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Cryptography Provable Security Security of Signatures Security of Encryption

Security of Communications

One ever wanted to exchange information securely

With the all-digital world, security needs are even stronger. . .

In your pocket

But also at home
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Cryptography

3 Historical Goals
Confidentiality: The content of a message is concealed
Authenticity: The author of a message is well identified
Integrity: Messages have not been altered

between a sender and a recipient, against an adversary.

Also within groups, with insider adversaries

Cannot address availability, but should not affect it!
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First Encryption Mechanisms

The goal of encryption is to hide a message

Scytale
Permutation

Substitutions and permutations
Security relies on

the secrecy of the mechanism

⇒ How to widely use them?

Alberti’s disk
Mono-alphabetical Substitution

c© www.maritime.org

Wheel – M 94 (CSP 488)
Poly-alphabetical Substitution
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Use of a (Secret) Key

A shared information (secret key) between the sender
and the receiver parameterizes the public mechanism

Enigma:
choice of the connectors
and the rotors

Security looks better: but broken (Alan Turing et al.)
⇒ Security analysis is required
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Modern Cryptography

Secret Key Encryption
One secret key only shared by Alice and Bob:

this is a common parameter for both E and D

kk

E Dm c m

kG1k

Public Key Cryptography [Diffie-Hellman – 1976]

Bob’s public key is used by Alice as a parameter to E
Bob’s private key is used by Bob as a parameter to D

skpk

E Dm c m

(pk,sk)G1k
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DES and AES

Still substitutions and permutations,
but considering various classes of attacks (statistic)

DES: Data Encryption Standard

Round Function F

“Broken” in 1998 by brute force:
too short keys (56 bits)!

⇒ No better attack
granted a safe design!

New standard since 2001: Advanced Encryption Standard

Longer keys: from 128 to 256 bits
Criteria: Security arguments

against many attacks

What does security mean?
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Practical Secrecy

Perfect Secrecy vs. Practical Secrecy
No information about the plaintext m can be extracted
from the ciphertext c, even for a powerful adversary
(unlimited time and/or unlimited power): perfect secrecy
⇒ information theory
In practice: adversaries are limited in time/power
⇒ complexity theory

We thus model all the players (the legitimate ones and the adversary)
as Probabilistic Polynomial Time Turing Machines:

computers that run programs
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Provable Security

Symmetric Cryptography

The secrecy of the key
guarantees the secrecy of communications

Asymmetric Cryptography

The secrecy of the private key
guarantees the secrecy of communications

To be proven

To be proven
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What is a Secure Cryptographic Scheme?

What does security mean?
→ Security notions have to be formally defined
How to guarantee above security claims for concrete schemes?
→ Provable security

Provable Security
if an adversary is able to break the cryptographic scheme
then one can break a well-known hard problem

hard →
instance

→solution

David Pointcheval – ENS/CNRS/INRIA Collège de France 11/40
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General Method

Computational Security Proofs
To prove the security of a cryptographic scheme, one needs

a formal security model (security notions)
a reduction: if one (Adversary) can break the security notions,
then one (Simulator + Adversary) can break a hard problem
acceptable computational assumptions (hard problems)

Oracles

ChallengerAdversary 0 / 1

Security Game
Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

Proof by contradiction
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Integer Factoring

Records
Given n = pq −→ Find p and q

Digits Date Bit-Length
130 April 1996 431 bits
140 February 1999 465 bits
155 August 1999 512 bits
160 April 2003 531 bits
200 May 2005 664 bits
232 December 2009 768 bits

Complexity

768 bits→ 264 op. 3072 bits→ 2128 op.
1024 bits→ 280 op. 7680 bits→ 2192 op.
2048 bits→ 2112 op. 15360 bits→ 2256 op.
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Cryptography Provable Security Security of Signatures Security of Encryption

Reduction

Oracles

ChallengerAdversary 0 / 1

Security Game
Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

Adversary running time t Algorithm running time T = f (t)

Lossy reduction: T = k3 × t
Modulus Adversary Algorithm Best Known
Bit-length Complexity Complexity Complexity
k = 1024 t < 280 T < 2110 280

k = 2048 t < 280 T < 2113 2112

k = 3072 t < 280 T < 2115 2128

Tight reduction: T ≈ t
With k = 1024 and t < 280, one gets T < 280
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One-Way Functions

One-Way Functions

F(1k ) generates a function f : X → Y
From x ∈ X , it is easy to compute y = f (x)
Given y ∈ Y , it is hard to find x ∈ X such that y = f (x)

RSA Problem [Rivest-Shamir-Adleman 1978]

Given n = pq, e and y ∈ Z?
n

Find x such that y = xe mod n

This problem is hard without the prime factors p and q
It becomes easy with them: if d = e−1 mod ϕ(n), then x = yd mod n

This problem is assumed as hard as integer factoring:
the prime factors are a trapdoor to find solutions
⇒ trapdoor one-way permutation
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Signature

Goal: Authentication of the sender
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EUF− NMA: Security Game

A

kskv G

(m,σ)

V(kv,m,σ)?

Succeuf
SG(A) = Pr[(ks, kv )← G(); (m, σ)← A(kv ) : V(kv ,m, σ) = 1]

should be negligible.

A knows the public key only ⇒ No-Message Attack (NMA)
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EUF− NMA

One-Way Function

G(1k ): f R← F(1k ) and x R← X , set y = f (x),
ks = x and kv = (f , y)

S(x ,m) = ks = x
V((f , y),m, x ′) checks whether f (x ′) = y

Under the one-wayness of F , Succeuf−nma(A) is small.

But given one signature, one can “sign” any other message!
Signatures are public! ⇒ Known-Message Attacks (KMA)

The adversary has access to a list of messages-signatures
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EUF−KMA

One-Way Functions

G(1k ): f R← F(1k ), and ~x = (x1,0, x1,1, . . . , xk ,0, xk ,1)
R← X 2k ,

yi,j = f (xi,j) for i = 1, . . . , k and j = 0,1,
ks = ~x and kv = (f , ~y)

S(~x ,m) = (xi,mi )i=1,...,k

V((f , ~y),m, (x ′i )) checks whether f (x ′i ) = yi,mi for i = 1, . . . , k

Under the one-wayness of F , Succeuf−nma(A) is small.
With the signature of m = 0k , I cannot forge any other signature.

With the signatures of m = 0k and m′ = 1k , I learn ~x : the secret key
Messages can be under the control of the adversary!
⇒ Chosen-Message Attacks (CMA)
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EUF− CMA

A
∀i, m≠mi

V(kv,m,σ)?

(m,σ)

S
mi

σi

kskv G

The adversary has access to any signature of its choice:
Chosen-Message Attacks (oracle access):

Succeuf−cma
SG (A) = Pr

[
(ks, kv )← G(); (m, σ)← AS(ks,·)(kv ) :
∀i ,m 6= mi ∧ V(kv ,m, σ) = 1

]
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The RSA Signature [Rivest-Shamir-Adleman 1978]

The RSA Signature
The RSA signature scheme RSA is defined by
G(1k ): p and q, two random primes, and an exponent v

n = pq, ks ← s = v−1 mod ϕ(n) and kv ← (n, v)
S(ks,m): the signature is σ = ms mod n
V(kv ,m, σ) checks whether m = σv mod n

Theorem (The Plain RSA is not EUF− NMA)
The plain RSA signature is not secure at all!

Proof.
Choose a random σ ∈ Z?

n, and set m = σv mod n.
By construction, σ is a valid signature of m
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Full-Domain Hash Signature [Bellare-Rogaway – Eurocrypt ’96]

Full-Domain Hash RSA Signature
The FDH-RSA signature scheme is defined by
G(1k ): p and q, two random primes, and an exponent v

n = pq, ks ← s = v−1 mod ϕ(n) and kv ← (n, v)
H is a hash function onto Z?

n

S(ks,m): the signature is σ = H(m)s mod n
V(kv ,m, σ) checks whether H(m) = σv mod n

Theorem (Security of the FDH-RSA)
The FDH-RSA is EUF− CMA under appropriate assumptions on H,
and assuming the RSA problem is hard
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FDH-RSA Security

 Challenger

● (pk, sk) ← K()
● Checks (m,σ)

● if new and valid: 1
● else 0

Adversary
0 / 1

Game 0

pk

m,σ

Oracles

S HK

Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

Adversary running time t Algorithm running time T = f (t)

Initial reduction: T ≈ qH × t [Bellare-Rogaway – Eurocrypt ’96]

(where qH is number of Hashing queries ≈ 260)

k = 1024 (280) t < 280 T < 2140

k = 2048 (2112) t < 280 T < 2140

k = 3072 (2128) t < 280 T < 2140

=⇒ large modulus required!
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Improved Security

 Challenger

● (pk, sk) ← K()
● Checks (m,σ)

● if new and valid: 1
● else 0

Adversary
0 / 1

Game 0

pk

m,σ

Oracles

S HK

Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

Adversary running time t Algorithm running time T = f (t)

By exploiting the random self-reducibility of RSA: (xr)e = xere mod n
=⇒ Improved reduction: T ≈ qS × t [Coron – Crypto ’00]

(where qS is the number is Signing queries ≤ 230)

With k = 2048 and t < 280, one gets T < 2110

(Best algorithm in 2112)
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RSA-PSS (PKCS #1 v2.1) [Bellare-Rogaway – Eurocrypt ’96]

m is the message to encrypt
r is the additional randomness to
make encryption probabilistic

After the transformation,
w‖s‖t goes in the plain RSA

Theorem (EUF-CMA Security [Bellare-Rogaway – Eurocrypt ’96])
RSA-PSS is EUF-CMA secure under the RSA assumption

Security reduction between EUF− CMA and the RSA assumption:
T ≈ t

=⇒ 1024-bit RSA moduli provide 280 security
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Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext
David Pointcheval – ENS/CNRS/INRIA Collège de France 26/40
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OW− CPA: Security Game

A

kdke G

m

m* random
r* random

m* = m
?

Er*
m* c*

Succow−cpa
S (A) = Pr

[
(kd , ke)← G();m∗ R←M; c = E(ke,m∗, r∗) :

A(ke, c∗)→ m∗

]

should be negligible.
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OW− CPA: Is it Enough?

The RSA Encryption [Rivest-Shamir-Adleman 1978]

G(1k ): p and q, two random primes, and an exponent e:
n = pq, sk ← d = e−1 mod ϕ(n) and pk ← (n,e)
E(pk ,m) = c = me mod n ; D(sk , c) = m = cd mod n

RSA encryption is OW− CPA, under the RSA assumption

OW− CPA Too Weak
G′ = G; E ′(pk ,m = m1‖m2) = E(pk ,m1)‖m2 = c1‖c2

D′(sk , c1‖c2): m1 = D(sk , c1), m2 = c2, output m = m1‖m2

If (G, E ,D) is OW− CPA: then (G′, E ′,D′) is OW− CPA too

But this is clearly not enough: half or more of the message leaks!
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OW− CPA: Is it Enough?

For a “yes/no” answer or “sell/buy” order,
one bit of information may be enough for the adversary!

How to model that no bit of information leaks?

Perfect Secrecy vs. Computational Secrecy
Perfect secrecy: the distribution of the ciphertext

is perfectly independent of the plaintext
Computational secrecy: the distribution of the ciphertext

is computationally independent of the plaintext

Idea: No adversary can distinguish
a ciphertext of m0 from a ciphertext of m1.

Probabilistic encryption is required!
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IND− CPA: Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

b’ = b?

(kd , ke)← G();(m0,m1, state)← A(ke);

b R← {0,1};c∗ = E(ke,mb, r);b′ ← A(state, c∗)

Advind−cpa
S (A) = 2× Pr[b′ = b]− 1 should be negligible.
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ElGamal Encryption [ElGamal 1985]

The ElGamal Encryption (EG)

G(1k ): G = 〈g〉 of order q, sk = x R← Zq and pk ← y = gx

E(pk ,m, r) = (c1 = gr , c2 = y r m)

D(sk , (c1, c2)) = c2/cx
1

The ElGamal encryption is IND− CPA, under the DDH assumption

Decisional Diffie-Hellman Problem

For G = 〈g〉 of order q, and x , y R← Zq,

Given X = gx , Y = gy and Z = gz , for either z R← Zq or z = xy
Decide whether z = xy

This problem is assumed hard to decide in appropriate groups G!
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ElGamal is IND− CPA: Proof

Let A be an adversary against EG: B is an adversary against DDH:
let us be given a DDH instance (X = gx ,Y = gy ,Z = gz)

A gets pk ← X from B, and outputs (m0,m1)

B sets c1 ← Y

B chooses b R← {0,1}, sets c2 ← Z ×mb,
and sends c = (c1, c2)

B receives b′ from A and outputs d = (b′ = b)

2× Pr[b′ = b]− 1

= Advind−cpa
EG (A), if z = xy

= 0, if z R← Zq
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ElGamal is IND− CPA: Proof

As a consequence,
2× Pr[b′ = b|z = xy ]− 1 = Advind−cpa

EG (A)

2× Pr[b′ = b|z R← Zq]− 1 = 0
If one subtracts the two lines:

Advind−cpa
EG (A) = 2×

(
Pr[d = 1|z = xy ]

−Pr[d = 1|z R← Zq]

)

= 2× Advddh
G (B) ≤ 2× Advddh

G (t)
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IND− CPA: Is it Enough?

The ElGamal Encryption [ElGamal 1985]

G(1k ): G = 〈g〉 of order q, sk = x R← Zq and pk ← y = gx

E(pk ,m, r) = (c1 = gr , c2 = y r m) ; D(sk , (c1, c2)) = c2/cx
1

Private Auctions
All the players Pi encrypt their bids ci = E(pk ,bi) for the authority;
the authority opens all the ci ; the highest bid bI wins

IND− CPA guarantees privacy of the bids
Malleability: from ci = E(pk ,bi), without knowing bi ,
one can generate c′ = E(pk ,2bi): an unknown higher bid!

IND− CPA does not imply Non-Malleability

David Pointcheval – ENS/CNRS/INRIA Collège de France 34/40
Cryptography Provable Security Security of Signatures Security of Encryption

IND− CCA: Security Game

AEr
mb c*

b∈{0,1}
r random

m1

m0

kdke G

D
c

m

D
c ≠ c*

m
b’b’ = b?

The adversary can ask any decryption of its choice:
⇒ Chosen-Ciphertext Attacks (CCA)

Theorem (NM vs. CCA [Bellare-Desai-Pointcheval-Rogaway – Crypto ’98])
The chosen-ciphertext security implies non-malleability

=⇒ the highest security level
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RSA-OAEP (PKCS #1 v2.1) [Bellare-Rogaway – Eurocrypt ’94]

The RSA encryption is OW− CPA, under the RSA assumption,
but even not IND− CPA: need of randomness and redundancy

m is the message to encrypt
r is the additional randomness to
make encryption probabilistic
00 . . . 00 is redundancy to be
checked at decryption time

After the transformation,
X‖Y goes in the plain RSA

Theorem (IND-CCA Security [Fujisaki-Okamoto-Pointcheval-Stern – Crypto ’01])
RSA-OAEP is IND-CCA secure under the RSA assumption

David Pointcheval – ENS/CNRS/INRIA Collège de France 36/40
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RSA-OAEP Security Proof [Fujisaki-Okamoto-Pointcheval-Stern – Crypto ’01]

H

 Challenger

● (pk, sk) ← Setup()
● Chooses a bit b
● c ← E(pk,m

b
)

● if b=b': 1
● else 0

Adversary
0 / 1

Game 0

pk
m0,m1

c

b'

Oracles

DSetup

Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

c = f (X‖Y )

More precisely, to get information on m, encrypted in c = f (X‖Y ),
one must have asked H(X ) =⇒ partial inversion of f

For RSA: partial inversion and full inversion are equivalent
(but at a computational loss)
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RSA-OAEP Security [Fujisaki-Okamoto-Pointcheval-Stern – Crypto ’01]

H

 Challenger

● (pk, sk) ← Setup()
● Chooses a bit b
● c ← E(pk,m

b
)

● if b=b': 1
● else 0

Adversary
0 / 1

Game 0

pk
m0,m1

c

b'

Oracles

DSetup

Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

Adversary running time t Algorithm running time T = f (t)
If there is an adversary that distinguishes, within time t ,
the two ciphertexts with overwhelming advantage (close to 1),
one can break RSA within time T ≈ 2t + 3qH

2k3

(where qH is number of Hashing queries ≈ 260)

k = 1024 (280) t < 280 T < 2152

k = 2048 (2112) t < 280 T < 2155

k = 3072 (2128) t < 280 T < 2158
=⇒ large modulus:

> 4096 bits!
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REACT-RSA Security [Okamoto-Pointcheval – CT-RSA ’01]

REACT-RSA

G(1k ): p and q, two random primes, and an exponent e:
n = pq, sk ← d = e−1 mod ϕ(n) and pk ← (n,e)
E(pk ,m, r) =

(c1 = re mod n, c2 = G(r)⊕m, c3 = H(r ,m, c1, c2))

D(sk , (c1, c2, c3)): r = cd
1 mod n, m = c2 ⊕G(r),

if c3 = H(r ,m, c1, c2) then output m, else output ⊥

Security reduction between IND− CCA and the RSA assumption:
T ≈ t

=⇒ 1024-bit RSA moduli provide 280 security
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Conclusion

With provable security, one can precisely get:
the security games one wants to resist against any adversary
the security level, according to the resources of the adversary

But, it is under some assumptions:
the best attacks against famous problems (integer factoring, etc)
no leakage of information excepted from the given oracles

Cryptographers’ goals are thus
to analyze the intractability of the underlying problems
to define realistic and strong security notions (games)
to correctly model the leakage of information (oracle access)
to design schemes with tight security reductions

Implementations and uses must satisfy the constraints!
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