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Smooth Projective Hash Functions [Cramer-Shoup E

Family of Hash Function H
Let {H} be a family of functions:

@ X, domain of these functions

o L, subset (a language) of this domain
such that, for any point x in L, H(x) can be computed by using
@ either a secret hashing key hk: H(x) = Hash(hk; x);
@ or a public projected key hp: H(x) = ProjHash, (hp; x, w)

While the former works for all points in the domain X,

the latter works for x € L only, and requires a witness w to this fact.
There is a public mapping that converts the hashing key hk into the
projected key hp: hp = ProjKG/ (hk)
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Smooth Projective HF

Definitions

Smooth Projective HF

Definitions

Properties

Forany x € X, H(x) =

Hash, (hk; x)
Forany x € L, H(x) =

ProjHash, (hp; x, w) ~ w witness that x € L

Forany x ¢ L, H(x) and hp are independent

Pseudo-Randomness

For any x € L, H(x) is pseudo-random, without a witness w

The latter property requires L to be a hard partitioned subset of X:
Hard-Partitioned Subset

L is a hard-partitioned subset of X if it is computationally hard to
distinguish a random element in L from a random element in X'\ L

Smooth Projective HF

Definitions

Examples

Commitment [Gennaro-Lindell EC 02]

Lok m = {c} such that ¢ is a commitment of m
using public parameter pk:
there exists r such that ¢ = compy(m; r)
where com is the committing algorithm

Labeled Encryption

Lok (e,m) = {c} such that ¢ is an encryption of m
with label ¢, under the public key pk:
there exists r such that ¢ = S’ (m;r)
where £ is the encryption algornhm
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Element-Based Projection

Initial Definition [Cramer-Shoup EC *02

The projected key hp depends on the hashing key hk only:
hp = ProjKG, (hk)

New Definition [Gennaro-Lindell EC *03]

The projected key hp depends on the hashing key hk, and x:
hp = ProjKG, (hk; x)

Applications: Encryption and Commitments

The input x can be a ciphertext or a commitment,

where the indistinguishability for the hard partitioned subset relies
@ either on the semantic security of the encryption scheme
@ or the hiding property of the commitment scheme

Smooth Projective HF

Definitions

Smooth Projective Hash Functions

[Gennaro-Lindell E

A family of smooth projective hash functions HASH(Lpk aux )
for a language Lpk aux C X, onto the set G, based on

@ either a labeled encryption scheme with public key pk
@ or on a commitment scheme with public parameters pk
consists of four algorithms:
HASH(Lpk aux) = (HashKG, ProjKG, Hash, ProjHash)
Key-Generation Algorithms
@ Probabilistic hashing key algorithm:
hk & HashKG()
@ Deterministic projection key algorithm
hp = ProjKG(hk; ¢)
(where c is either a ciphertext or a commitment in X)
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Smooth Projective Hash Functions  (GemuoLinceizc 03y Properties

HASH(L HashKG. ProiKG. Hash. ProiHash
(Lpk,aux) = (HashKG, ProjKG, Hash, ProjHash) Let ¢ € Ly aux and w a witness of this membership.
hk & HashKG() and hp = ProjKG(hk; c) implies
Hashing Algorithms
@ The hashing algorithm Hash computes,
eonceX
e using the secret hashing key hk
o the value g = Hash(hk; c) € G
@ The projected hashing algorithm ProjHash computes,
eonceX
@ using the projection key hp
e and a witness w to the fact that ¢ € Lok aux
o the value g = ProjHash(hp;c,w) € G

Hash(hk; ¢) = ProjHash(hp; c, w)

If ¢ & Lok aux» the two distributions are statistically indistinguishable:

{c,hp = ProjKG(hk; ¢), g = Hash(hk;c)}
{c,hp = ProjkG(hk;c), g <& G}

with hk <& HashKG()

Smooth Projective HF Smooth Projective HF

Definitions Definitions

Properties ElGamal Encryption (ElGamal -

G = (g), a cyclic group of prime order g.

Pseudorandomness

If ¢ € Lpk aux, Without a witness w of this membership, the two

ElGamal Encryption Schemes
distributions are computationally indistinguishable:

Let pk = h = g* (public key), where sk = x £ Zq (private key)
@ If M € G, the multiplicative EIGamal encryption is:
0 EG(Mir) = (uy = g'.e = h'M)
@ which can be decrypted by M = e/uy.
o If M € Zg, the additive EIGamal encryption is:
o EGJ(M;r) = (u1 =g'.e=Hg")

{c.hp = ProjKG(hk; ¢), g = Hash(hk;c)}
{c.hp = ProjKG(hk: ¢), g < G}

with hk & HashKG()

This requires Lok aux to be a hard partitioned subset of X: Note that EG3}(g; r) = EG5 (M; r)
- ok,aux 1D DS 4 A (9" o (M
the uniform distributions in Ly aux and in X\ Lok aux o It can thus be decrypted as above, but after an additional discrete
are computationally indistinguishable logarithm computation: M must be small enough.

IND-CPA security = DDH assumption.
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Smooth Projective HF

Definitions

Smooth Projective HF Family for EIGamal

The CRS: p = (G, q.g,pk = h)
Language: L = Lgg+ m =1{C = (u;, €) = EG:;k(M; rn,r & Zq}

@ Lis a hard partitioned subset of X = G?, under the semantic
security of the EIGamal encryption scheme (DDH assumption)
@ the random r is the witness to L-membership

HashKG(M) = hk = (11,73) < Zg x Zq
Hash(hk; M, C) = (u,)" (eg M)
ProjkG (hk; M, C) = hp = (g) (h)*
ProjHash(hp; M, C; r) = (hp)"

Smooth Projective HF

Conjunctions and Disjunctions

Conjunction of Languages

Smooth Projective HF

Conjunctions and Disjunctions.

Notations

We assume that G possesses a group structure, and we denote by &
the commutative law of the group (and by © the opposite operation)
We assume to be given two smooth hash systems SHS; and SHS,,
onto G, corresponding to the languages L and L, respectively:

SHS; = {HashKG;, ProjKG;, Hash;, ProjHash;}

Let ¢ € X, and ry and r» two random elements:

hk; = HashKGi(r)
hk, = HashKGoy(r2)
hp; = ProjKG,(hky;c)

hp, = ProjKGy(hka; ¢)

Smooth Projective HF

Conjunctions and Disjunctions

Disjunction of Languages

A hash system for the language L = Ly N Ly is then defined as follows,
if c € Ly N L, and w; is a witness that ¢ € L;, for i = 1,2:

HashKGy(r = r||r.) = hk = (hky, hkz)
ProjKG/ (hk; ¢) =hp = (hpy, hpy)
Hash (hk; ¢) =Hash;(hky; ¢) & Hashz(hkz; c)
ProjHash, (hp; ¢, (wy, w2)) = ProjHash, (hpy; ¢, wy)
@ ProjHash,(hpy; ¢, wa)

@ if cis not in one of the languages, then the corresponding hash
value is perfectly random: smoothness

@ without one of the witnesses, then the corresponding hash value
is computationally unpredictable: pseudo-randomness

David Boleiohasal _ 1888

A hash system for the language L = L1 U L; is then defined as follows,
if c € Ly ULy and w is a witness that ¢ € L; for i € {1,2}:

HashKGy(r = ri||rz) = hk = (hky, hkz)
ProjKG(hk; ¢) = hp = (hp;, hp,, hp,)
where hp,y = Hashy(hk; ¢) @ Hash;(hkz; ¢)
Hash, (hk; ¢) = Hash(hk+; c)
ProjHash, (hp; ¢, w) = ProjHash, (hpy; c, w) if c € L4
or hp, & ProjHash,(hp,; ¢, w)
ifcely

hp, helps to compute the missing hash value,
if and only if at least one can be computed
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Smooth Projective HF
.

Conjunctions and Disjunctions

Properties

Ext. Commitments

Outline

Contrarily to the original Cramer-Shoup definition,
the value of the projected key formally depends on the word ¢
But this dependence maybe invisible

The projected key may or may not depend on ¢ (and aux),
but its distribution does not

Independence
The projected key does not depend at all on ¢ (and aux)

Ext. Commitments
B

Properties

Commitments

A commitment scheme is defined by two algorithms:

@ the committing algorithm, C = com(x; r) with randomness r,
on input x, to commit on this input;

@ the decommitting algorithm, (x, D) = decom(C, x, r),
where x is the claimed committed value, and D the proof

Properties

The commitment C = com(x; r)
@ reveals nothing about the input x: the hiding property
@ nobody can open C in two different ways: the binding property

David Bolniohasal _ 10/8%

o Extractable Commitments
@ Properties
@ Conditional Extractability
@ Application: Certification of Public Keys

Ext. Commitments

Properties.

Examples

In both cases, the CRS pis (G, q.g,pk = h),
and (x,D = r) = decom(C, x. r)

@ C = comEG(x;r) = (u;, €) = EG(x: ), with r & Zg;
@ As any IND-CPA encryption scheme, this commitment is
perfectly binding and computationally hiding, (DDH assumption)

Pedersen

@ C = comPed(x; r) = g*h", with r & Zg;
@ This commitment is perfectly hiding and computationally binding,
(DL assumption)
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Ext. Commitments

Properties

Properties.

Additional Properties Additional Properties

Extractability

Non-Malleability

A commitment is extractable if there exists an efficient algorithm,
called extractor, capable of generating a new CRS (with similar
distribution) such that it can extract x from any C = com(x, r)

A commitment is non-malleable if, for any adversary receiving a
commitment C of some unknown value x that can generate a valid
commitment for a related value y, then a simulator could perform the
same without seeing the commitment C

This is possible for computationally hiding commitments only:
with an encryption scheme, the decryption key is the extraction key This is meaningful for perfectly binding commitments only:

Equivocability with an encryption scheme, IND-CCA2 security level guarantees
non-malleability

A commitment is equivocable if there exists an efficient algorithm,
called equivocator, capable of generating a new CRS and a
commitment (with similar distributions) such that the commitment can
be opened in different ways

This is possible for computationally binding commitments only

Ext. Commitments Ext. Commitments
o e

Conditional Extractability Conditional Extractability

Motivation Extended Languages

ElGamal Commitment

comEGy(X; r) = EGi(x: r), is extractable for small x only Xx=0 <= C(x)=CcomEGy(X:r) € La+ )0

x=1 < C(x)=comEGy(x:r) € Lga+ )1

If x € {0, 1}, any C(x) = comEG(x;

We then define
Homomorphic Property

Lea+p)0v1 = LG+ )0 U LEG+ 1) 1

Let us assume 2k~1 < g < 2K, then for any x = Y51 x; x 2/ € Zq, .
C(x) = {Ci = comEGy(x;; 11) = EGi (xi; 1)}/, , is extractable under To be extractable. G = (C); has tolie in

0
the condition that (x;); € {0,1}¥

» L={(Co....,Ck-1) | Vi,Ci € Lieg+ 5)0v1}
Furthermore, comEG(x; r) = [] C?, forr = ZL’O‘ rx2

A conjunction of disjunctions
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Ext. Commitments
00

Application: Certification of Public Keys

Ext. Commitments
00

Application: Certification of Public Keys

Certification of Public Keys

For the certification Cert of an EIGamal public key y = g, in most of

the protocols, the simulator needs to be able to extract the secret key:

Classical Process
@ the user sends his public key y = g*;
@ the user and the authority run a ZK proof of knowledge of x

@ if convinced, the authority generates and sends the certificate
Cert for y

But for extracting x in the simulation, the reduction requires a
rewinding (that is not always allowed: e.g., in the UC Framework)

Ext. Commitments

Application: Certification of Public Keys

Certification of Public Keys

For the certification Cert of an EIGamal public key y = g*, in most of
the protocols, the simulator needs to be able to extract the secret key:

the user and the authority use a smooth projective hash system for L:
HASH(pk) = (HashKG, ProjKG, Hash, ProjHash)
@ the user sends his public key y = g%, together with an
L-extractable commitment C of x, with random r;
@ the authority generates
o a hashing key hk & HashKG(),
o the corresponding projected key on C, hp = ProjKG(hk, C)
o the hash value Hash = Hash(hk; C)
and sends hp along with Cert & Hash;
@ The user computes Hash = ProjHash(hp; C, r), and gets Cert.

Equivocability

Commitment and Smooth Projective HF

The authority sends hp along with Cert & Hash

Analysis: Correct Commitment
If the user correctly computed the commitment (C € L)
@ he knows the witness r, and can get the same mask Hash;
@ the simulator can extract x, granted the L-extractability

Analysis: Incorrect Commitment
If the user cheated (C ¢ L)
@ the simulator is not guaranteed to extract anything;

@ but, the smoothness property makes Hash perfectly
unpredictable: no information is leaked about the certificate.
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Outline

o Equivocable and Extractable Commitments

@ Description
@ Analysis
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Equivocability
«000:

Description

A First Approach

[Canetti-Fischlin C '01]

To get both extractability and equivocability (at the same time), one
can combine perfectly hiding and perfectly binding commitments:
@ Pedersen’s commitment is perfectly hiding
@ ElGamal’'s commitment is perfectly binding

if bis a bit, we denote its complement by b
x[i] denotes the it" bit of the bit-string x

Equivocability

Description

Extractable and Equivocable Commitment

In order to committo m, fori=1,...,m,
@ one chooses a random value X, = X 21z,
andsets x,_ =0
@ one commits to 7;, using the random x; _:

a, = comPed(;,x, ) = gy

This defines a = (a,....,a,)

@ one commits to x, ,, for § = 0, 1: (b5 = (b, ,[/]); = COMEG(X, ),
where b, [J] = EGy, (x,,[1- 2.7, [)

Then, B, =T1; b, [/] = EGi (x,,, ;). where 1, = 37,1, [
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Equivocability

Description

Extractable and Equivocable Commitment

Common Reference String Model

The commitment is realized in the common reference string model:
the CRS p contains

@ (G, pk), where pk is an EIGamal public key and the private key is
unknown to anybody (except to the commitment extractor)

@ the tuple (y,....,y,) € G™, for which the discrete logarithms in
basis g are unknown to anybody (except to the commitment
equivocator)

Let the input of the committing algorithm be a bit-string
m .
= Z - 211
i=1

Equivocability

Description

Extractable and Equivocable Commitment

@ Random string:

R= (X (r ol r sl -«

@ Commitment: com,(; R) = (a, b)

Kias (T U] 1 U1)7)

where a= (& =comPed(m; X, ))i
b= (b,[]=EGy(x, U121, i)is
@ Witness: the values r, _[j] can be erased,
W= (%o (R WD X (T UD)))
@ Opening: given the above witness, and the value =
vij:b Ul 2 EG(x. U1-27"r )
Vi:a < comPed(r;, X.)
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Equivocability

Analysis

Properties

com,(7; R) = (a,b) :

a= (a =comPed(m;,x, m)),
b= (b,[]=EGH(x0-2"r,D)iss

@ Granted the perfectly hiding property of the Pedersen
commitment, without any information on the x; ,[j]'s, no
information is leaked about the 7;'s

@ Granted the semantic security of the EIGamal encryption
scheme, the former privacy on the x, ;[j]'s is guaranteed

@ Granted the computationally binding property of the Pedersen

commitment, the a’s cannot be open in two ways

Equivocability

Analysis

Equivocability

© One takes arandom x, and then x, _ = 0, which specifies ;
@ One commits on 7; using randomness x; -
@ One encrypts both x, _ and X~ bit—by—bit

Granted the Pedersen commitment trapdoor
@ one takes a random Xx; , and extracts x, , such that
a, = comPed(0, x,,) = comPed(1, x; ,)
@ the rest of the commitment procedure remains the same

One can open any bit-string for , using the appropriate x, .
and the corresponding random elements (no erasure)
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Equivocability

Analysis

Conditional Extractability

@ bit-by-bit encryption of the x, []:
with the EIGamal decryption key, one decrypts all the b, ; [/]
and gets the x, - (unless the plaintexts are different to 0 and 2/~)
@ then, one can confirm, for i =1,..., m, whether
a, = comPed(0, x, ) or @, = comPed(1 X,,), which provides 7;
(unless none of the equalmes is satlsfled)

The above conditions define the language for extractability:

{c

andVivj b, [l € Lea+,p),0v1
andVi B,

3R such that C = com, (=, R) }
- € Leaxp).ammi

Equivocability

Analysis

Non-Malleability

Using a non-malleable encryption scheme (Cramer-Shoup),
one can make the commitment non-malleable:
@ Random string:

R= (X s (Ul 7 s U - X (o U P 1))
@ Commitment: com,(m; R) = (a.b)
where a=(a = comPed(m; x,_))i
b= (b,l] = OS5 (x,, - 2" 1, [D)isj

@ Opening: given the above witness, and the value =
Vijib, Ul CSi(x,,, U127 li)

vira < comPed(r;, x, . )
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Introduction

Outline Password-Authenticated Key Exchange

Definition
Two players want to establish a common secret key, using a short
password as authentication means: exhaustive search is possible
@ on-line dictionary attack: Elimination of one candidate per attack.
This is unavoidable
o off-line dictionary attack: the transcript of a communication helps
to eliminate one or a few candidates
This is avoidable, and should be avoided
One wants to prove that eliminating one candidate per active attempt
is the best attack

o Password-Authenticated Key Exchange

Previous Schemes

Scheme Il

Previous Schemes

Scheme | [Katz-Ostrovsky-Yung EC *01, Gennaro-Lindell C *03]
P, (client) P, (client)
CRS: phe CRS: phe
0 Epp.(pwsro) o .
(sh, vk) — sigKey($) (sh, vk)  sigKey($)
vk 1 Epulpwir) e vk 1 = Eyie(prir)
2= Epielpw & — Eppo(pu,ra)
hk—H hk —H
hp — a(hk;er) ca.hp hp — alhk;cr)
hk —H hE —H
hp' — alhk'sc2) hp' — a(hk';e)
.o o — Sign (2. hp. hyf) h'\o o — Signi(ez. hp, hyf)
if (Verify,y ((c2. hp. hp').0) = 1) if (Verify, i ((ca. hp, b/, o)
session-key — Hig(ey, pw) session-key — hyy(cr. pwiry) session-key — Hyg(e, pu) session-key — hyp(er, pusri)
IS | Hyo (e pw) + By (o posra) +Hyge(ea )

Add of a first commitment round: for non-adaptive UC security.
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Not UC secure!
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Security Analysis

Security Analysis
Analysis Adaptive Corruption

If A plays the client role: (it
@ S can extract the committed o - .
password, and check it —a - Bty
granted the TestPwd query
@ password valid: S uses it
@ else: dummy password
— perfect simulation

7 s If A plays the server role: . =
@ S does not know the password:
dummy password in ¢y .
@ S extracts the password from ¢; | L
checks it (TestPwd query)

o ifinvalid: S follows with the o
e dummy password in ¢, R B )

If A plays the server role: o else, S uses the correct password in ¢, and smulate the ZKP
@ S does not know yet the password: dummy password in co What about if A corrupts the client right after cp?
@ when A sends its commitment ¢;, S extracts the password S gets the correct password, but cannot open ¢ correctly!
and checks it granted the TestPwd query = security against static-corruptions only (before the session starts)
o if the password is invalid, S follows with the dummy password Non-malleable, L-extractable, equivocable commitment

o else, S uses the correct password in ¢, and simulates the ZKP provides adaptive security to the KOY/GL construction
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Conclusion

Conclusion

Smooth Projective Hash Functions for Complex Languages

Various Applications
@ in place of some ZK proofs
@ conditional secure channels
@ adaptive security in UC PAKE
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