Smooth Projective Hashing

0 Smooth Projective Hash Functions
for Conditionally Extractable Commitments @ Definitions
@ Conjunctions and Disjunctions
e Extractable Commitments
@ Properties
Jointwork ith Michel Abdalla and Géline Chevalier @ Conditional Extractability
Ecole normale supérieure, CNRS & INRIA @ Application: Certification of Public Keys
© Equi ble and Extr C i
@ Description
W”VRJA @ Analysis
o Adaptive Security and UC PAKE
NTT - Tokyo — Japan @ Universal Composability
April 10th, 2009 @ Previous Schemes
@ Our Scheme

David Pointcheval

Smooth Projective HF Smooth Projective HF

Definitions

Outline Smooth Projective Hash Functions [Cramer-Shoup E

@ Ssmooth Projective Hash Functions
@ Definitions Family of Hash Function H

@ Conjunctions and Disjunctions Let {H} be a family of functions:
@ X, domain of these functions
o L, subset (a language) of this domain
such that, for any point x in L, H(x) can be computed by using
@ either a secret hashing key hk: H(x) = Hash(hk; x);
@ or a public projected key hp: H(x) = ProjHash, (hp; x, w)

While the former works for all points in the domain X,

the latter works for x € L only, and requires a witness w to this fact.
There is a public mapping that converts the hashing key hk into the
projected key hp: hp = ProjKG/ (hk)

David Dalntohausl _ /0 P

Smooth Projective HF

Definitions

Smooth Projective HF

Definitions

Properties

Forany x € X, H(x) =

Hash, (hk; x)
Forany x € L, H(x) =

ProjHash, (hp; x, w) ~ w witness that x € L

Forany x ¢ L, H(x) and hp are independent

Pseudo-Randomness

For any x € L, H(x) is pseudo-random, without a witness w

The latter property requires L to be a hard partitioned subset of X:
Hard-Partitioned Subset

L is a hard-partitioned subset of X if it is computationally hard to
distinguish a random element in L from a random element in X'\ L

Smooth Projective HF

Definitions

Examples

Commitment [Gennaro-Lindell EC 02]

Lok m = {c} such that ¢ is a commitment of m
using public parameter pk:
there exists r such that ¢ = compy(m; r)
where com is the committing algorithm

Labeled Encryption

Lok (e,m) = {c} such that ¢ is an encryption of m
with label ¢, under the public key pk:
there exists r such that ¢ = S’ (m;r)
where £ is the encryption algornhm

David Balntohausl — 780

Element-Based Projection

Initial Definition [Cramer-Shoup EC *02

The projected key hp depends on the hashing key hk only:
hp = ProjKG, (hk)

New Definition [Gennaro-Lindell EC *03]

The projected key hp depends on the hashing key hk, and x:
hp = ProjKG, (hk, x)

Applications: Encryption and Commitments

The input x can be a ciphertext or a commitment,

where the indistinguishability for the hard partitioned subset relies
@ either on the semantic security of the encryption scheme
@ or the hiding property of the commitment scheme

Smooth Projective HF

Definitions

Smooth Projective Hash Functions

[Gennaro-Lindell E

A family of smooth projective hash functions HASH(pk),
for a language Lpk aux C X, onto the set G, based on

@ either a labeled encryption scheme with public key pk
@ or on a commitment scheme with public parameters pk
consists of four algorithms:
HASH(pk) = (HashKG, ProjKG, Hash, ProjHash)
Key-Generation Algorithms
@ Probabilistic hashing key algorithm:
hk & HashKG(pk, aux)
@ Deterministic projection key algorithm
hp = ProjKG(hk; pk, aux, c)
(where c is either a ciphertext or a commitment in X)

Pt Bolndahaval _ &/

Smooth Projective HF Smooth Projective HF

Definitions Definitions

Smooth Projective Hash Functions (cemuo-Linceizc 03y Properties

HASH(pk) = (HashKG, ProjKG, Hash, ProjHash) orrectness

Let ¢ € Lok aux and w a witness of this membership.
hk & HashKG(pk, aux) and hp = ProjKG(hk; pk, aux, c) implies
Hashing Algorithms
@ The hashing algorithm Hash computes,
eonceX
e using the secret hashing key hk
o the value g = Hash(hk; pk, aux, c) € G
@ The projected hashing algorithm ProjHash computes,
eonceX
@ using the projection key hp
@ and a witness w to the fact that ¢ € Lok aux
o the value g = ProjHash(hp; pk, aux.c; w) € G

Hash(hk; pk, aux, ¢) = ProjHash(hp; pk, aux, ¢; w)

If ¢ & Lok aux» the two distributions are statistically indistinguishable:

{pk, aux, ¢, hp = ProjKG(hk; pk, aux, ¢), g = Hash(hk; pk, aux, c)}
{pk, aux, ¢, hp = ProjKG(hk; pk, aux,c), g & G}

Smooth Projective HF Smooth Projective HF

Definitions Definitions

Properties ElGamal Encryption (ElGamal -

G = (g), a cyclic group of prime order g.

Pseudorandomness

If ¢ € Lpk aux, Without a witness w of this membership, the two
distributions are computationally indistinguishable:

ElGamal Encryption Schemes

Let pk = h = g* (public key), where sk = x £ Zq (private key)
@ If M € G, the multiplicative EIGamal encryption is:
0 EG(Mir) = (uy = g'.e = h'M)
@ which can be decrypted by M = e/us.

o If M € Zg, the additive EIGamal encryption is:
the uniform distributions in Ly aux and in X\ Lok aux 0 EGS(Mir) = (u=g".e= hrgM)

{pk, aux, ¢, hp = ProjKG(hk; pk, aux, ¢), g = Hash(hk; pk, aux, c)}
{pk. aux, ¢, hp = ProjKG(hk; pk, aux,c), g] G}

This requires Lpk aux to be a hard partitioned subset of X:

are computationally indistinguishable Note that EG’% (g; r) = EGy (M: r
P ' P i

)
o It can thus be decrypted as above, but after an additional discrete
logarithm computation: M must be small enough.

IND-CPA security = DDH assumption.

David Bolniahasal _ 1180 [p—

Smooth Projective HF

Definitions

Smooth Projective HF Family for EIGamal

The CRS: p = (G, q.g,pk = h)
Language: L = Lga+ ju = {C = (U, €) = EGH (Mir).r & Zg}
@ Lis a hard partitioned subset of X = G?, under the semantic
security of the EIGamal encryption scheme (DDH assumption)
@ the random r is the witness to L-membership

HashKG((EG*, p), M) = hk = (31,73) & Zg x Zq
Hash(hk; (EG™, p), M, C) = (u,) (eg~M)»
ProjkG (hk; (EG™, p), M, C) = hp = () (h)
ProjHash(hp; (EG™, p), M, C; r) = (hp)"

Smooth Projective HF

Conjunctions and Disjunctions

Conjunction of Languages

Smooth Projective HF

Conjunctions and Disjunctions.

Notations

We assume that G possesses a group structure, and we denote by &
the commutative law of the group (and by © the opposite operation)
We assume to be given two smooth hash systems SHS; and SHS,,
on the sets Gy and G (included in G) corresponding to the
languages L and L, respectively:

SHS; = {HashKG;, ProjKG;, Hash;, ProjHash; }

Let c € X, and ry and r» two random elements:

hki = HashKGi(p, aux, ry)
hko = HashKGa(p, aux, r2)
hp; = ProjKGy(hky; p, aux, c)
hp, = ProjKGy(hke; p, aux, c)

Smooth Projective HF
Conjunctions and Disjunctions.

Disjunction of Languages

A hash system for the language L = Ly N Ly is then defined as follows,
if c € Ly N L, and w; is a witness that ¢ € L;, for i = 1,2:

HashKG(p, aux, r = ri||r2) = hk = (hky, hkz)
ProjKG, (hk; p, aux, ¢) = hp = (hpy, hpy)
Hash, (hk; p, aux, ¢) =Hash;(hks; p, aux, c)
@ Hashy(hky; p, aux,)
ProjHash, (hp; p, aux, c¢; (wy, w»)) = ProjHash, (hpy; p. aux, c; wy)
@ ProjHash,(hpy; p, aux, c; wa)
@ if cis not in one of the languages, then the corresponding hash
value is perfectly random: smoothness

@ without one of the witnesses, then the corresponding hash value
is computationally unpredictable: pseudo-randomness

David Bolniahasal _ 18%0

A hash system for the language L = L1 U L; is then defined as follows,
if c € Ly ULy and w is a witness that ¢ € L; for i € {1,2}:

HashKGy(p, aux, r = r|r;) = hk = (hky, hka)
ProjKG, (hk; p, aux, ¢) = hp = (hp;,hp,, hpa)
where hp, = Hash;(hky; p, aux, c)
@ Hashy(hkz; p, aux, c)
Hash(hk; p, aux, ¢) = Hashy(hks; p, aux, c)
ProjHash, (hp; p, aux, ¢; w) = ProjHash, (hpy;: p, aux, c; w) if c € Ly
or hp, © ProjHash,(hp,; p, aux, ¢; w)
ifcely

hpa helps to compute the missing hash value,
if and only if at least one can be computed

[y —

Smooth Projective HF
.

Conjunctions and Disjunctions

Properties

Ext. Commitments

Outline

Contrarily to the original Cramer-Shoup definition,
the value of the projected key formally depends on the word ¢
But this dependence maybe invisible

The projected key may or may not depend on ¢ (and aux),
but its distribution does not

Independence
The projected key does not depend at all on ¢ (and aux)

Ext. Commitments

Properties

Commitments

A commitment scheme is defined by two algorithms:

@ the committing algorithm, C = com(x; r) with randomness r,
on input x, to commit on this input;

@ the decommitting algorithm, (x, D) = decom(C, x, r),
where x is the claimed committed value, and D the proof

Properties

The commitment C = com(x; r)
@ reveals nothing about the input x: the hiding property
@ nobody can open C in two different ways: the binding property

David Bolniahaeal _ 1080

e Extractable Commitments
@ Properties
@ Conditional Extractability
@ Application: Certification of Public Keys

Ext. Commitments.

Properties.

Examples

In both cases, the CRS pis (G, q.g,pk = h),
and (x,D = r) = decom(C, x, r)

@ C = comEG(x;r) = (u;, €) = EG(x:), with r & Zg;
@ As any IND-CPA encryption scheme, this commitment is
perfectly binding and computationally hiding, (DDH assumption)

Pedersen

@ C = comPed(x; r) = g*h", with r & Zg;
@ This commitment is perfectly hiding and computationally binding,
(DL assumption)

[

Properties

Properties.

Additional Properties Additional Properties

Extractability

Non-Malleability

A commitment is extractable if there exists an efficient algorithm,
called extractor, capable of generating a new CRS (with similar
distribution) such that it can extract x from any C = com(x, r)

A commitment is non-malleable if, for any adversary receiving a
commitment C of some unknown value x that can generate a valid
commitment for a related value y, then a simulator could perform the
same without seeing the commitment C

This is possible for computationally hiding commitments only:
with an encryption scheme, the decryption key is the extraction key This is meaningful for perfectly binding commitments only:

Equivocability with an encryption scheme, IND-CCA2 security level guarantees
non-malleability

A commitment is equivocable if there exists an efficient algorithm,
called equivocator, capable of generating a new CRS and a
commitment (with similar distributions) such that the commitment can
be opened in different ways

This is possible for computationally binding commitments only

Ext. Commitments Ext. Commitments
o e

Conditional Extractability Conditional Extractability

Motivation Extended Languages

ElGamal Commitment

comEka(x; r= EG;k(x; r), is extractable for small x only =0 <= C(x)=CcomEGy(x:) € Liga+)0

=1 <= C(x) = comEG(x:r) € LEa+)1

If x € {0, 1}, any C(x) = comEG(x;

We then define
Homomorphic Property

Lea+p)0v1 = LEa+ 5).0 U LEG+ 1) 1

Let us assume 2k~1 < g < 2K, then for any x = Y51 x; x 2/ € Zq, -
C(x) = {C; = comEGy(x; 1;) = EGf (xi: 1)) }=7 . is extractable under To be extractable, C = (C;); has to lie in

0
the condition that (x;); € {0,1}¥

o o) L={(Co,...,Ck1) | V¥i,C; € Lga+ 5)ov1}
Furthermore, comEG(x; r) = [C7, for r = 3755 r; x 2

David Bolniahaeal _ 24m0 [—

Ext. Commitments Ext. Commitments
00 000

Application: Certification of Public Keys Application: Certification of Public Keys

Certification of Public Keys Certification of Public Keys
For the certification Cert of an EIGamal public key y = g, in most of For the certification Cert of an EIGamal public key y = g*, in most of
the protocols, the simulator needs to be able to extract the secret key: the protocols, the simulator needs to be able to extract the secret key:

Classical Process
@ the user sends his public key y = g*;
@ the user and the authority run a ZK proof of knowledge of x

@ if convinced, the authority generates and sends the certificate
Cert for y

the user and the authority use a smooth projective hash system for L:
HASH(pk) = (HashKG, ProjKG, Hash, ProjHash)
@ the user sends his public key y = g%, together with an
L-extractable commitment C of x, with random r;
@ the authority generates
But for extracting x in the simulation, the reduction requires a o a hashing key hk &~ HashKG(),
rewinding (that is not always allowed: e.g., in the UC Framework) o the corresponding projected key on C, hp = ProjKG(hk, C)
o the hash value Hash = Hash(hk; C)
and sends hp along with Cert & Hash;
@ The user computes Hash = ProjHash(hp; C, r), and gets Cert.

Ext. Commitments Equivocability
coe

Application: Certification of Public Keys

Commitment and Smooth Projective HF Outline

The authority sends hp along with Cert & Hash

Analysis: Correct Commitment
If the user correctly computed the commitment (C € L)
@ he knows the witness r, and can get the same mask Hash;
@ the simulator can extract x, granted the L-extractability

e Equi ble and Extr: ble C:
@ Description
@ Analysis

Analysis: Incorrect Commitment
If the user cheated (C ¢ L)
@ the simulator is not guaranteed to extract anything;

@ but, the smoothness property makes Hash perfectly
unpredictable: no information is leaked about the certificate.

David Bolniahaeal _ 7m0 [—

Equivocability
000!
Description

A First Approach

[Canetti-Fischlin C '01]

To get both extractability and equivocability (at the same time), one
can combine perfectly hiding and perfectly binding commitments:
@ Pedersen’s commitment is perfectly hiding
@ ElGamal’'s commitment is perfectly binding

if bis a bit, we denote its complement by b
x[i] denotes the it" bit of the bit-string x

Equivocability
coso:

Description

Extractable and Equivocable Commitment

In order to committo m, fori=1,...,m,
@ one chooses a random value X, = X 21z,
andsets x,_ =0
@ one commits to 7;, using the random x; _:

a, = comPed(m;,x,_) = gy

This defines a = (a,....,a,)

@ one commits to x, ,, for § = 0, 1: (b5 = (b, ,[/]); = COMEG(X,),
where b, [J] = EGy (x,,[1- 2.7, [)

Then, B, =T1; b, [1] = EGi (x,;, 1), where ;= 37,7, [

David Bolniahasal _ 3180

Equivocability
oe00:

Description

Extractable and Equivocable Commitment

Common Reference String Model

The commitment is realized in the common reference string model:
the CRS p contains

@ (G, pk), where pk is an EIGamal public key and the private key is
unknown to anybody (except to the commitment extractor)

@ the tuple (y,....,y,) € G™, for which the discrete logarithms in
basis g are unknown to anybody (except to the commitment
equivocator)

Let the input of the committing algorithm be a bit-string

m
= Z - 211
i=1

Equivocability
cooe:

Description

Extractable and Equivocable Commitment

@ Random string:

R= (X (r ol r sl -«

@ Commitment: com,(; R) = (a, b)

Kias (T U] 1 U1)7)

where a= (& =comPed(m; X,))i
b= (b,[]=EGy(x, U121, i)is
@ Witness: the values r, _[j] can be erased,
W= (%o (R WD X (T UD)))
@ Opening: given the above witness, and the value =
vij:b Ul 2 EG(x. U1-27"r)
Vi:a < comPed(r;, X.)

[—

Equivocability
-

Analysis

Properties

com,(m; R) = (a,b): a= (a =comPed(r; x,_))i

b= (b,[]=EGH(xU-2"r,D)iss

@ Granted the perfectly hiding property of the Pedersen
commitment, without any information on the x; ,[j]'s, no
information is leaked about the 7;'s

@ Granted the semantic security of the EIGamal encryption
scheme, the former privacy on the x, ;[j]'s is guaranteed

@ Granted the computationally binding property of the Pedersen

commitment, the a’s cannot be open in two ways

Equivocability

Analysis

Equivocability

© One takes arandom x, and then x, _ = 0, which specifies ;
@ One commits on 7; using randomness x; -
@ One encrypts both x, _ and X~ bit—by—bit

Granted the Pedersen commitment trapdoor
@ one takes a random Xx; , and extracts x, , such that
a, = comPed(0, x,,) = comPed(1, x; ,)
@ the rest of the commitment procedure remains the same

One can open any bit-string for , using the appropriate x, .
and the corresponding random elements (no erasure)

Bavid Bolniohaeal _ SEm8

Equivocability

Analysis

Conditional Extractability

@ bit-by-bit encryption of the x, []:
with the EIGamal decryption key, one decrypts all the b, ;[/],
and gets the x, - (unless the plaintexts are different to 0 and 2/~)
@ then, one can confirm, for i =1,..., m, whether
a, = comPed(0, x,) or @, = comPed(1 X,,), which provides 7;
(unless none of the equalmes is satlsfled)

The above conditions define the language for extractability:

Lyw = {c
g

Non-Malleability

and Vi vj b, [l € g+ p)ovt

and Vi B, € Leax p)a/ymi

3R such that C = com,(r, R) }

Equivocabi
.

Using a non-malleable encryption scheme (Cramer-Shoup),
one can make the commitment non-malleable:
@ Random string:

R= (X s (Ul 7 s U+ X (o U P 1))
@ Commitment: com,(; R) = (a.b)
where a=(a = comPed(m; x,_))i
b= (b, l/] = OS5 (x,, - 2" 1, [D)isj

@ Opening: given the above witness, and the value =
Vijib, Ul CSi(x,, U127 I

comPed(r;, x, .)

. ?
Vi:a =

[P

Outline

Universal Composability

° Adaptive Security and UC PAKE
@ Universal Composability
@ Previous Schemes
@ Our Scheme

Universal Composability

Real-life Execution

David Bolniahasal _ S0/m8

Universal Composability

[Canetti FO(

Ideal process:

7 The protocol I securely realizes F, if
\W V adversary A, 3 a simulator S such that

’* ¥ no environment Z can tell whether it interacts
! @ with a run of N with A

@ or with an ideal run with 7 and S

Universal Composability

Ideal Execution

S has to simulate the view
generated by the honest users
7 without the private inputs

[—

UC PAKE
o

Universal Composability

Ideal Functionality

Universal Composability

Password-Authenticated Key Exchange

[Canetti-Halevi-Katz-Lindell-MacKenzie EC

Definition
Two players want to establish a common secret key, using a short
password as authentication means: exhaustive search is possible
@ on-line dictionary attack: Elimination of one candidate per attack.
This is unavoidable
@ off-line dictionary attack: the transcript of a communication helps
to eliminate one or a few candidates
This is avoidable, and should be avoided
One wants to prove that eliminating one candidate per active attempt
is the best attack

Previous Schemes

Scheme |

[Katz-Ostrovsky-Yung EC "01, Gennaro-Lindell C 03]

P, (client) P, (server)

CRS: phe

(sk, vk) « sigKey($)

avk o — By (pwir
& = Ej(pw.r)
Ik —H
hp — a(hkic) cahp
hE —H
hp' — a(hk';cz)
L Wo o Signg(cahp)

if (Verify,g((c2. hp, hp'). o) = 1)
session-key — Hyp.(ep, pw)
+ hyg (o prira)

session-key — hyy (c1, puiry)
+Hy(c2.pw)

David Bolniohasal _ S4/mD

Functionality Fuae

The functionality ke is parameterized by & security parameter k. It interacts with an adversary S and

s set of parties via the following querics:

Upon receiving a query (NewSession, sid, P, P, pu, role) from party F;:
Send (NewSession, sid, P, Py, role) to 5. In addition, if this i the fizst NewSession query, ox if this is
the second NewSession query and there is a record (P, Fyyput), then record (B, P, pu) and mark
this record fresh

Upon receiving a query (TestPwd, sid, 7%, pu') from the adversary §:
If there is a record of the form (F% I, pw) which is fresh, then do: If pw = pu’, mark the record
compromised aud reply Lo § with “corrvet. guess”. If pu # pu', mark the zecoxd interrupted and
reply with “wrong guess".

Upon receiving a query (NewKey, sid, Py, sk} from §, where [sk| = k:
I there is & record of the form (P, Py, pu), and this is the fiest NewKey query for P, the
o IF this record is compromised, or cither Py ar P is corrupted, then autput (sid, sk) to player P
o If this record s fresh, and there i a record (P, P, pu’) with pu’ = pu, and a key sk’ was sent

€0 Piy and (P, Poyp) was fresh at the time, then output (sid, s&') to P

o Tn any other case, pick o new raudom key sk’ of lngth & and send (sid, sk') to P,

Bither way, mark the record (1%, £, pi) = completed.

Figuze 2: The password-based key-exchauge functionality Fpece

TestPwd to model on-line dictionary attacks (once per session)

Previous Schemes

nalysis

Security in the classical framework: o
@ Commitment to an incorrect e
password: smoothness leads to J—
a perfectly random session key
@ Replay of a commitment:
pseudo-randomness leads to a o
computationally random session | “"“:
key (witness unknown)
Simulation of the honest players: use of a dummy password
@ indistinguishable, unless A committed to the correct password:
S cannot compute the correct key = S aborts
@ in the UC framework, Z sees the difference between a
real-execution and the simulation: when A wins, S aborts
Because of the short password, this is not negligible

[—

Previous Schemes

Previous Schemes.

Analysis

If A plays the server role: G e
@ S can extract the committed .
password, and check it) — Ealr
granted the TestPwd query
@ password valid: S uses it
@ else: dummy password
— perfect simulation
If A plays the client role:
@ S does not know yet the password sent by A: dummy password
@ when A sends its commitment, S extracts the password
and checks it granted the TestPwd query
o if the password is invalid, S follows with the dummy password
@ else, Sis stuck

Previous Schemes

Analysis

Scheme Il
P, (client) P; (server)
CRS: phe -
<0 Egpe(pwso) o

i vk

2 Epiu(pw,ra)

ke —H
hp — alhk;er) c2.hp
ZKP(co =~ c2)
B~ H
) hp' — a(hk'se)
. bl 7 Sign g (ca, hp, hp')

if (Verify i ((ca. hp, hpf),7) = 1)
session-key — Hyi(c
+ g (2. s 72)

session-key — hy(er. pus)
+Hige ey, pu)

Add of a first commitment round

Previous Schemes

Adaptive Corruption

If A plays the client role: TG T
@ S can extract the committed 0 Bt
password, and check it
granted the TestPwd query
@ password valid: S uses it
@ else: dummy password
— perfect simulation
If A plays the server role:
@ S does not know yet the password: dummy password in ¢y
@ when A sends its commitment ¢;, S extracts the password
and checks it granted the TestPwd query

@ if the password is invalid, S follows with the dummy password
@ else, S uses the correct password in ¢, and simulates the ZKP

David Boleiahawal _ 7m0

If A plays the server role: (= T
@ S does not know the password: Bl
dummy password in ¢y
@ S extracts the password from ¢y
checks it (TestPwd query)
o if invalid: S follows with the x -
dummy password in ¢, - b S
@ else, S uses the correct password in ¢, and simulate the ZKP
What about if A corrupts the client right after co?
S gets the correct password, but cannot open ¢, correctly!
= security against static-corruptions only (before the session starts)

Non-malleable, L-extractable, equivocable commitment
provides adaptive security

[—

Our Scheme

Adaptively Secure UC-PAKE Conclusion

D (v sk — Sk
“Velesido vk,
com, ~ comy .)

(com,, VK;)

152) publy) hec th iy com;
(VK;. SK;) — SKG
o, e
= HaStIGip. (61, pw).)
om, = com, (6, Py Fy)

1 = ProKG(tk . (4P com,) Smooth Projective Hash Functions for Complex Languages
Hashy = Hash(hks: p, (€1, pwy), com;)
(US) (publicy) hecks the valdy of com, erases i) o
PHaSTKG(. (¢
oy ’a:%‘f;?:"ﬁf" fA) oy Various Applications
o1/ Sgn(sKy. (com, com, . oy .
o :m,:(ah{nmp,“[‘ﬂ u.,)pwo,‘c;,m’, W) o in place of some ZK proofs
+Hash(h:p, 6y, pwy), com . o
erases hly ! L) BN, sy @ conditional secure channels
R oo o o) @ adaptive security in UC PAKE
4

= FroHesn(tpp. (0 i) com;)

outputs (v, ssid, sk
erases everything
sets the session as accepted

(Us) aborts it
Ver(VK;, (com; , com, , hpy, hpy), 1) = 0
outputs (sd, ssid, sky)
erases everything
sels the session as accepted

David Pointcheval - 49/50 David Pointcheval - 50/5¢

