{2}}$ 

One thus first checks whether

$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$
 where  $\alpha = \mathcal{H}(u_1, u_2, e_1)$ 

#### Theorem

The Cramer-Shoup encryption scheme achieves IND - CCA security, under the **DDH** assumption, and the second-preimage resistance of  $\mathcal{H}$ :

$$\mathbf{Adv}_{\mathcal{CS}}^{\mathsf{ind}-\mathsf{cca}}(t) \leq 2 imes \mathbf{Adv}_{\mathbb{G}}^{\mathsf{ddh}}(t) + \mathbf{Succ}^{\mathcal{H}}(t) + 3q_D/q_D$$

Let us prove this theorem, with a sequence of games, in which  $\mathcal{A}$  is an IND - CCA adversary against the Cramer-Shoup encryption scheme

| NS/CNRS/INRI | A Paris, | France |
|--------------|----------|--------|
|              | )        |        |

David Pointcheval

29/48ENS/CNRS/INRIA Paris, France

David Pointcheval

30/48

# **Real Attack Game**



## **Key Generation Oracle**

$$x_1, x_2, y_1, y_2, z \stackrel{R}{\leftarrow} \mathbb{Z}_q, g_1, g_2 \stackrel{R}{\leftarrow} \mathbb{G}$$
:  $sk = (x_1, x_2, y_1, y_2, z)$   
 $c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}$ , and  $h = g_1^z$ :  $pk = (g_1, g_2, \mathcal{H}, c, d, h)$ 

## **Decryption Oracle**

If 
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$
 where  $\alpha = \mathcal{H}(u_1, u_2, e)$ :  $m = e/u_1^2$ 

# **Proof: Invalid ciphertexts**

- **Game**<sub>0</sub>: use of the oracles  $\mathcal{K}$ ,  $\mathcal{D}$
- **Game**<sub>1</sub>: we abort (with a random output b') in case of bad (invalid) accepted ciphertext, where invalid ciphertext means  $\log_{g_1} u_1 \neq \log_{g_2} u_2$

#### **Event F**

A submits a bad accepted ciphertext (note: this is not computationally detectable)

The advantage in **Game**<sub>1</sub> is:  $Pr_1[b' = b|\mathbf{F}] = 1/2$ 

$$\Pr_{\mathbf{Game}_0}[\mathbf{F}] = \Pr_{\mathbf{Game}_1}[\mathbf{F}] \qquad \Pr_{\mathbf{Game}_1}[b' = b | \neg \mathbf{F}] = \Pr_{\mathbf{Game}_0}[b' = b | \neg \mathbf{F}]$$

$$\Longrightarrow \mathsf{Hop} extsf{-S-Negl: Adv}_{\mathsf{Game}_1} \geq \mathsf{Adv}_{\mathsf{Game}_0} - \mathsf{Pr}[\mathsf{F}]$$

ENS/CNRS/INRIA Paris, France

31/48ENS/CNRS/INRIA Paris, France

# $\begin{aligned} \mathbf{Adv}_{\mathbf{Game}_{1}} &= 2 \times \Pr_{\mathbf{Game}_{1}}[b'=b] - 1 \\ &= 2 \times \Pr_{\mathbf{Game}_{1}}[b'=b|\neg \mathbf{F}] \Pr_{\mathbf{Game}_{1}}[\neg \mathbf{F}] \\ &+ 2 \times \Pr_{\mathbf{Game}_{1}}[b'=b|\mathbf{F}] \Pr_{\mathbf{Game}_{1}}[\mathbf{F}] - 1 \\ &= 2 \times \Pr_{\mathbf{Game}_{0}}[b'=b|\neg \mathbf{F}] \Pr_{\mathbf{Game}_{0}}[\neg \mathbf{F}] + \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] - 1 \\ &= 2 \times \Pr_{\mathbf{Game}_{0}}[b'=b] - 2 \times \Pr_{\mathbf{Game}_{0}}[b'=b|\mathbf{F}] \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] \\ &+ \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] - 1 \\ &= \mathbf{Adv}_{\mathbf{Game}_{0}} - \Pr_{\mathbf{Game}_{0}}[\mathbf{F}](2 \times \Pr_{\mathbf{Game}_{0}}[b'=b|\mathbf{F}] - 1) \\ &\geq \mathbf{Adv}_{\mathbf{Game}_{0}} - \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] \end{aligned}$

**David Pointcheval** 

# **Details: Bad Accept**

In order to evaluate Pr[F], we study the probability that

$$I_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2,$$

• whereas 
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$

The adversary just knows the public key:

$$c = g_1^{x_1} g_2^{x_2}$$
  $d = g_1^{y_1} g_2^{y_2}$ 

Let us move to the exponents, in basis  $g_1$ , with  $g_2 = g_1^s$ :

$$\log c = x_1 + sx_2 
\log d = y_1 + sy_2 
\log v = r_1(x_1 + \alpha y_1) + sr_2(x_2 + \alpha y_2)$$

The system is under-defined: for any v, there are  $(x_1, x_2, y_1, y_2)$ that satisfy the system  $\implies v$  is unpredictable  $\implies \Pr[\mathbf{F}] \leq q_D/q \implies \operatorname{Adv}_{\operatorname{Game}_1} \geq \operatorname{Adv}_{\operatorname{Game}_0} - q_D/q$ 33/48ENS/CNRS/INRIA Paris, France David Pointcheval

# **Proof: Simulations**

ENS/CNRS/INRIA Paris, France

■ **Game**<sub>2</sub>: we use the simulations

Key Generation Simulation

 
$$x_1, x_2, y_1, y_2, z_1, z_2 \xleftarrow{R} \mathbb{Z}_q, g_1, g_2 \xleftarrow{R} \mathbb{G}$$
:  $sk = (x_1, x_2, y_1, y_2, z_1, z_2)$ 
 $g_2 = g_1^s$ 
 $c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}$ , and  $h = g_1^{z_1} g_2^{z_2}$ :  $pk = (g_1, g_2, \mathcal{H}, c, d, h)$ 
 $z = z_1 + sz_2$ 

Distribution of the public key: Identical

## **Decryption Simulation**

f 
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$
 where  $\alpha = \mathcal{H}(u_1, u_2, e)$ :  $m = e/u_1^{z_1} u_2^{z_2}$ 

Under the assumption of  $\neg F$ , perfect simulation

$$\implies$$
 Hop-S-Perfect:  $Adv_{Game_2} = Adv_{Game_1}$ 

David Pointcheval

36/48

34/48

Proof: Computable Adversary

■ Game<sub>3</sub>: we do no longer exclude bad accepted ciphertexts → Hop-S-NegI:

 $\mathbf{Adv}_{\mathbf{Game}_3} \geq \mathbf{Adv}_{\mathbf{Game}_2} - \Pr[\mathbf{F}] \geq \mathbf{Adv}_{\mathbf{Game}_2} - q_D/q$ 

This is technical: to make the simulator/adversary computable

■ **Game**<sub>4</sub>: we modify the generation of the challenge ciphertext:

| Original Challenge                                                                            |                                       |  |  |
|-----------------------------------------------------------------------------------------------|---------------------------------------|--|--|
| Random choice: $b \stackrel{R}{\leftarrow} \{0, 1\}, r \stackrel{R}{\leftarrow} \mathbb{Z}_q$ | $[\alpha = \mathcal{H}(u_1, u_2, e)]$ |  |  |
| $u_1=g_1^r,\;u_2=g_2^r,\;e=m_b	imes h^r,\;v=c^rd^{rlpha}$                                     |                                       |  |  |

#### **New Challenge 1**

Given 
$$(U = g_1^r, V = g_2^r)$$
 from outside, and random choice  $b \stackrel{\mathcal{H}}{\leftarrow} \{0, 1\}$   
 $u_1 = U, u_2 = V, e = m_b \times U^{z_1} V^{z_2}, v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$ 

With 
$$(U = g_1^r, V = g_2^r)$$
:  $U^{z_1}V^{z_2} = h^r$  and  $U^{x_1 + \alpha y_1}V^{x_2 + \alpha y_2} = c^r d^{r\alpha}$   
 $\implies$  Hop-S-Perfect:  $Adv_{Game_4} = Adv_{Game_3}$ 

ENS/CNRS/INRIA Paris, France

**Proof: DDH Assumption** 

\_

**David Pointcheval** 

# **Game**<sub>5</sub>: we modify the generation of the challenge ciphertext:

#### **Previous Challenge 1**

Given 
$$(U = g_1^r, V = g_2^r)$$
 from outside, and random choice  $b \stackrel{R}{\leftarrow} \{0, 1\}$   
 $u_1 = U, \ u_2 = V, \ e = m_b \times U^{z_1} V^{z_2}, \ v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$ 

## **New Challenge 2**

Given 
$$(U = g_1^{r_1}, V = g_2^{r_2})$$
 from outside, and random choice  $b \stackrel{R}{\leftarrow} \{0, 1\}$   
 $u_1 = U, u_2 = V, e = m_b \times U^{z_1} V^{z_2}, v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$ 

The input changes from 
$$(U = g_1^r, V = g_2^r)$$
 to  $(U = g_1^{r_1}, V = g_2^{r_2})$ :  
 $\implies$  Hop-D-Comp:  $Adv_{Game_5} \ge Adv_{Game_4} - 2 \times Adv_{\mathbb{G}}^{ddh}(t)$ 

**David Pointcheval** 

# **Proof: Collision**

The input from outside changes from  $(U = g_1^r, V = g_2^r)$  (a CDH tuple) to  $(U = g_1^{r_1}, V = g_2^{r_2})$  (a random tuple):

$$\Pr_{\mathsf{Game}_4}[b'=b] - \Pr_{\mathsf{Game}_5}[b'=b] \leq \mathbf{Adv}^{\mathsf{ddh}}_{\mathbb{G}}(t)$$

 $\implies$  Hop-D-Comp:  $Adv_{Game_5} \ge Adv_{Game_4} - 2 \times Adv_{\mathbb{G}}^{ddh}(t)$ (Since  $Adv = 2 \times Pr[b' = b] - 1$ )

**Game**<sub>6</sub>: we abort (with a random output b') in case of second pre-image with a decryption query

## Event F<sub>H</sub>

37/48ENS/CNRS/INRIA Paris, France

 $\mathcal{A}$  submits a ciphertext with the same  $\alpha$  as the challenge ciphertext, but a different initial triple:  $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$ , but  $\alpha = \alpha^*$ , were "\*" are for all the elements related to the challenge ciphertext

 $\implies$   $\Pr[\mathbf{F}_{\mathcal{H}}] < \mathbf{Succ}^{\mathcal{H}}(t)$ Second pre-image of  $\mathcal{H}$ : The advantage in **Game**<sub>6</sub> is:  $Pr_{Game_6}[b' = b|\mathbf{F}_H] = 1/2$ 

$$\Pr_{\mathbf{Game}_{5}}[\mathbf{F}_{H}] = \Pr_{\mathbf{Game}_{6}}[\mathbf{F}_{H}] \qquad \Pr_{\mathbf{Game}_{6}}[b' = b | \neg \mathbf{F}_{H}] = \Pr_{\mathbf{Game}_{5}}[b' = b | \neg \mathbf{F}_{H}]$$

 $\mathbf{Adv}_{\mathbf{Game}_6} \geq \mathbf{Adv}_{\mathbf{Game}_5} - \mathbf{Succ}^{\mathcal{H}}(t)$ 

$$\implies$$
 Hop-S-Negl:  $Adv_{Game_6} \ge Adv_{Game_5} - Pr[F_H]$ 

**David Pointcheval** 

38/48

# **Proof: Invalid ciphertexts**

# **Details: Bad Accept**

 Game<sub>7</sub>: we abort (with a random output b') in case of bad accepted ciphertext, we do as in Game<sub>1</sub>

## Event F'

A submits a bad accepted ciphertext (note: this is not computationally detectable)

The advantage in **Game**<sub>7</sub> is:  $Pr_{Game_7}[b' = b|\mathbf{F}'] = 1/2$ 

$$\Pr_{\text{Game}_6}[\mathbf{F}'] = \Pr_{\text{Game}_7}[\mathbf{F}'] \qquad \Pr_{\text{Game}_7}[b' = b | \neg \mathbf{F}'] = \Pr_{\text{Game}_6}[b' = b | \neg \mathbf{F}']$$

$$\implies \textbf{Hop-S-Negl: } \mathbf{Adv}_{\textbf{Game}_7} \geq \mathbf{Adv}_{\textbf{Game}_6} - \mathsf{Pr}[\textbf{F}']$$

ENS/CNRS/INRIA Paris, France

David Pointcheval

# **Details: Bad Accept (Case 3)**

The adversary knows the public key, and the (invalid) challenge ciphertext:

$$c = g_1^{x_1} g_2^{x_2}$$
  $d = g_1^{y_1} g_2^{y_2}$   
 $v^* = U^{x_1 + lpha^* y_1} V^{x_2 + lpha^* y_2} = g_1^{r_1^* (x_1 + lpha^* y_1)} g_2^{r_2^* (x_2 + lpha^* y_2)}$ 

Let us move to the exponents, in basis  $g_1$ , with  $g_2 = g_1^s$ :

$$\log c = x_{1} + sx_{2}$$
  

$$\log d = y_{1} + sy_{2}$$
  

$$\log v^{*} = r_{1}^{*}(x_{1} + \alpha^{*}y_{1}) + sr_{2}^{*}(x_{2} + \alpha^{*}y_{2})$$
  

$$\log v = r_{1}(x_{1} + \alpha y_{1}) + sr_{2}(x_{2} + \alpha y_{2})$$

In order to evaluate  $\Pr[\mathbf{F}']$ , we study the probability that

- $\bullet \ r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2,$
- whereas  $v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$

Let us use "\*" for all the elements related to the challenge ciphertext Three cases may appear:

Case 1:  $(u_1, u_2, e) = (u_1^*, u_2^*, e^*)$ , then necessarily

$$v \neq v^* = U^{x_1 + \alpha^* y_1} V^{x_2 + \alpha^* y_2} = u_1^{*x_1 + \alpha^* y_1} u_2^{*x_2 + \alpha^* y_2}$$

Then, the ciphertext is rejected  $\implies \Pr[\mathbf{F}'_1] = 0$ 

- Case 2:  $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$ , but  $\alpha = \alpha^*$ : From the previous game, Aborts  $\implies \Pr[\mathbf{F}'_2] = 0$
- Case 3:  $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$ , and  $\alpha \neq \alpha^*$

41/48ENS/CNRS/INRIA Paris, France

David Pointcheval

42/48

# **Details: Bad Accept (Case 3)**

The determinant of the system is

$$\Delta = \begin{vmatrix} 1 & s & 0 & 0 \\ 0 & 0 & 1 & s \\ r_1^* & sr_2^* & r_1^*\alpha^* & sr_2^*\alpha^* \\ r_1 & sr_2 & r_1\alpha & sr_2\alpha \end{vmatrix}$$
  
=  $s^2 \times ((r_2 - r_1) \times (r_2^* - r_1^*) \times \alpha^* - (r_2^* - r_1^*) \times (r_2 - r_1) \times \alpha)$   
=  $s^2 \times (r_2 - r_1) \times (r_2^* - r_1^*) \times (\alpha^* - \alpha)$   
 $\neq 0$ 

The system is under-defined: for any *v*, there are  $(x_1, x_2, y_1, y_2)$  that satisfy the system  $\implies v$  is unpredictable  $\implies \Pr[\mathbf{F}'_3] \le q_D/q$  $\implies \operatorname{Adv}_{\operatorname{Game}_7} \ge \operatorname{Adv}_{\operatorname{Game}_6} - q_D/q$ 

David Pointcheval

43/48ENS/CNRS/INRIA Paris, France

# **Proof: Analysis of the Final Game**

# Conclusion

In the final **Game**<sub>7</sub>:

- only valid ciphertexts are decrypted
- the challenge ciphertext contains

$$e = m_b \times U^{z_1} V^{z_2}$$

the public key contains

$$h = g_1^{z_1} g_2^{z_2}$$

David Pointcheval

Again, the system is under-defined: for any  $m_b$ , there are  $(z_1, z_2)$  that satisfy the system  $\implies m_b$  is unpredictable  $\implies b$  is unpredictable  $\implies Adv_{Game_7} = 0$ 

#### ENS/CNRS/INRIA Paris, France

Outline

## 

$$\mathrm{Adv}^{\mathsf{ind}-\mathsf{cca}}_{\mathcal{CS}}(\mathcal{A}) \leq \mathsf{2} imes \mathrm{Adv}^{\mathsf{ddh}}_{\mathbb{G}}(t) + \mathrm{Succ}^{\mathcal{H}}(t) + 3q_D/q_D$$

David Pointcheval

45/48ENS/CNRS/INRIA Paris, France

# Conclusion

Game-based Methodology: the story of OAEP [Bellare-Rogaway EC '94]

- Reduction proven indistinguishable for an IND-CCA adversary (actually IND-CCA1, and not IND-CCA2) but widely believed for IND-CCA2, without any further analysis of the reduction The direct-reduction methodology
- [Shoup Crypto '01] Shoup showed the gap for IND-CCA2, under the OWP Granted his new game-based methodology
- [Fujisaki-Okamoto-Pointcheval-Stern Crypto '01] FOPS proved the security for IND-CCA2, under the PD-OWP Using the game-based methodology

## **1** Game-based Proofs

- Provable Security
- Game-based Approach
- Transition Hops

## **2** Advanced Security for Encryption

- Advanced Security Notions
- Cramer-Shoup Encryption Scheme

## 3 Conclusion

46/48