
Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Smooth Projective Hashing
for Conditionally Extractable Commitments

David Pointcheval

Joint work with Michel Abdalla and Céline Chevalier
Ecole normale supérieure, CNRS & INRIA

NTT – Tokyo – Japan
April 10th, 2009

David Pointcheval – 1/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Outline

1 Smooth Projective Hash Functions
Definitions
Conjunctions and Disjunctions

2 Extractable Commitments
Properties
Conditional Extractability
Application: Certification of Public Keys

3 Equivocable and Extractable Commitments
Description
Analysis

4 Adaptive Security and UC PAKE
Universal Composability
Previous Schemes
Our Scheme

David Pointcheval – 2/50
Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Outline

1 Smooth Projective Hash Functions
Definitions
Conjunctions and Disjunctions

2 Extractable Commitments
Properties
Conditional Extractability
Application: Certification of Public Keys

3 Equivocable and Extractable Commitments
Description
Analysis

4 Adaptive Security and UC PAKE
Universal Composability
Previous Schemes
Our Scheme

David Pointcheval – 3/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Definitions

Smooth Projective Hash Functions [Cramer-Shoup EC ’02]

Family of Hash Function H

Let {H} be a family of functions:
X , domain of these functions
L, subset (a language) of this domain

such that, for any point x in L, H(x) can be computed by using
either a secret hashing key hk: H(x) = HashL(hk; x);
or a public projected key hp: H(x) = ProjHashL(hp; x ,w)

While the former works for all points in the domain X ,
the latter works for x ∈ L only, and requires a witness w to this fact.
There is a public mapping that converts the hashing key hk into the
projected key hp: hp = ProjKGL(hk)

David Pointcheval – 4/50



Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Definitions

Properties

For any x ∈ X , H(x) = HashL(hk; x)
For any x ∈ L, H(x) = ProjHashL(hp; x ,w) w witness that x ∈ L

Smoothness
For any x 6∈ L, H(x) and hp are independent

Pseudo-Randomness
For any x ∈ L, H(x) is pseudo-random, without a witness w

The latter property requires L to be a hard partitioned subset of X :

Hard-Partitioned Subset
L is a hard-partitioned subset of X if it is computationally hard to
distinguish a random element in L from a random element in X \ L

David Pointcheval – 5/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Definitions

Element-Based Projection

Initial Definition [Cramer-Shoup EC ’02]

The projected key hp depends on the hashing key hk only:
hp = ProjKGL(hk)

New Definition [Gennaro-Lindell EC ’03]

The projected key hp depends on the hashing key hk, and x :
hp = ProjKGL(hk, x)

Applications: Encryption and Commitments
The input x can be a ciphertext or a commitment,
where the indistinguishability for the hard partitioned subset relies

either on the semantic security of the encryption scheme
or the hiding property of the commitment scheme

David Pointcheval – 6/50
Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Definitions

Examples

Commitment [Gennaro-Lindell EC ’02]

Lpk,m = {c} such that c is a commitment of m
using public parameter pk:

there exists r such that c = compk(m; r)
where com is the committing algorithm

Labeled Encryption [Canetti-Halevi-Katz-Lindell-MacKenzie EC ’05]

Lpk,(`,m) = {c} such that c is an encryption of m
with label `, under the public key pk:

there exists r such that c = E`
pk

(m; r)
where E is the encryption algorithm

David Pointcheval – 7/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Definitions

Smooth Projective Hash Functions [Gennaro-Lindell EC ’03]

A family of smooth projective hash functions HASH(pk),
for a language Lpk,aux ⊂ X , onto the set G, based on

either a labeled encryption scheme with public key pk
or on a commitment scheme with public parameters pk

consists of four algorithms:
HASH(pk) = (HashKG,ProjKG,Hash,ProjHash)

Key-Generation Algorithms
Probabilistic hashing key algorithm:

hk $← HashKG(pk,aux)

Deterministic projection key algorithm
hp = ProjKG(hk; pk,aux , c)

(where c is either a ciphertext or a commitment in X )

David Pointcheval – 8/50



Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Definitions

Smooth Projective Hash Functions [Gennaro-Lindell EC ’03]

HASH(pk) = (HashKG,ProjKG,Hash,ProjHash)

Hashing Algorithms
The hashing algorithm Hash computes,

on c ∈ X
using the secret hashing key hk
the value g = Hash(hk; pk,aux , c) ∈ G

The projected hashing algorithm ProjHash computes,
on c ∈ X
using the projection key hp
and a witness w to the fact that c ∈ Lpk,aux
the value g = ProjHash(hp; pk,aux , c; w) ∈ G

David Pointcheval – 9/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Definitions

Properties

Correctness
Let c ∈ Lpk,aux and w a witness of this membership.

hk $← HashKG(pk,aux) and hp = ProjKG(hk; pk,aux , c) implies

Hash(hk; pk,aux , c) = ProjHash(hp; pk,aux , c; w)

Smoothness
If c 6∈ Lpk,aux , the two distributions are statistically indistinguishable:

{pk,aux , c,hp = ProjKG(hk; pk,aux , c), g = Hash(hk; pk,aux , c)}
{pk,aux , c,hp = ProjKG(hk; pk,aux , c), g $← G}

David Pointcheval – 10/50
Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Definitions

Properties

Pseudorandomness
If c ∈ Lpk,aux , without a witness w of this membership, the two
distributions are computationally indistinguishable:

{pk,aux , c,hp = ProjKG(hk; pk,aux , c), g = Hash(hk; pk,aux , c)}
{pk,aux , c,hp = ProjKG(hk; pk,aux , c), g $← G}

This requires Lpk,aux to be a hard partitioned subset of X :
the uniform distributions in Lpk,aux and in X\Lpk,aux
are computationally indistinguishable

David Pointcheval – 11/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Definitions

ElGamal Encryption [ElGamal - C ’84]

G = 〈g〉, a cyclic group of prime order q.

ElGamal Encryption Schemes

Let pk = h = gx (public key), where sk = x $← Zq (private key)

If M ∈ G, the multiplicative ElGamal encryption is:
EG×pk(M; r) = (u1 = gr ,e = hr M)

which can be decrypted by M = e/uz
1 .

If M ∈ Zq, the additive ElGamal encryption is:
EG+

pk(M; r) = (u1 = gr ,e = hr gM)

Note that EG×pk(gM ; r) = EG+
pk(M; r)

It can thus be decrypted as above, but after an additional discrete
logarithm computation: M must be small enough.

IND-CPA security = DDH assumption.

David Pointcheval – 12/50



Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Definitions

Smooth Projective HF Family for ElGamal

The CRS: ρ = (G,q,g,pk = h)

Language: L = L(EG+,ρ),M = {C = (u1 ,e) = EG+
pk(M; r), r $← Zq}

L is a hard partitioned subset of X = G2, under the semantic
security of the ElGamal encryption scheme (DDH assumption)
the random r is the witness to L-membership

Algorithms

HashKG((EG+, ρ),M) = hk = (γ1, γ3)
$← Zq × Zq

Hash(hk; (EG+, ρ),M,C) = (u1)γ1(eg−M)γ3

ProjKG(hk; (EG+, ρ),M,C) = hp = (g)γ1(h)γ3

ProjHash(hp; (EG+, ρ),M,C; r) = (hp)r

David Pointcheval – 13/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Conjunctions and Disjunctions

Notations

We assume that G possesses a group structure, and we denote by ⊕
the commutative law of the group (and by 	 the opposite operation)
We assume to be given two smooth hash systems SHS1 and SHS2,
on the sets G1 and G2 (included in G) corresponding to the
languages L1 and L2 respectively:

SHSi = {HashKGi ,ProjKGi ,Hashi ,ProjHashi}
Let c ∈ X , and r1 and r2 two random elements:

hk1 = HashKG1(ρ,aux , r1)

hk2 = HashKG2(ρ,aux , r2)

hp1 = ProjKG1(hk1; ρ,aux , c)

hp2 = ProjKG2(hk2; ρ,aux , c)

David Pointcheval – 14/50
Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Conjunctions and Disjunctions

Conjunction of Languages

A hash system for the language L = L1 ∩L2 is then defined as follows,
if c ∈ L1 ∩ L2 and wi is a witness that c ∈ Li , for i = 1,2:

HashKGL(ρ,aux , r = r1‖r2) = hk = (hk1,hk2)
ProjKGL(hk; ρ,aux , c) = hp = (hp1,hp2)

HashL(hk; ρ,aux , c) = Hash1(hk1; ρ,aux , c)
⊕ Hash2(hk2; ρ,aux , c)

ProjHashL(hp; ρ,aux , c; (w1,w2)) = ProjHash1(hp1; ρ,aux , c; w1)
⊕ ProjHash2(hp2; ρ,aux , c; w2)

if c is not in one of the languages, then the corresponding hash
value is perfectly random: smoothness
without one of the witnesses, then the corresponding hash value
is computationally unpredictable: pseudo-randomness

David Pointcheval – 15/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Conjunctions and Disjunctions

Disjunction of Languages

A hash system for the language L = L1 ∪L2 is then defined as follows,
if c ∈ L1 ∪ L2 and w is a witness that c ∈ Li for i ∈ {1,2}:

HashKGL(ρ,aux , r = r1‖r2) = hk = (hk1,hk2)
ProjKGL(hk; ρ,aux , c) = hp = (hp1,hp2,hp∆)

where hp∆ = Hash1(hk1; ρ,aux , c)
⊕ Hash2(hk2; ρ,aux , c)

HashL(hk; ρ,aux , c) = Hash1(hk1; ρ,aux , c)
ProjHashL(hp; ρ,aux , c; w) = ProjHash1(hp1; ρ,aux , c; w) if c ∈ L1

or hp∆ 	 ProjHash2(hp2; ρ,aux , c; w)
if c ∈ L2

hp∆ helps to compute the missing hash value,
if and only if at least one can be computed

David Pointcheval – 16/50



Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Conjunctions and Disjunctions

Properties

Contrarily to the original Cramer-Shoup definition,
the value of the projected key formally depends on the word c
But this dependence maybe invisible

Uniformity
The projected key may or may not depend on c (and aux),
but its distribution does not

Independence
The projected key does not depend at all on c (and aux)

David Pointcheval – 17/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Outline

1 Smooth Projective Hash Functions
Definitions
Conjunctions and Disjunctions

2 Extractable Commitments
Properties
Conditional Extractability
Application: Certification of Public Keys

3 Equivocable and Extractable Commitments
Description
Analysis

4 Adaptive Security and UC PAKE
Universal Composability
Previous Schemes
Our Scheme

David Pointcheval – 18/50
Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Properties

Commitments

Definition
A commitment scheme is defined by two algorithms:

the committing algorithm, C = com(x ; r) with randomness r ,
on input x , to commit on this input;
the decommitting algorithm, (x ,D) = decom(C, x , r),
where x is the claimed committed value, and D the proof

Properties
The commitment C = com(x ; r)

reveals nothing about the input x : the hiding property
nobody can open C in two different ways: the binding property

David Pointcheval – 19/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Properties

Examples

In both cases, the CRS ρ is (G,q,g,pk = h),
and (x ,D = r) = decom(C, x , r)

ElGamal

C = comEGpk(x ; r) = (u1 ,e) = EG+
pk(x ; r), with r $← Zq;

As any IND-CPA encryption scheme, this commitment is
perfectly binding and computationally hiding, (DDH assumption)

Pedersen

C = comPed(x ; r) = gxhr , with r $← Zq;
This commitment is perfectly hiding and computationally binding,
(DL assumption)

David Pointcheval – 20/50



Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Properties

Additional Properties

Extractability
A commitment is extractable if there exists an efficient algorithm,
called extractor, capable of generating a new CRS (with similar
distribution) such that it can extract x from any C = com(x , r)

This is possible for computationally hiding commitments only:
with an encryption scheme, the decryption key is the extraction key

Equivocability
A commitment is equivocable if there exists an efficient algorithm,
called equivocator, capable of generating a new CRS and a
commitment (with similar distributions) such that the commitment can
be opened in different ways

This is possible for computationally binding commitments only
David Pointcheval – 21/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Properties

Additional Properties

Non-Malleability
A commitment is non-malleable if, for any adversary receiving a
commitment C of some unknown value x that can generate a valid
commitment for a related value y , then a simulator could perform the
same without seeing the commitment C

This is meaningful for perfectly binding commitments only:
with an encryption scheme, IND-CCA2 security level guarantees
non-malleability

David Pointcheval – 22/50
Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Conditional Extractability

Motivation

ElGamal Commitment

comEGpk(x ; r) = EG+
pk(x ; r), is extractable for small x only

Example
If x ∈ {0,1}, any C(x) = comEGpk(x ; r) is extractable

Homomorphic Property

Let us assume 2k−1 < q < 2k , then for any x =
∑k−1

i=0 xi × 2i ∈ Zq,
C(x) = {Ci = comEGpk(xi ; ri) = EG+

pk(xi ; ri)}k−1
i=0 , is extractable under

the condition that (xi)i ∈ {0,1}k
Furthermore, comEGpk(x ; r) =

∏
C2i

i , for r =
∑k−1

i=0 ri × 2i

David Pointcheval – 23/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Conditional Extractability

Extended Languages

x = 0 ⇐⇒ C(x) = comEGpk(x ; r) ∈ L(EG+,ρ),0

x = 1 ⇐⇒ C(x) = comEGpk(x ; r) ∈ L(EG+,ρ),1

We then define

L(EG+,ρ),0∨1 = L(EG+,ρ),0 ∪ L(EG+,ρ),1

To be extractable, C = (Ci)i has to lie in

L = {(C0, . . . ,Ck−1) | ∀i ,Ci ∈ L(EG+,ρ),0∨1}

David Pointcheval – 24/50



Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Application: Certification of Public Keys

Certification of Public Keys

For the certification Cert of an ElGamal public key y = gx , in most of
the protocols, the simulator needs to be able to extract the secret key:

Classical Process
the user sends his public key y = gx ;
the user and the authority run a ZK proof of knowledge of x
if convinced, the authority generates and sends the certificate
Cert for y

But for extracting x in the simulation, the reduction requires a
rewinding (that is not always allowed: e.g., in the UC Framework)

David Pointcheval – 25/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Application: Certification of Public Keys

Certification of Public Keys

For the certification Cert of an ElGamal public key y = gx , in most of
the protocols, the simulator needs to be able to extract the secret key:

New Process
the user and the authority use a smooth projective hash system for L:
HASH(pk) = (HashKG,ProjKG,Hash,ProjHash)

the user sends his public key y = gx , together with an
L-extractable commitment C of x , with random r ;
the authority generates

a hashing key hk $← HashKG(),
the corresponding projected key on C, hp = ProjKG(hk,C)
the hash value Hash = Hash(hk; C)

and sends hp along with Cert⊕ Hash;
The user computes Hash = ProjHash(hp; C, r), and gets Cert.

David Pointcheval – 26/50
Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Application: Certification of Public Keys

Commitment and Smooth Projective HF

The authority sends hp along with Cert⊕ Hash

Analysis: Correct Commitment
If the user correctly computed the commitment (C ∈ L)

he knows the witness r , and can get the same mask Hash;
the simulator can extract x , granted the L-extractability

Analysis: Incorrect Commitment
If the user cheated (C 6∈ L)

the simulator is not guaranteed to extract anything;
but, the smoothness property makes Hash perfectly
unpredictable: no information is leaked about the certificate.

David Pointcheval – 27/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Outline

1 Smooth Projective Hash Functions
Definitions
Conjunctions and Disjunctions

2 Extractable Commitments
Properties
Conditional Extractability
Application: Certification of Public Keys

3 Equivocable and Extractable Commitments
Description
Analysis

4 Adaptive Security and UC PAKE
Universal Composability
Previous Schemes
Our Scheme

David Pointcheval – 28/50



Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Description

A First Approach [Canetti-Fischlin C ’01]

To get both extractability and equivocability (at the same time), one
can combine perfectly hiding and perfectly binding commitments:

Pedersen’s commitment is perfectly hiding
ElGamal’s commitment is perfectly binding

Notations

if b is a bit, we denote its complement by b
x [i] denotes the i th bit of the bit-string x

David Pointcheval – 29/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Description

Extractable and Equivocable Commitment

Common Reference String Model
The commitment is realized in the common reference string model:
the CRS ρ contains

(G,pk), where pk is an ElGamal public key and the private key is
unknown to anybody (except to the commitment extractor)
the tuple (y1 , . . . , ym ) ∈ Gm, for which the discrete logarithms in
basis g are unknown to anybody (except to the commitment
equivocator)

Let the input of the committing algorithm be a bit-string

π =
m∑

i=1

πi · 2i−1

David Pointcheval – 30/50
Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Description

Extractable and Equivocable Commitment

In order to commit to π, for i = 1, . . . ,m,
one chooses a random value xi,πi

=
∑n

j=1 xi,πi
[j] · 2j−1 ∈ Zq

and sets xi,πi
= 0

one commits to πi , using the random xi,πi
:

ai = comPed(πi , xi,πi
) = gxi,πi yπi

i

This defines a = (a1 , . . . ,am )

one commits to xi,δ , for δ = 0,1: (bi,δ = (bi,δ [j])j = comEGpk(xi,δ),
where bi,δ [j] = EG+

pk(xi,δ [j] · 2j−1, ri,δ [j])

Then, Bi,δ =
∏

j bi,δ [j] = EG+
pk(xi,δ , ri,δ), where ri,δ =

∑
j ri,δ [j].

David Pointcheval – 31/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Description

Extractable and Equivocable Commitment

Random string:

R = (x1,π1
, (r1,0 [j], r1,1 [j])j , . . . , xm,πm

, (rm,0 [j], rm,1 [j])j)

Commitment: comρ(π; R) = (a,b)

where a = (ai = comPed(πi , xi,πi
))i

b = (bi,δ [j] = EG+
pk(xi,δ [j] · 2j−1, ri,δ [j]))i,δ,j

Witness: the values ri,πi
[j] can be erased,

w = (x1,π1
, (r1,π1

[j])j , . . . , xm,πm
, (rm,πm

[j])j)

Opening: given the above witness, and the value π

∀i , j : bi,πi
[j] ?

= EG+
pk(xi,πi

[j] · 2j−1, ri,πi
[j])

∀i : ai

?
= comPed(πi , xi,πi

)

David Pointcheval – 32/50



Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Analysis

Properties

comρ(π; R) = (a,b) : a = (ai = comPed(πi , xi,πi
))i

b = (bi,δ [j] = EG+
pk(xi,δ [j] · 2j−1, ri,δ [j]))i,δ,j

Intuition
Granted the perfectly hiding property of the Pedersen
commitment, without any information on the xi,δ [j]’s, no
information is leaked about the πi ’s
Granted the semantic security of the ElGamal encryption
scheme, the former privacy on the xi,δ [j]’s is guaranteed
Granted the computationally binding property of the Pedersen
commitment, the ai ’s cannot be open in two ways

David Pointcheval – 33/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Analysis

Conditional Extractability

Constraints
bit-by-bit encryption of the xi,δ [j]:
with the ElGamal decryption key, one decrypts all the bi,δ [j],
and gets the xi,πi

(unless the plaintexts are different to 0 and 2i−1)
then, one can confirm, for i = 1, . . . ,m, whether
ai = comPed(0, xi,0) or ai = comPed(1, xi,1), which provides πi
(unless none of the equalities is satisfied)

The above conditions define the language for extractability:

Lρ,π =

C

∣∣∣∣∣∣
∃R such that C = comρ(π,R)
and ∀i ∀j bi,πi

[j] ∈ L(EG+,ρ),0∨1

and ∀i Bi,πi
∈ L(EG×,ρ),ai /yi

πi


David Pointcheval – 34/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Analysis

Equivocability

Normal Procedure
One takes a random xi,πi

and then xi,πi
= 0, which specifies πi

One commits on πi using randomness xi,πi

One encrypts both xi,πi
and xi,πi

, bit-by-bit

Equivocable Procedure
Granted the Pedersen commitment trapdoor

one takes a random xi,0 and extracts xi,1 such that
ai = comPed(0, xi,0) = comPed(1, xi,1)

the rest of the commitment procedure remains the same
One can open any bit-string for π, using the appropriate xi,πi
and the corresponding random elements (no erasure)

David Pointcheval – 35/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Analysis

Non-Malleability

Using a non-malleable encryption scheme (Cramer-Shoup),
one can make the commitment non-malleable:

Random string:

R = (x1,π1
, (r1,0 [j], r1,1 [j])j , . . . , xm,πm

, (rm,0 [j], rm,1 [j])j)

Commitment: comρ(π; R) = (a,b)

where a = (ai = comPed(πi , xi,πi
))i

b = (bi,δ [j] = CS+
pk(xi,δ [j] · 2j−1, ri,δ [j]))i,δ,j

Opening: given the above witness, and the value π

∀i , j : bi,πi
[j] ?

= CS+
pk(xi,πi

[j] · 2j−1, ri,πi
[j])

∀i : ai

?
= comPed(πi , xi,πi

)

David Pointcheval – 36/50



Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Outline

1 Smooth Projective Hash Functions
Definitions
Conjunctions and Disjunctions

2 Extractable Commitments
Properties
Conditional Extractability
Application: Certification of Public Keys

3 Equivocable and Extractable Commitments
Description
Analysis

4 Adaptive Security and UC PAKE
Universal Composability
Previous Schemes
Our Scheme

David Pointcheval – 37/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Universal Composability

Universal Composability [Canetti FOCS ’01]

The protocol Π securely realizes F , if
∀ adversary A, ∃ a simulator S such that
no environment Z can tell whether it interacts

with a run of Π with A
or with an ideal run with F and S

David Pointcheval – 38/50
Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Universal Composability

Real-life Execution

David Pointcheval – 39/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Universal Composability

Ideal Execution

S has to simulate the view
generated by the honest users
without the private inputs

David Pointcheval – 40/50



Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Universal Composability

Password-Authenticated Key Exchange

Definition
Two players want to establish a common secret key, using a short
password as authentication means: exhaustive search is possible

on-line dictionary attack: Elimination of one candidate per attack.
This is unavoidable
off-line dictionary attack: the transcript of a communication helps
to eliminate one or a few candidates
This is avoidable, and should be avoided

One wants to prove that eliminating one candidate per active attempt
is the best attack

David Pointcheval – 41/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Universal Composability

Ideal Functionality [Canetti-Halevi-Katz-Lindell-MacKenzie EC ’05]

TestPwd to model on-line dictionary attacks (once per session)
David Pointcheval – 42/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Previous Schemes

Scheme I [Katz-Ostrovsky-Yung EC ’01, Gennaro-Lindell C ’03]

David Pointcheval – 43/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Previous Schemes

Analysis

Security in the classical framework:
Commitment to an incorrect
password: smoothness leads to
a perfectly random session key
Replay of a commitment:
pseudo-randomness leads to a
computationally random session
key (witness unknown)

Simulation of the honest players: use of a dummy password
indistinguishable, unless A committed to the correct password:
S cannot compute the correct key =⇒ S aborts
in the UC framework, Z sees the difference between a
real-execution and the simulation: when A wins, S aborts
Because of the short password, this is not negligible

David Pointcheval – 44/50



Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Previous Schemes

Analysis

If A plays the server role:
S can extract the committed
password, and check it
granted the TestPwd query
password valid: S uses it
else: dummy password

=⇒ perfect simulation

If A plays the client role:
S does not know yet the password sent by A: dummy password
when A sends its commitment, S extracts the password
and checks it granted the TestPwd query
if the password is invalid, S follows with the dummy password
else, S is stuck

David Pointcheval – 45/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Previous Schemes

Scheme II [Canetti-Halevi-Katz-Lindell-MacKenzie EC ’05]

Add of a first commitment round

David Pointcheval – 46/50
Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Previous Schemes

Analysis

If A plays the client role:
S can extract the committed
password, and check it
granted the TestPwd query
password valid: S uses it
else: dummy password

=⇒ perfect simulation
If A plays the server role:
S does not know yet the password: dummy password in c0

when A sends its commitment c1, S extracts the password
and checks it granted the TestPwd query
if the password is invalid, S follows with the dummy password
else, S uses the correct password in c2 and simulates the ZKP

David Pointcheval – 47/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Previous Schemes

Adaptive Corruption

If A plays the server role:
S does not know the password:
dummy password in c0

S extracts the password from c1
checks it (TestPwd query)
if invalid: S follows with the
dummy password in c2

else, S uses the correct password in c2 and simulate the ZKP
What about if A corrupts the client right after c0?
S gets the correct password, but cannot open c0 correctly!
=⇒ security against static-corruptions only (before the session starts)

Non-malleable, L-extractable, equivocable commitment
provides adaptive security

David Pointcheval – 48/50



Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Our Scheme

Adaptively Secure UC-PAKE
(U1) (VKI, SKI)← SKG

`I = J ◦ I ◦ ssid ◦ VKI
comI = comρ(`I, pwI; RI)

(comI ,VKI)−−−−−−−−−−−−−→ (S2) (publicly) checks the validity of comI
(VKJ, SKJ)← SKG
`J = J ◦ I ◦ ssid ◦ VKJ
hkJ = HashKG(ρ, (`I, pwJ), rJ )
comJ = comρ(`J, pwJ; RJ)

hpJ = ProjKG(hkJ; ρ, (`I, pwJ), comI )
HashJ = Hash(hkJ; ρ, (`I, pwJ), comI )(comJ , VKJ, hpJ)

←−−−−−−−−−−−−− erases hkJ(U3) (publicly) checks the validity of comJ
hkIHashKG(ρ, (`J, pwI), rI )
hpI = ProjKG(hkI; (`J, pwI), comJ )

σI = Sign(SKI, (comI , comJ , hpI, hpJ))

skI = ProjHash(hpJ; ρ, (`I, pwI), comI ; wI)
+Hash(hkI; ρ, (`J, pwI), comJ )

erases hkI
(σI, hpI)−−−−−−−−−−−−−→ (S4) aborts if

Ver(VKI, (comI , comJ , hpI, hpJ), σI) = 0
σJ = Sign(SKJ, (comI , comJ , hpI, hpJ))

skJ = ProjHash(hpI; ρ, (`J, pwJ), comJ ; wJ)

+HashJ
outputs (sid, ssid, skJ)
erases everything(σJ)←−−−−−−−−−−−−− sets the session as accepted(U5) aborts if

Ver(VKJ, (comI , comJ , hpI, hpJ), σJ) = 0
outputs (sid, ssid, skI)
erases everything
sets the session as accepted

David Pointcheval – 49/50

Smooth Projective HF Ext. Commitments Equivocability UC PAKE

Conclusion

Conclusion

Smooth Projective Hash Functions for Complex Languages

Various Applications
in place of some ZK proofs
conditional secure channels
adaptive security in UC PAKE

David Pointcheval – 50/50


