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Provable Security

One can prove that:
if an adversary is able to break the cryptographic scheme
then one can break the underlying problem
(integer factoring, discrete logarithm, 3-SAT, etc)

hard →
instance

→solution
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Direct Reduction

Oracles

ChallengerAdversary 0 / 1

Security Game
Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

Unfortunately

Security may rely on several assumptions
Proving that the view of the adversary, generated by the
simulator, in the reduction is the same as in the real attack game
is not easy to do in such a one big step
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Sequence of Games

Real Attack Game

The adversary plays a game, against a challenger (security notion)

Oracles

ChallengerAdversary 0 / 1

Game 0
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Sequence of Games

Simulation

The adversary plays a game, against a sequence of simulators

Oracles

ChallengerAdversary

Distribution 1

Sim
ulator 1

Game 1

0 / 1
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Sequence of Games

Simulation

The adversary plays a game, against a sequence of simulators

Oracles

ChallengerAdversary

Distribution 2

Sim
ulator 2

Game 2

0 / 1
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Sequence of Games

Simulation

The adversary plays a game, against a sequence of simulators

Oracles

ChallengerAdversary

Distribution 3

Sim
ulator 3

Game 3

0 / 1
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Output

The output of the simulator in Game 1 is related to the output of
the challenger in Game 0 (adversary’s winning probability)
The output of the simulator in Game 3 is easy to evaluate
(e.g. always zero, always 1, probability of one-half)
The gaps (Game 1↔ Game 2, Game 2↔ Game 3, etc) are
clearly identified with specific events

Oracles

ChallengerAdversary

Distribution 1

Sim
ulator 1

Game 1

0 / 1

Oracles

ChallengerAdversary

Distribution 3

Sim
ulator 3

Game 3

0 / 1
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Two Simulators

Oracles

ChallengerAdversary

Distribution

Sim
ulator A

Game A

0 / 1

Oracles

ChallengerAdversary

Distribution

Sim
ulator B

Game B

0 / 1

perfectly identical behaviors [Hop-S-Perfect]

different behaviors, only if event Ev happens
Ev is negligible [Hop-S-Negl]
Ev is non-negligible [Hop-S-Non-Negl]
and independent of the output in GameA
→ Simulator B terminates in case of event Ev
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Two Distributions

Oracles

ChallengerAdversary

Distribution A

Sim
ulator

Game A

0 / 1

Oracles

ChallengerAdversary

Distribution B

Sim
ulator

Game B

0 / 1

perfectly identical input distributions [Hop-D-Perfect]

different distributions
statistically close [Hop-D-Stat]
computationally close [Hop-D-Comp]
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Two Simulations

Identical behaviors: Pr[GameA]− Pr[GameB] = 0
The behaviors differ only if Ev happens:

Ev is negligible, one can ignore it
Shoup’s Lemma: Pr[GameA]− Pr[GameB] ≤ Pr[Ev]

|Pr[GameA]− Pr[GameB]|

=

∣∣∣∣
Pr[GameA|Ev] Pr[Ev] + Pr[GameA|¬Ev] Pr[¬Ev]
−Pr[GameB|Ev] Pr[Ev]− Pr[GameB|¬Ev] Pr[¬Ev]

∣∣∣∣

=

∣∣∣∣
(Pr[GameA|Ev]− Pr[GameB|Ev])× Pr[Ev]
+(Pr[GameA|¬Ev]− Pr[GameB|¬Ev])× Pr[¬Ev]

∣∣∣∣
≤ |1× Pr[Ev] + 0× Pr[¬Ev]| ≤ Pr[Ev]

Ev is non-negligible and independent of the output in GameA,
Simulator B terminates in case of event Ev
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Two Simulations

Identical behaviors: Pr[GameA]− Pr[GameB] = 0
The behaviors differ only if Ev happens:

Ev is negligible, one can ignore it
Ev is non-negligible and independent of the output in GameA,
Simulator B terminates and outputs 0, in case of event Ev:

Pr[GameB] = Pr[GameB|Ev] Pr[Ev] + Pr[GameB|¬Ev] Pr[¬Ev]
= 0× Pr[Ev] + Pr[GameA|¬Ev]× Pr[¬Ev]
= Pr[GameA]× Pr[¬Ev]

Simulator B terminates and flips a coin, in case of event Ev:

Pr[GameB] = Pr[GameB|Ev] Pr[Ev] + Pr[GameB|¬Ev] Pr[¬Ev]
= 1

2 × Pr[Ev] + Pr[GameA|¬Ev]× Pr[¬Ev]
= 1

2 + (Pr[GameA]− 1
2 )× Pr[¬Ev]
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Two Simulations

Identical behaviors: Pr[GameA]− Pr[GameB] = 0
The behaviors differ only if Ev happens:

Ev is negligible, one can ignore it
Ev is non-negligible and independent of the output in GameA,
Simulator B terminates in case of event Ev

Event Ev

Either Ev is negligible, or the output is independent of Ev
For being able to terminate simulation B in case of event Ev,
this event must be efficiently detectable
For evaluating Pr[Ev], one re-iterates the above process,
with an initial game that outputs 1 when event Ev happens
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Two Distributions

Oracles

ChallengerAdversary

Distribution

0 / 1

Distinguisheur

Pr[GameA]− Pr[GameB] ≤ Adv(Doracles)
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Two Distributions

Pr[GameA]− Pr[GameB] ≤ Adv(Doracles)

For identical/statistically close distributions, for any oracle:

Pr[GameA]− Pr[GameB] = Dist(DistribA,DistribB) = negl()

For computationally close distributions, in general, we need to
exclude additional oracle access:

Pr[GameA]− Pr[GameB] ≤ AdvDistrib(t)

where t is the computational time of the distinguisheur
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Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext
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IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

b’ = b?

The adversary cannot get any information about a plaintext of a
specific ciphertext (validity, partial value, etc)
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Malleability

Semantic security (ciphertext indistinguishability) guarantees that
no information is leaked from c about the plaintext m
But it may be possible to derive a ciphertext c′

such that the plaintext m′ is related to m in a meaningful way:

ElGamal ciphertext: c1 = gr and c2 = m × y r

Malleability: c′1 = c1 = gr and c′2 = 2× c2 = (2m)× y r

From an encryption of m, one can build an encryption of 2m, or a
random ciphertext of m, etc

A formal security game for NM− CPA has been defined,
but we ignore it for the moment
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Additional Information

More information modeled by oracle access
reaction attacks: oracle which answers, on c,
whether the ciphertext c is valid or not
plaintext-checking attacks: oracle which answers,
on a pair (m, c), whether the plaintext m is really encrypted in c
or not (whether m = Dsk (c))
chosen-ciphertext attacks (CCA): decryption oracle
(with the restriction not to use it on the challenge ciphertext)
=⇒ the adversary can obtain the plaintext of any ciphertext of its
choice (excepted the challenge)

non-adaptive (CCA− 1) [Naor-Yung – STOC ’90]
only before receiving the challenge
adaptive (CCA− 2) [Rackoff-Simon – Crypto ’91]
unlimited oracle access
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IND− CCA Security Game

AEr
mb c*

b∈{0,1}
r random

m1

m0

kdke G

D
c

m

D
c ≠ c*

m
b’b’ = b?

The adversary can ask any decryption of its choice:
Chosen-Ciphertext Attacks (oracle access)

(sk ,pk)← K();(m0,m1, state)← AD(pk);

b R← {0,1};c = Epk (mb); b′ ← AD(state, c)

Advind−cca
S (A)=Pr[b′ = 1|b = 1]−Pr[b′ = 1|b = 0]=2×Pr[b′ = b]−1
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Relations [Bellare-Desai-Pointcheval-Rogaway – Crypto ’98]

NM-CPA ⇐ NM-CCA1 ⇐ NM-CCA2
   

IND-CPA ⇐ IND-CCA1 ⇐ IND-CCA2

strong security: 
CCA

minimal
security

weak security

OW-CPA

⇒ ⇔⇒

⇒
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Cramer-Shoup Encryption Scheme [Cramer-Shoup – Crypto ’98]

Key Generation

G = (〈g〉,×) group of order q

sk = (x1, x2, y1, y2, z), where x1, x2, y1, y2, z
R← Zq

pk = (g1,g2,H, c,d ,h), where
g1, g2 are independent elements in G
H a hash function (second-preimage resistant)
c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , and h = gz

1

Encryption

u1 = gr
1, u2 = gr

2, e = m × hr , v = cr d rα where α = H(u1,u2,e)
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Cramer-Shoup Encryption Scheme vs. ElGamal

u1 = gr
1, u2 = gr

2, e = m × hr , v = cr d rα where α = H(u1,u2,e)

(u1,e) is an ElGamal ciphertext, with public key h = gz
1

Decryption

since h = gz
1 , hr = uz

1 , thus m = e/uz
1

since c = gx1
1 gx2

2 and d = gy1
1 gy2

2

cr = grx1
1 grx2

2 = ux1
1 ux2

2 d r = uy1
1 uy2

2

One thus first checks whether

v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e)
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Security of the Cramer-Shoup Encryption Scheme

Theorem

The Cramer-Shoup encryption scheme achieves IND− CCA
security, under the DDH assumption, and the second-preimage
resistance of H:

Advind−cca
CS (t) ≤ 2× Advddh

G (t) + SuccH(t) + 3qD/q

Let us prove this theorem, with a sequence of games, in which A is
an IND− CCA adversary against the Cramer-Shoup encryption
scheme
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Real Attack Game

 Challenger

● (pk, sk) ← Setup()
● Chooses a bit b
● c ← E(pk,m

b
)

● if b=b': 1
● else 0

Adversary
0 / 1

Game 0

pk
m0,m1

c

b'

Oracles

DSetup

Key Generation Oracle

x1, x2, y1, y2, z
R← Zq, g1,g2

R← G: sk = (x1, x2, y1, y2, z)
c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , and h = gz

1 : pk = (g1,g2,H, c,d ,h)

Decryption Oracle

If v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e): m = e/uz
1
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Proof: Invalid ciphertexts

Game0: use of the oracles K, D
Game1: we abort (with a random output b′)
in case of bad (invalid) accepted ciphertext,
where invalid ciphertext means logg1

u1 6= logg2
u2

Event F

A submits a bad accepted ciphertext
(note: this is not computationally detectable)

The advantage in Game1 is: Pr1[b′ = b|F] = 1/2

Pr
Game0

[F] = Pr
Game1

[F] Pr
Game1

[b′ = b|¬F] = Pr
Game0

[b′ = b|¬F]

=⇒ Hop-S-Negl: AdvGame1 ≥ AdvGame0 − Pr[F]
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Details: Shoup’s Lemma

AdvGame1 = 2× Pr
Game1

[b′ = b]− 1

= 2× Pr
Game1

[b′ = b|¬F] Pr
Game1

[¬F]

+2× Pr
Game1

[b′ = b|F] Pr
Game1

[F]− 1

= 2× Pr
Game0

[b′ = b|¬F] Pr
Game0

[¬F] + Pr
Game0

[F]− 1

= 2× Pr
Game0

[b′ = b]− 2× Pr
Game0

[b′ = b|F] Pr
Game0

[F]

+ Pr
Game0

[F]− 1

= AdvGame0 − Pr
Game0

[F](2× Pr
Game0

[b′ = b|F]− 1)

≥ AdvGame0 − Pr
Game0

[F]
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Details: Bad Accept

In order to evaluate Pr[F], we study the probability that
r1 = logg1

u1 6= logg2
u2 = r2,

whereas v = ux1+αy1
1 ux2+αy2

2

The adversary just knows the public key:

c = gx1
1 gx2

2 d = gy1
1 gy2

2

Let us move to the exponents, in basis g1, with g2 = gs
1:

log c = x1 + sx2

log d = y1 + sy2

log v = r1(x1 + αy1) + sr2(x2 + αy2)

The system is under-defined: for any v , there are (x1, x2, y1, y2)
that satisfy the system =⇒ v is unpredictable
=⇒ Pr[F] ≤ qD/q =⇒ AdvGame1 ≥ AdvGame0 − qD/q
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Proof: Simulations

Game2: we use the simulations

Key Generation Simulation

x1, x2, y1, y2, z1, z2
R← Zq, g1,g2

R← G: sk = (x1, x2, y1, y2, z1, z2)

g2 = gs
1

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , and h = gz1
1 gz2

2 : pk = (g1,g2,H, c,d ,h)

z = z1 + sz2

Distribution of the public key: Identical

Decryption Simulation

If v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e): m = e/uz1
1 uz2

2

Under the assumption of ¬F, perfect simulation
=⇒ Hop-S-Perfect: AdvGame2 = AdvGame1
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Proof: Computable Adversary

Game3: we do no longer exclude bad accepted ciphertexts
=⇒ Hop-S-Negl:
AdvGame3 ≥ AdvGame2 − Pr[F] ≥ AdvGame2 − qD/q

This is technical: to make the simulator/adversary computable
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Proof: DDH Assumption

Game4: we modify the generation of the challenge ciphertext:

Original Challenge

Random choice: b R← {0,1}, r R← Zq [α = H(u1, u2, e)]

u1 = gr
1, u2 = gr

2, e = mb × hr , v = cr d rα

New Challenge 1

Given (U = gr
1,V = gr

2) from outside, and random choice b R← {0,1}
u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

With (U = gr
1,V = gr

2): Uz1V z2 = hr and Ux1+αy1V x2+αy2 = cr d rα

=⇒ Hop-S-Perfect: AdvGame4 = AdvGame3
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Proof: DDH Assumption

Game5: we modify the generation of the challenge ciphertext:

Previous Challenge 1

Given (U = gr
1,V = gr

2) from outside, and random choice b R← {0,1}
u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

New Challenge 2

Given (U = gr1
1 ,V = gr2

2 ) from outside, and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

The input changes from (U = gr
1,V = gr

2) to (U = gr1
1 ,V = gr2

2 ):
=⇒ Hop-D-Comp: AdvGame5 ≥ AdvGame4 − 2× Advddh

G (t)
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Proof: DDH Assumption

The input from outside changes from (U = gr
1,V = gr

2) (a CDH tuple)
to (U = gr1

1 ,V = gr2
2 ) (a random tuple):

Pr
Game4

[b′ = b]− Pr
Game5

[b′ = b] ≤ Advddh
G (t)

=⇒ Hop-D-Comp: AdvGame5 ≥ AdvGame4 − 2× Advddh
G (t)

(Since Adv = 2× Pr[b′ = b]− 1)
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Proof: Collision

Game6: we abort (with a random output b′)
in case of second pre-image with a decryption query

Event FH

A submits a ciphertext with the same α as the challenge ciphertext,
but a different initial triple: (u1,u2,e) 6= (u∗1,u

∗
2,e
∗), but α = α∗, were

“*” are for all the elements related to the challenge ciphertext

Second pre-image of H: =⇒ Pr[FH ] ≤ SuccH(t)

The advantage in Game6 is: PrGame6 [b′ = b|FH ] = 1/2

Pr
Game5

[FH ] = Pr
Game6

[FH ] Pr
Game6

[b′ = b|¬FH ] = Pr
Game5

[b′ = b|¬FH ]

=⇒ Hop-S-Negl: AdvGame6 ≥ AdvGame5 − Pr[FH ]

AdvGame6 ≥ AdvGame5 − SuccH(t)
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Proof: Invalid ciphertexts

Game7: we abort (with a random output b′)
in case of bad accepted ciphertext,
we do as in Game1

Event F′

A submits a bad accepted ciphertext
(note: this is not computationally detectable)

The advantage in Game7 is: PrGame7 [b′ = b|F′] = 1/2

Pr
Game6

[F′] = Pr
Game7

[F′] Pr
Game7

[b′ = b|¬F′] = Pr
Game6

[b′ = b|¬F′]

=⇒ Hop-S-Negl: AdvGame7 ≥ AdvGame6 − Pr[F′]
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Details: Bad Accept

In order to evaluate Pr[F′], we study the probability that
r1 = logg1

u1 6= logg2
u2 = r2,

whereas v = u1
x1+αy1u2

x2+αy2

Let us use “*” for all the elements related to the challenge ciphertext
Three cases may appear:

Case 1: (u1,u2,e) = (u∗1,u
∗
2,e
∗), then necessarily

v 6= v∗ = Ux1+α
∗y1V x2+α

∗y2 = u∗1
x1+α

∗y1u∗2
x2+α

∗y2

Then, the ciphertext is rejected =⇒ Pr[F′1] = 0
Case 2: (u1,u2,e) 6= (u∗1,u

∗
2,e
∗), but α = α∗:

From the previous game, Aborts =⇒ Pr[F′2] = 0
Case 3: (u1,u2,e) 6= (u∗1,u

∗
2,e
∗), and α 6= α∗
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Details: Bad Accept (Case 3)

The adversary knows the public key, and the (invalid) challenge
ciphertext:

c = gx1
1 gx2

2 d = gy1
1 gy2

2

v∗ = Ux1+α
∗y1V x2+α

∗y2 = gr∗1 (x1+α
∗y1)

1 gr∗2 (x2+α
∗y2)

2

Let us move to the exponents, in basis g1, with g2 = gs
1:

log c = x1 + sx2

log d = y1 + sy2

log v∗ = r∗1 (x1 + α∗y1) + sr∗2 (x2 + α∗y2)

log v = r1(x1 + αy1) + sr2(x2 + αy2)
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Details: Bad Accept (Case 3)

The determinant of the system is

∆ =

∣∣∣∣∣∣∣∣

1 s 0 0
0 0 1 s
r∗1 sr∗2 r∗1α

∗ sr∗2α
∗

r1 sr2 r1α sr2α

∣∣∣∣∣∣∣∣

= s2 × ((r2 − r1)× (r∗2 − r∗1 )× α∗ − (r∗2 − r∗1 )× (r2 − r1)× α)

= s2 × (r2 − r1)× (r∗2 − r∗1 )× (α∗ − α)

6= 0

The system is under-defined:
for any v , there are (x1, x2, y1, y2) that satisfy the system
=⇒ v is unpredictable =⇒ Pr[F′3] ≤ qD/q
=⇒ AdvGame7 ≥ AdvGame6 − qD/q
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Proof: Analysis of the Final Game

In the final Game7:
only valid ciphertexts are decrypted
the challenge ciphertext contains

e = mb × Uz1V z2

the public key contains

h = gz1
1 gz2

2

Again, the system is under-defined:
for any mb, there are (z1, z2) that satisfy the system
=⇒ mb is unpredictable =⇒ b is unpredictable
=⇒ AdvGame7 = 0
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Conclusion

AdvGame7 = 0
AdvGame7 ≥ AdvGame6 − qD/q

AdvGame6 ≥ AdvGame5 − SuccH(t)

AdvGame5 ≥ AdvGame4 − 2× Advddh
G (t)

AdvGame4 = AdvGame3

AdvGame3 ≥ AdvGame2 − qD/q
AdvGame2 = AdvGame1

AdvGame1 ≥ AdvGame0 − qD/q

AdvGame0 = Advind−cca
CS (A)

Advind−cca
CS (A) ≤ 2× Advddh

G (t) + SuccH(t) + 3qD/q
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Conclusion

Game-based Methodology: the story of OAEP [Bellare-Rogaway EC ’94]

Reduction proven indistinguishable for an IND-CCA adversary
(actually IND-CCA1, and not IND-CCA2) but widely believed for
IND-CCA2, without any further analysis of the reduction
The direct-reduction methodology

[Shoup - Crypto ’01]

Shoup showed the gap for IND-CCA2, under the OWP
Granted his new game-based methodology

[Fujisaki-Okamoto-Pointcheval-Stern – Crypto ’01]

FOPS proved the security for IND-CCA2, under the PD-OWP
Using the game-based methodology
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