	Cryptography	Provable Security 00000	Security of Signatures	Security of Encryption	
	Outline				
Quelles garanties avec la cryptographie ?					
David Pointcheval	1 Cryptog	raphy			
Ecole normale supérieure, CNRS & INRIA	O Downhi				
	ProvableSecurity	of Signatures			
	Security of Encryption				
Collège de France 27 avril 2011					
	David Pointcheval - ENS/	CNRS/INRIA C	ollège de France	2/40	

Opposition Provide Security of Equatores 00000000 Security of Encryption 000000000 Composition 000000000000000000000000000000000000	Security of Communications				Cryptography				
	Cryptography ecocococo	Provable Security 00000	Security of Signatures	Security of Encryption	Cryptography oecosooo	Provable Security	Security of Signatures	Security of Encryption	

One ever wanted to exchange information securely

With the all-digital world, security needs are even stronger...

In your pocket

3 Historical Goals

- Confidentiality: The content of a message is concealed
- Authenticity: The author of a message is well identified
- Integrity: Messages have not been altered

between a sender and a recipient, against an adversary.

Also within groups, with insider adversaries

Cannot address availability, but should not affect it!

Cryptogra	phy
0000000	

Provable Security

Security of Signatures

urity of Encryption

Cryptography 000000000

Provable Security

Security of Signatures

curity of Encryption

First Encryption Mechanisms

The goal of encryption is to hide a message

Scvtale Permutation

Mono-alphabetical Substitution

One secret key only shared by Alice and Bob:

Substitutions and permutations Security relies on the secrecy of the mechanism

 \Rightarrow How to widely use them?

Wheel - M 94 (CSP 488) Poly-alphabetical Substitution

Use of a (Secret) Key

A shared information (secret key) between the sender and the receiver parameterizes the public mechanism

Enigma:

choice of the connectors and the rotors

Security looks better: but broken (Alan Turing et al.) ⇒ Security analysis is required

David Pointcheval -	ENS/CNRS	INRIA	Collège de France	5/4	0David Pointcheval -	ENS/CNRS/INRIA	Collège de France	6/4
Cryptography 0000000		Provable Security	y Security of Signatur 0000000000	res Security of Encryption	Cryptography 00000000	Provable Security 00000	Security of Signatures	Security of Encryption occoccocccoccocco
	-				DEO	1.450		

Modern Cryptography Secret Key Encryption

this is a common parameter for both E and D

Public Key Cryptography

[Diffie-Hellman - 1976]

- Bob's public key is used by Alice as a parameter to E
- Bob's private key is used by Bob as a parameter to D

DES and AES

Still substitutions and permutations, but considering various classes of attacks (statistic) DES: Data Encryption Standard

- "Broken" in 1998 by brute force: too short keys (56 bits)! ⇒ No better attack
 - granted a safe design!

New standard since 2001: Advanced Encryption Standard

Collège de France

Longer keys: from 128 to 256 bits Criteria: Security arguments against many attacks

What does security mean?

avid Pointcheval - ENS/CNRS/INRIA

7/40David Pointcheval - ENS/CNRS/INRIA

Cr O	ryptography	Provable Security 00000	Security of Signatures	Security of Encryption	Cryptography 0000000	Provable Security cooco	Security of Signatures	Security of Encryption
F	Practical So	ecrecy			Provable S	ecurity		
1	Perfect Secre	cy vs. Practical Se	ecrecy		Symmetric C	ryptography		
	 No information from the c (unlimited ⇒ information) 	ation about the plair iphertext <i>c</i> , even for time and/or unlimite ttion theory	ntext <i>m</i> can be extracter r a powerful adversary ed power): perfect sec	ed recy		guarantees th	e secrecy of commu	unications en
	In practice	: adversaries are lir	mited in time/power				10	J

We thus model all the players (the legitimate ones and the adversary) as Probabilistic Polynomial Time Turing Machines:

computers that run programs

 \Rightarrow complexity theory

Asymmetric Cryptography The secrecy of the private key guarantees the secrecy of communications To be proven

David Pointcheval – ENS/CNRS/INRIA		Collège de France 9/4		David Pointcheval – ENS/CNRS/INRIA		Collège de France	10/40
Cryptography coocooco	Provable Security	Security of Signatures	Security of Encryption	Cryptography 00000000	Provable Security	Security of Signatures	Security of Encryption
What is	a Secure Cry	ptographic Schem	ie?	General	Method		

- What does security mean?
 - \rightarrow Security notions have to be formally defined
- How to guarantee above security claims for concrete schemes? \rightarrow Provable security

Provable Security

- if an adversary is able to break the cryptographic scheme
- then one can break a well-known hard problem

Computational Security Proofs

To prove the security of a cryptographic scheme, one needs

- a formal security model (security notions)
- a reduction: if one (Adversary) can break the security notions, then one (Simulator + Adversary) can break a hard problem
- acceptable computational assumptions (hard problems)

Proof by contradiction

David Pointcheval – ENS/CNRS/INRIA

Collège de France

11/40David Pointcheval - ENS/CNRS/INRIA

Cryptography coocooco	Provable Security	Security of Signatures	Security of Encryption	Cryptography 00000000	Provable Security	Security of Signat	ures Se or	curity of Encryption
Integer Fac	toring			Reductio	on			
Complexity	$\begin{array}{c c} & \longrightarrow & \text{Find } p \text{ a} \\ \hline \text{Digits} & \text{Da} \\ \hline 130 & \text{April}^{-1} \\ 140 & \text{Februar} \\ 155 & \text{August} \\ 160 & \text{April} \\ 200 & \text{May} \\ 232 & \text{December} \\ \hline 232 & \text{December} \\ \hline 768 \text{ bits} \rightarrow 2^{54} \text{ op.} \\ 24 \text{ bits} \rightarrow 2^{10} \text{ op.} \\ 148 \text{ bits} \rightarrow 2^{112} \text{ op.} \end{array}$	and q te Bit-Length 1996 431 bits y 1999 465 bits 1999 512 bits 2003 531 bits 2005 664 bits 2009 768 bits 3072 bits $\rightarrow 2^{128}$ c 7680 bits $\rightarrow 2^{129}$ c 15360 bits $\rightarrow 2^{256}$ c 15360 bits $\rightarrow 2^{256}$ c	р. р. р.	Adve Lossy Tight Tight	stary running tim reduction: $T =$ bodulus Adver length Completion = 1024 t < 2 = 2048 t < 2 = 3072 t < 2 reduction: $T \approx t$	$\begin{array}{c c} \hline \\ \hline $	running time Best Known Complexity 2 ⁸⁰ 2 ¹¹² 2 ¹²⁸ 2 ¹²⁸	T = f(t)
avid Pointcheval – ENS/CNF Cryptography cooccocco	ISINRIA Collèg Provable Security ccooo	e de France Security of Signatures coccocococo	13/44 Security of Encryption	David Pointcheval – EN Cryptography occosco	S/CNRS/INRIA Provable Security	Collège de France Security of Signat eccocococo	ures Se	14/40 ecurity of Encryption
One-Way Fun $\circ \mathcal{F}(1^k)$ ger $\circ From x \in$ \circ Given $y \in$ RSA Problem \circ Given $n =$ \circ Find x sur This problem i It becomes ea This problem i	unctions ctions herates a function f X, it is easy to con Y, it is hard to find pq , e and $y \in \mathbb{Z}_n^*$ och that $y = x^e$ mod shard without the psy with them: if $d =$ s assumed as hard	f: $X \to Y$ apute $y = f(x)$ d $x \in X$ such that $y =$ (Rives SI n prime factors p and q $= e^{-1} \mod \varphi(n)$, then A is a sinteger factoring:	f(x) namic-Adleman 1978) $x = y^d \mod n$	Signatur	e <i>m</i> _→ [$\begin{array}{c} k_{s} \\ \downarrow \\ \mathbf{S} \\ \hline m \\ \end{array}$		

the prime factors are a trapdoor to find solutions

 \Rightarrow trapdoor one-way permutation

Collège de France

Goal: Authentication of the sender 15/40David Pointcheval - ENS/CNRS/INRIA Collège de France

16/40

$$\mathbf{Succ}^{\mathrm{euf}}_{\mathcal{SG}}(\mathcal{A}) = \mathsf{Pr}[(k_{\mathcal{S}}, k_{\mathcal{V}}) \leftarrow \mathcal{G}(); (m, \sigma) \leftarrow \mathcal{A}(k_{\mathcal{V}}) : \mathcal{V}(k_{\mathcal{V}}, m, \sigma) = 1]$$

should be negligible.

\mathcal{A} knows the public key only \Rightarrow **No-Message Attack (NMA)**

One-Way Function

Under the one-wayness of \mathcal{F} , Succ^{euf-nma}(\mathcal{A}) is small.

But given one signature, one can "sign" any other message! Signatures are public! ⇒ Known-Message Attacks (KMA)

The adversary has access to a list of messages-signatures

avid Pointcheval - El	S/CNRS/INRIA	Collège de France	17/40	David Pointcheval – ENS	S/CNRS/INRIA	Collège de France	18/40
Cryptography 00000000	Provable Security 00000	Security of Signatures	Security of Encryption	Cryptography 00000000	Provable Security	Security of Signatures	Security of Encryption
EUF – K	MA			EUF – CI	MA		

One-Way Functions • $\mathcal{G}(1^k): f \stackrel{R}{\leftarrow} \mathcal{F}(1^k), \text{ and } \vec{x} = (x_{1,0}, x_{1,1}, \dots, x_{k,0}, x_{k,1}) \stackrel{R}{\leftarrow} X^{2k},$ $y_{i,j} = f(x_{i,j}) \text{ for } i = 1, \dots, k \text{ and } j = 0, 1,$ $k_s = \vec{x} \text{ and } k_v = (f, \vec{y})$ • $\mathcal{S}(\vec{x}, m) = (x_{i,m_i})_{i=1,\dots,k}$ • $\mathcal{V}((f, \vec{y}, m, (X^i)) \text{ checks whether } f(x_i^i) = y_{i,m_i} \text{ for } i = 1, \dots, k$

- Under the one-wayness of \mathcal{F} , Succ^{euf-nma}(\mathcal{A}) is small.
- With the signature of $m = 0^k$, I cannot forge any other signature.
- With the signatures of $m = 0^k$ and $m' = 1^k$, I learn \vec{x} : the secret key Messages can be under the control of the adversary!
- \Rightarrow Chosen-Message Attacks (CMA)

The adversary has access to any signature of its choice: Chosen-Message Attacks (oracle access):

$$\mathbf{Succ}_{\mathcal{SG}}^{\mathsf{euf}-\mathsf{cma}}(\mathcal{A}) = \mathsf{Pr}\left[\begin{array}{c} (k_{\mathcal{S}}, k_{\mathcal{V}}) \leftarrow \mathcal{G}(); (m, \sigma) \leftarrow \mathcal{A}^{\mathcal{S}(k_{\mathcal{S}}, \cdot)}(k_{\mathcal{V}}): \\ \forall i, m \neq m_i \land \mathcal{V}(k_{\mathcal{V}}, m, \sigma) = 1 \end{array}\right]$$

\implies 1024-bit RSA moduli provide 2⁸⁰ security

Goal: Privacy/Secrecy of the plaintext

David Pointcheval – ENS/CNRS/INRIA Collège de France		25/40	25/40David Pointcheval - ENS/CNRS/INRIA			26/40	
Cryptography 00000000	Provable Security cocco	Security of Signatures	Security of Encryption	Cryptography 00000000	Provable Security	Security of Signatures	Security of Encryption
OW – CP.	A: Security	Game		OW – CP	A: Is it Enou	gh?	

If $(\mathcal{G}, \mathcal{E}, \mathcal{D})$ is OW – CPA: then $(\mathcal{G}', \mathcal{E}', \mathcal{D}')$ is OW – CPA too

But this is clearly not enough: half or more of the message leaks!

Cryptography cooccocco	Provable Security ccoco	Security of Signatures	Security of Encryption	Cryptography oocoocoo	Provable Security cooco	Security of Signatures	Security of Encryption	
OW – CPA: Is it Enough?				IND – CPA: Security Game				

For a "yes/no" answer or "sell/buy" order,

one bit of information may be enough for the adversary! How to model that no bit of information leaks?

Perfect Secrecy vs. Computational Secrecy

- Perfect secrecy: the distribution of the ciphertext is perfectly independent of the plaintext
- Computational secrecy: the distribution of the ciphertext is computationally independent of the plaintext

Idea: No adversary can distinguish a ciphertext of m_0 from a ciphertext of m_1 .

Probabilistic encryption is required!

$$\begin{aligned} & (k_d, k_\theta) \leftarrow \mathcal{G}(); (m_0, m_1, \text{state}) \leftarrow \mathcal{A}(k_\theta); \\ & b \stackrel{R}{\leftarrow} \{0, 1\}; c^* = \mathcal{E}(k_\theta, m_b, r); b' \leftarrow \mathcal{A}(\text{state}, c^*) \end{aligned}$$

► K_a

$$\operatorname{Adv}^{\operatorname{ind-cpa}}_{\mathcal{S}}(\mathcal{A}) = 2 \times \Pr[b' = b] - 1$$
 should be negligible.

avid Pointcheval – ENS/CNRS/INRIA		Collège de France	29/40	David Pointcheval – ENS	S/CNRS/INRIA	Collège de France 30	
Cryptography	Provable Security 00000	Security of Signatures	Security of Encryption	Cryptography 00000000	Provable Security cocco	Security of Signatures	Security of Encryption
ElGamal E	ncryption		[ElGamal 1985]	ElGamal	is IND - CPA	: Proof	

The ElGamal Encryption (\mathcal{EG})

•
$$\mathcal{G}(1^k)$$
: $\mathbb{G} = \langle g \rangle$ of order $q, sk = x \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and $pk \leftarrow y = g^k$

- $\mathcal{E}(pk, m, r) = (c_1 = g^r, c_2 = y^r m)$
- $\mathcal{D}(sk, (c_1, c_2)) = c_2/c_1^x$

The ElGamal encryption is IND - CPA, under the DDH assumption

Decisional Diffie-Hellman Problem

For $\mathbb{G} = \langle g \rangle$ of order q, and $x, y \stackrel{R}{\leftarrow} \mathbb{Z}_q$,

- Given $X = g^x$, $Y = g^y$ and $Z = g^z$, for either $z \stackrel{R}{\leftarrow} \mathbb{Z}_q$ or z = xy
- Decide whether z = xy

This problem is assumed hard to decide in appropriate groups G!

Let A be an adversary against \mathcal{EG} : \mathcal{B} is an adversary against **DDH**: let us be given a **DDH** instance $(X = g^x, Y = g^y, Z = g^z)$

- A gets pk ← X from B, and outputs (m₀, m₁)
- \mathcal{B} sets $c_1 \leftarrow Y$
- B chooses b ← {0,1}, sets c₂ ← Z × m_b, and sends c = (c₁, c₂)
- B receives b' from A and outputs d = (b' = b)

•
$$2 \times \Pr[b' = b] - 1$$

= $\mathbf{Adv}_{\mathcal{E}\mathcal{G}}^{\operatorname{ind-cpa}}(\mathcal{A})$, if $z = xy$
= 0, if $z \notin \mathbb{Z}_q$

[ElGamal 1985]

Provable Security ElGamal is IND – CPA: Proof

As a consequence,

•
$$2 \times \Pr[b' = b | z \stackrel{H}{\leftarrow} \mathbb{Z}_q] - 1 = 0$$

If one subtracts the two lines:

$$\begin{aligned} \mathbf{Adv}_{\mathcal{EG}}^{\mathsf{ind}-\mathsf{cpa}}(\mathcal{A}) &= 2 \times \begin{pmatrix} \mathsf{Pr}[d=1|z=xy] \\ -\mathsf{Pr}[d=1|z\stackrel{\mathcal{P}}{\leftarrow}\mathbb{Z}_q] \end{pmatrix} \\ &= 2 \times \mathbf{Adv}_{\mathbb{G}}^{\mathsf{cdh}}(\mathcal{B}) \leq 2 \times \mathbf{Adv}_{\mathbb{G}}^{\mathsf{cdh}}(t) \end{aligned}$$

IND - CPA: Is it Enough?

The ElGamal Encryption

•
$$\mathcal{G}(1^k)$$
: $G = \langle g \rangle$ of order q , $sk = x \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and $pk \leftarrow y = g^{\flat}$

•
$$\mathcal{E}(pk, m, r) = (c_1 = g^r, c_2 = y^r m)$$
; $\mathcal{D}(sk, (c_1, c_2)) = c_2/c_1^x$

Private Auctions

All the players P_i encrypt their bids $c_i = \mathcal{E}(pk, b_i)$ for the authority; the authority opens all the c_i ; the highest bid b_i wins

- IND CPA guarantees privacy of the bids
- Malleability: from $c_i = \mathcal{E}(pk, b_i)$, without knowing b_i , one can generate $c' = \mathcal{E}(pk, 2b_i)$: an unknown higher bid!

IND - CPA does not imply Non-Malleability

More precisely, to get information on *m*, encrypted in c = f(X || Y), one must have asked $\mathcal{H}(X) \Longrightarrow$ partial inversion of *f*

For RSA: partial inversion and full inversion are equivalent (but at a computational loss)

Adversary running time t | Algorithm running time T = f(t)If there is an adversary that distinguishes, within time t, the two ciphertexts with overwhelming advantage (close to 1), one can break RSA within time $T \approx 2t + 3q_r^2 k^3$

(where q_H is number of Hashing queries $\approx 2^{60}$)

k = 1024 k = 2048 (k = 3072 ($\begin{array}{c c} (2^{80}) & t < 2^{80} \\ (2^{112}) & t < 2^{80} \\ (2^{128}) & t < 2^{80} \end{array}$	$ \left \begin{array}{c} T < 2^{152} \\ T < 2^{155} \\ T < 2^{158} \end{array} \right $	× = ×	<pre>harge modulus: > 4096 bits!</pre>
--------------------------------------	--	---	----------	---

avid Pointcheval - ENS/CNF	SINRIA	Collège de France	37/400	David Pointcheval – ENS/CNRS/INRIA	Collège de France	38/40
Cryptography	Provable Security 00000	Security of Signatures	Security of Encryption			
REACT-RS	A Security	[Okamoto-Pointe	heval - CT-RSA 2011	Conclusion		

REACT-RSA

- $\mathcal{G}(1^k)$: *p* and *q*, two random primes, and an exponent *e*: $n = pq, sk \leftarrow d = e^{-1} \mod \varphi(n) \text{ and } pk \leftarrow (n, e)$
- *E(pk, m, r) =*

$$(c_1 = r^e \mod n, c_2 = G(r) \oplus m, c_3 = H(r, m, c_1, c_2))$$

- $\mathcal{D}(sk, (c_1, c_2, c_3)): r = c_1^d \mod n, m = c_2 \oplus G(r),$ if $c_3 = H(r, m, c_1, c_2)$ then output *m*, else output \bot
- Security reduction between IND CCA and the RSA assumption: $T \approx t$
- \implies 1024-bit RSA moduli provide 2⁸⁰ security

With provable security, one can precisely get:

- · the security games one wants to resist against any adversary
- · the security level, according to the resources of the adversary

But, it is under some assumptions:

- the best attacks against famous problems (integer factoring, etc)
- no leakage of information excepted from the given oracles

Cryptographers' goals are thus

- to analyze the intractability of the underlying problems
- · to define realistic and strong security notions (games)
- · to correctly model the leakage of information (oracle access)
- to design schemes with tight security reductions

Implementations and uses must satisfy the constraints!