<section-header><section-header><section-header><text><text><text><text><text>

Cryptography

0000

But also at home

Encryption

Assumptions

				David Pointcheval – ENS	Fondation Sciences Mathématique	es de Paris	2
Cryptography ○●○○	Provable Security	Encryption	Assumptions	Cryptography ○○●○	Provable Security	Encryption	Assumptions

First Encryption Mechanisms

ÉCOLE NORMALE SUPÉRIEURE

Fondation Sciences Mathématiques de Paris September 27th, 2011

Fondation Sciences Mathématiques de Paris

The goal of encryption is to hide a message

Scytale Permutation

Alberti's disk Mono-alphabetical Substitution Substitutions and permutations Security relies on the secrecy of the mechanism

 \Rightarrow How to widely use them?

Wheel – M 94 (CSP 488) Poly-alphabetical Substitution

Common Parameter

A shared information (secret key) between the sender and the receiver parameterizes the public mechanism

Provable Security

Enigma:

choice of the connectors and the rotors

Security **looks** better: but broken (Alan Turing *et al.*) \Rightarrow Security analysis is required

Cryptography ○○○●	Provable Security	Encryption	Assumptions	Cryptography	Provable Security ●○○	Encry 000	ption	Assumptions
Practical Secrecy				What is a Secure Cryptographic Scheme?				
 Perfect Secrecy vs. Practical Secrecy No information about the plaintext <i>m</i> can be extracted from the ciphertext <i>c</i>, even for a powerful adversary (unlimited time and/or unlimited power): perfect secrecy ⇒ information theory In practice: adversaries are limited in time/power ⇒ complexity theory We thus model all the players (the legitimate ones and the adversary) as Probabilistic Polynomial Time Turing Machines:				 What does security mean? → Formal security notions How to guarantee above security claims? → Provable security Computational Security Proofs a formal security model (security notions) a reduction: if one (Adversary) can break the security notions, then one (Simulator + Adversary) can break a hard problem acceptable computational assumptions (hard problems) 				ty notions e security otions, olem
David Pointcheval – ENS Cryptography 0000 Integer Fac	Fondation Sciences Mathéma Provable Security ••• toring	tiques de Paris Encryption 000	5/14 Assumptions	David Pointcheval – ENS Cryptography 0000 Reduction	Proof by Fondation Science Provable Security	Contradiction es Mathématiques de Pau Encry	ris	6/1 Assumptions 00
Records Given <i>n</i> = <i>pq</i>	$\begin{array}{r llllllllllllllllllllllllllllllllllll$	Bit-Length 431 bits 465 bits 512 bits 531 bits 664 bits 9		Security Game	Challenger $raction: T = k^3 \times t$ us Adversary gth Complexity	Algorithm Complexity	Challenger running time Best Known Complexity	T = f(t)
Complexity 10 20 David Pointcheval – ENS	768 bits $ ightarrow 2^{64}$ op. 307 024 bits $ ightarrow 2^{80}$ op. 409 048 bits $ ightarrow 2^{112}$ op. 768 Fondation Sciences Mathéma	72 bits \rightarrow 2 ¹²⁸ op. 96 bits \rightarrow 2 ¹⁵⁰ op. 30 bits \rightarrow 2 ¹⁹² op.	7/14	k = 20 $k = 30$ $k = 40$ • Tight redu With David Pointcheval – ENS	48 $t < 2^{110}$ 72 $t < 2^{110}$ 96 $t < 2^{110}$ ction: $T \approx t$ $k = 2048$ and $t < 100$ Fondation Science	$T < 2^{143}$ $T < 2^{146}$ $T < 2^{146}$ $T < 2^{146}$	$2^{112} \\ 2^{128} \\ 2^{150} \\ s T < 2^{110} \\ ris$	× × × 8/1

Cryptography P	Provable Security	Encryption ●○○	Assumptions	Cryptography 0000	Provable Security	Encryption As ○●○ ○○	sumptions	
Public-Key Enc	ryption			RSA-OAEP	P (PKCS #1 v2.1)	[Bellare-Rogaway – Euro	crypt '94]	
Goal: Privacy/Secred	cy of the plaintext	$k_e \longleftarrow \mathbf{G} \longrightarrow k_d$		The Plain 𝔅𝔅 ● 𝔅(1 ^k): n = ● 𝔅(pk, m) =	$\mathcal{S}\mathcal{A}$ Encryption $= pq, sk \leftarrow d = e^{-1} ext{m} \ = c = m^e ext{mod} n \ ; \mathcal{D}(s)$	[Rivest-Shamir-Adlema od $\varphi(n)$ and $pk \leftarrow (n, e)$ $k, c) = m = c^d \mod n$	n 1978]	
No adversary can dis a ciphert Even with an access (to mode	b $\in \{0,1\}$ r random m_b r $b' \stackrel{?}{=} b$ stinguish rext of m_0 from a ci to the decryption of el leakage of inform	phertext of m_1 . In practice lation).	D D ND-CPA ND-CCA	Deterministic and malleable: m = 000 r r r r r r r r				
David Pointcheval – ENS Cryptography P 0000 c	Fondation Sciences Mathéma Provable Security	tiques de Paris Encryption ○○●	9/14 Assumptions	David Pointcheval – ENS Cryptography ೦೦೦೦	Fondation Sciences Math Provable Security	ématiques de Paris Encryption As 000 • 00	10/14 sumptions	
RSA-OAEP Sec	urity Proof [Fuj	isaki-Okamoto-Pointcheval-Sterr	– Crypto '01]	Classical A	Assumptions			
If an adversary break within time $T \approx 2t + k = 2048$ (2 ¹¹²) k = 4096 (2 ¹⁵⁰)	$c = f(X Y)$ To get information $\implies partial invite c = RSA(X Y)$ RSA: partial invite are equivalent (x IND-CCA within $3q_{H}^{2}k^{3} (q_{H} = num)$ $t < 2^{110} T < 2^{15}$ $t < 2^{110} T < 2^{15}$	tion on <i>m</i> , $H(X)$ queries ersion of <i>f</i> (2) nversion and full inverses (but at a loss) time <i>t</i> , one can break ber of Hashing queries $\frac{15}{8} \times \longrightarrow \frac{1000}{58} \times \frac{1000}{58}$	ed sion SRSA s $pprox 2^{60}$) dulus: 6 bits!	Main Assump Integer Fa Modular Fa Discrete L Properties Advantag Drawback Facto They 	otions actoring Roots (Square roots an Logarithm (in Finite Fie les: easy to implement ks: oring and DL in finite field are all subject to quantum	nd <i>e</i> -th roots) Ids and in Elliptic Curves) , and widely used s require larger and larger keys m attacks [Sho	S or 1997]	
REACT-RSA $\mathcal{E}(pk, m, r) = (c_1 = r)$ Security reduction be $T \approx t \implies 2048$	$c^e \mod n, c_2 = G(r)$ etween IND – CCA 3-bit RSA moduli p	[Okamoto-Pointcheval – () \oplus m , $c_3 = H(r, m, c_1, m, c_1, m)$ and the RSA assumption and the RSA assumption of the security	CT-RSA '01] C ₂)) Dtion:	Alternatives: • Error-Cor • Systems • Lattices	Post-Quantum Crypt recting Codes of Multi-Variate Equation	ography ONS		

Lattice-Based Cryptography

- Knapsack Problem
- Fully Homomorphic Encryption

David Pointcheval – ENS

Fondation Sciences Mathématiques de Paris

Conclusion

With provable security, one can precisely get:

- the security games one wants to resist against any adversary
- the security level, according to the resources of the adversary

But, it is under some assumptions:

- the best attacks against the underlying problems
- no leakage of information excepted from the given oracles

Cryptographers' goals are thus

- analysis of the underlying problems / new problems
- realistic and strong security notions (games)
- accurate model for leakage of information (oracle access)
- tight security reductions

Implementations and uses must satisfy the constraints!

13/14David Pointcheval - ENS

Fondation Sciences Mathématiques de Paris

14/14