	Cryptography Game-based Proofs Assumptions BLS Signature BF IB-Encryption Conclusion occooccoocco o
Security Proofs using the Game-based Methodology	Outline Cryptography • Introduction
David Pointcheval Ecele normale supérieure, CNRS & INRIA Ecele normale normale normale supérieure, CNRS & INRIA Ecele normale nor	 Provable Security Game-based Methodology Game-based Approach Transition Hops Assumptions Short Signatures Description of BLS Security Proof Identity-Based Encryption Description of BF Security Proof Conclusion
Cryptography Game-based Proofs Assumptions BLS Signature BF IB-Encryption Conclusion cooccoccoccocco o	Cryptography Game-based Proofs Assumptions BLS Signature BF IB-Encryption Conclusion occooccooccoo o
Outline	Public-Key Cryptography
Cryptography Introduction Provable Security Game-based Aptroach Game-based Approach Transition Hops Assumptions	Asymmetric cryptography Encryption Signature k_{σ} k_{d} k_{e} k_{v} $m \rightarrow c$ $m \rightarrow S$ σ

 $r \longrightarrow \square$

Encryption guarantees privacy

• Signature guarantees authentication,

m

and even non-repudiation by the sender

- O Short Signatures
 - Description of BLS
 - Security Proof
- Identity-Based Encryption
 - Definition
 - Description of BF
 - Security Proof
- Conclusion

0/1

т.

Cryptography COCC	Game-based Proofs	Assumptions oo	BLS Signature	BF IB-Encryption coocoocococo	Conclusion o	Cryptography 00000	Game-based Proofs 00000000000	Assumptions oo	BLS Signature	BF IB-Encryption 00000000000	Conclusion o
Introduction						Provable Security					
Introduction Strong Security Notions						Description in t	- Constant				
Strong	Security No	otions				Provabl	e Security				

Signature

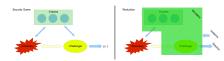
Existential Unforgeability under Chosen-Message Attacks

An adversary, allowed to ask for signature on any message of its choice, cannot generate a new valid message-signature pair

Encryption

Semantic Security against Chosen-Ciphertext Attacks

An adversary that chooses 2 messages, and receives the encryption of one of them, is not able to guess which message has been encrypted, even if it is able to ask for decryption of any ciphertext of its choice (except the challenge ciphertext)


One can prove that:

- if an adversary is able to break the cryptographic scheme
- then one can break the underlying problem (integer factoring, discrete logarithm, 3-SAT, etc)

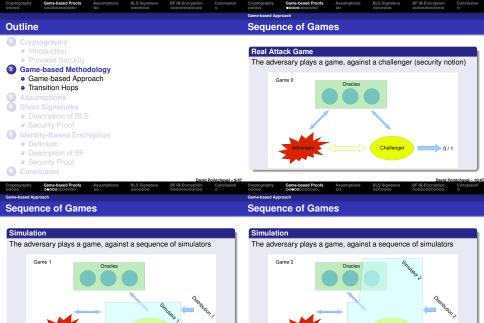
			David Pr	ointcheval - 5/47					David	Pointcheval - 6/4
Cryptography 00000	Game-based Proofs 00000000000		BF IB-Encryption		Cryptography 00000	Game-based Proofs 00000000000	Assumptions oo	BLS Signature	BF IB-Encryption 000000000000	
Provable Security					Provable Security					
					· · ·					

Direct Reduction

Unfortunately

- Security may rely on several assumptions
- Proving that the view of the adversary, generated by the simulator, in the reduction is the same as in the real attack game is not easy to do in such a one big step

Game-based Methodology

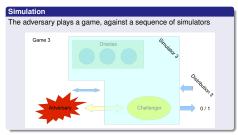

Illustration: OAEP

[Bellare-Rogaway EC '94]

 Reduction proven indistinguishable for an IND-CCA adversary (actually IND-CCA1, and not IND-CCA2) but widely believed for IND-CCA2, without any further analysis of the reduction The direct-reduction methodology

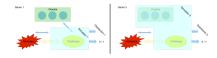
[Shoup - Crypto '01] Shoup showed the gap for IND-CCA2, under the OWP Granted his new game-based methodology

[Fujisaki-Okamoto-Pointcheval-Stern - Crypto '01]
 FOPS proved the security for IND-CCA2, under the PD-OWP
 Using the game-based methodology

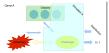


0/1

David Pointcheval - 12/47

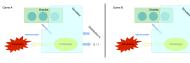

0/1

Game-based Approach Game-based Approach Sequence of Games Output	Cryptography 00000	Game-based Proofs	Assumptions oo		Conclusion o	Cryptography 00000	Game-based Proofs	Assumptions oo	BLS Signature	BF IB-Encryption	Conclusion o
Sequence of Games Output	Game-based Appro	bach				Game-based Appro	bach				
	Sequen	ce of Game	es			Output					


Game 2

- The output of the simulator in Game 1 is related to the output of the challenger in Game 0 (adversary's winning probability)
- The output of the simulator in Game 3 is easy to evaluate (e.g. always zero, probability of one-half)
- The gaps (Game 1 ↔ Game 2, Game 2 ↔ Game 3, etc) are clearly identified with specific events

			David Poi	intcheval - 13/47					David I	Pointcheval – 14/4
Cryptography 00000	Game-based Proofs		BF IB-Encryption 00000000000		Cryptography 00000	Game-based Proofs	Assumptions oo	BLS Signature	BF IB-Encryption 000000000000	
Transition Hops					Transition Hops					
Two Sin	nulators				Two Dis	stributions				


Two Simulators

perfectly identical behaviors

[Hop-S-Perfect]

- different behaviors, only if event Ev happens
 - Ev is negligible
 - Ev is non-negligible
 - and independent of the output in Game 4
 - → Simulator B terminates in case of event Ev
- [Hop-S-Negl] [Hop-S-Non-Negl]

- perfectly identical input distributions
- different distributions
 - statistically close
 - computationally close

[Hop-D-Perfect]

[Hop-D-Stat] [Hop-D-Comp]

a Idont	ical habaviaras	DriComo 1	DefComo	1 0		e Ideni	tical habaviara	DriComo 1	DelComo	1 0	
Two Sin	nulations					Two Sir	nulations				
Transition Hops						Transition Hops					
Cryptography 00000	Game-based Proofs	Assumptions oo	BLS Signature	BF IB-Encryption 000000000000	Conclusion o	Cryptography 00000	Game-based Proofs	Assumptions co	BLS Signature	BF IB-Encryption 000000000000	Conclusion o

- Identical behaviors: Pr[Game_A] Pr[Game_B] = 0
- The behaviors differ only if Ev happens:
 - Ev is negligible, one can ignore it Shoup's Lemma: Pr[Game_A] – Pr[Game_B] ≤ Pr[Ev]

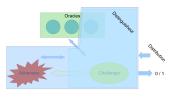
```
\begin{split} &| Pr[Game_{A}] - Pr[Game_{B}]| \\ &= \left| \begin{array}{c} Pr[Game_{A}| Ev] Pr[Ev] + Pr[Game_{A}| - Ev] Pr[-Ev] \\ - Pr[Game_{B}| Ev] Pr[Ev] - Pr[Game_{B}| - Ev] Pr[-Ev] \\ \\ &= \left| \begin{array}{c} (Pr[Game_{A}| Ev] - Pr[Game_{B}| Ev]) \times Pr[Ev] \\ + (Pr[Game_{A}| - Ev] - Pr[Game_{B}| - Ev]) \times Pr[-Ev] \\ \end{array} \right| \\ &\leq 1 \times Pr[Ev] + 0 \times Pr[-Ev] < Pr[Ev] \end{split}
```

 Ev is non-negligible and independent of the output in Game_A, Simulator B terminates, in case of event Ev

- Identical behaviors: Pr[Game_A] Pr[Game_B] = 0
- The behaviors differ only if Ev happens:
 - Ev is negligible, one can ignore it
 - Ev is non-negligible and independent of the output in Game_A, Simulator B terminates and outputs 0, in case of event Ev:

$$\begin{split} \mathsf{Pr}[\mathbf{Game}_{\mathcal{B}}] = & \mathsf{Pr}[\mathbf{Game}_{\mathcal{B}}|\mathbf{Ev}] \, \mathsf{Pr}[\mathbf{Ev}] + \mathsf{Pr}[\mathbf{Game}_{\mathcal{B}}|\neg \mathbf{Ev}] \, \mathsf{Pr}[\neg \mathbf{Ev}] \\ = & 0 \times \mathsf{Pr}[\mathbf{Ev}] + \mathsf{Pr}[\mathbf{Game}_{\mathcal{A}}|\neg \mathbf{Ev}] \times \mathsf{Pr}[\neg \mathbf{Ev}] \\ = & \mathsf{Pr}[\mathbf{Game}_{\mathcal{A}}] \times \mathsf{Pr}[\neg \mathbf{Ev}] \end{split}$$

Simulator B terminates and flips a coin, in case of event Ev:


$$\begin{array}{l} \Pr[\text{Game}_{B}] = \Pr[\text{Game}_{B} | \textbf{Ev}] \Pr[\textbf{Fv}] + \Pr[\text{Game}_{B} | \neg \textbf{Ev}] \Pr[\neg \textbf{Ev}] \\ = \frac{1}{2} \times \Pr[\textbf{Ev}] + \Pr[\text{Game}_{A} | \neg \textbf{Ev}] \times \Pr[\neg \textbf{Ev}] \\ = \frac{1}{2} + (\Pr[\text{Game}_{A}] - \frac{1}{2}) \times \Pr[\neg \textbf{Ev}] \end{array}$$

	Game-based Proofs		David Poi BF IB-Encryption		Game-based Proofs	Assumptions	BLS Signature	BF IB-Encryption	
Transition Hops	000000000000	000000	000000000000	Transition Hops	000000000000		0000000	00000000000	,
Two Sim	nulations			Two Dis	stributions				

- Identical behaviors: Pr[Game_A] Pr[Game_B] = 0
- The behaviors differ only if Ev happens:
 - Ev is negligible, one can ignore it
 - Ev is non-negligible and independent of the output in Game_A, Simulator B terminates in case of event Ev

Event Ev

- $\bullet\,$ Either Ev is negligible, or the output is independent of Ev
- For being able to terminate simulation B in case of event **Ev**, this event must be *efficiently* detectable
- For evaluating Pr[Ev], one re-iterates the above process, with an initial game that outputs 1 when event Ev happens

 $\mathsf{Pr}[\textit{Game}_{\textit{A}}] - \mathsf{Pr}[\textit{Game}_{\textit{B}}] \leq \mathbf{Adv}(\mathcal{D}^{\mathsf{oracles}})$

Cryptography 00000	Game-based Proofs	Assumptions oo	BLS Signature coccoco	BF IB-Encryption cooccoccocco	Conclusion o	Cryptography 00000	Game-based Proofs 00000000000	Assumptions	BLS Signature	BF IB-Encryption 00000000000	Conclusion o
Transition Hops											
Two Dis	stributions					Outline					
	Pr[Game _A] – Pr[Gam	$[\mathbf{e}_B] \leq \mathbf{Adv}(\mathcal{I})$) ^{oracles})		Intr Pro Game	ography oduction ovable Security e-based Metho				
 For id 	dentical/statistic	ally close d	listributions,	for any oracle	:		me-based Appr nsition Hops				
Pr[Game _A] – Pr[G	iame _B] = D)ist(Distrib _A	, Distrib _B) =	negl()	Assu	mptions Signatures				
	computationally Ide additional o			eneral, we nee	ed to	• De	scription of BLS	3			
	Pr[Gam	e _A] − Pr[Ga	$[ame_B] \leq \mathrm{Ad}$	$v^{\text{Distrib}}(t)$		• De	ity-Based Encr finition	ryption			
wher	e t is the comp	utational tin	ne of the dist	inguisheur		• Se	scription of BF curity Proof Iusion				
Gryptography	Game-based Proofs	Assumptions	BLS Signature	David P BEIB-Encryption	ointcheval – 21/47 Conclusion	Cryptography	Game-based Proofs	Assumptions	BLS Signature	David P BF IB-Encryption	ointcheval – 22/4 Conclusion
cooco Bilinear Maps	000000000000000000000000000000000000000	eo	0000000	000000000000000000000000000000000000000	o	Bilinear Maps	000000000000000000000000000000000000000	o ●	0000000	000000000000000000000000000000000000000	o
Gap Gr	oups						r Diffie-Hell	lman Pro	oblems		

Definition (Pairing Setting)

- Let G1 and G2 be two cyclic groups of prime order p
- Let g₁ and g₂ be generators of G₁ and G₂ respectively
- Let $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}^T$, be a bilinear map

Definition (Admissible Bilinear Map)

Let $(p, \mathbb{G}_1, g_1, \mathbb{G}_2, g_2, \mathbb{G}^T, e)$ be a pairing setting, with $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}^T$ a non-degenerated bilinear map

• Bilinear: for any $g \in \mathbb{G}_1$, $h \in \mathbb{G}_2$ and $u, v \in \mathbb{Z}$,

$$e(g^u,h^v)=e(g,h)^u$$

Non-degenerated: e(g₁, g₂) ≠ 1

We focus on the symmetric case: $\mathbb{G}_1=\mathbb{G}_2=\mathbb{G}$

Diffie-Hellman Problems

- CDH in G: Given *g*, *g^a*, *g^b* ∈ G, compute *g^{ab}*
- DDH in \mathbb{G} : Given $g, g^a, g^b, g^c \in \mathbb{G}$, decide whether c = ab or not

CDH can be hard to solve, but DDH is easy in gap-groups

Bilinear Diffie-Hellman Problems

- CBDH in G: Given g, g^a, g^b, g^c ∈ G, compute e(g, g)^{abc}
- DBDH in G: Given g, g^a, g^b, g^c ∈ G and h ∈ G^T, decide whether h [?] = e(g, g)^{abc}

Cryptography 00000	Game-based Proofs	Assumptions oo	BLS Signature	BF IB-Encryption 000000000000	Conclusion o	Cryptography 00000	Game-based Proofs 00000000000	Assumptions co	BLS Signature	BF IB-Encryption	Conclusion o
						Description of BL	s				
Outline						Signatu	ire in Gap	Groups	[Bon	eh-Lynn-Shacham –	Asiacryp '01]
IntroPro	ography oduction vable Security -based Metho	delemi				Assumpti	a cyclic group ion: G gap-grou				ole)
• Gar • Trai	ne-based Metho ne-based Appr nsition Hops					 Key 	e Scheme generation: cho ature of $M \in \mathbb{G}$	r	, and set y =	$=g^{x};$	
 Short Des 	Signatures scription of BLS	i					ication of (M, σ)): check DI	DH (<i>g</i> , <i>y</i> , <i>M</i> , <i>σ</i>)	
	urity Proof					Full-Don	nain Hash				
Identi	ty-Based Encr	yption						$\mathcal{H}: \{0, 1$	$\}^{\star} \rightarrow \mathbb{G}$		
Des	scription of BF						der to sign <i>m</i> , o		•	$\mathcal{H}(m) \in \mathbb{G}$	
-	usion					• then	$\sigma = M^{\chi} = \mathbf{CDI}$	1 (g, y, A(m))		
					pintcheval - 25/47						Pointcheval – 26
Cryptography cooco	Game-based Proofs	Assumptions oo	BLS Signature	BF IB-Encryption 00000000000	Conclusion o	Cryptography 00000	Game-based Proofs	Assumptions oo	BLS Signature	BF IB-Encryption	Conclusion o
Description of BL	S					Security Proof					

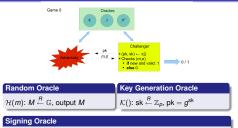
EUF-CMA Security

EUF-CMA

Existential Unforgeability under Chosen-Message Attacks

An adversary, allowed to ask for signature on any message of its choice, cannot generate a new valid message-signature pair

Theorem


The BLS signature achieves EUF-CMA security, under the CDH assumption in \mathbb{G} , in the Random Oracle Model:

$$\mathbf{Adv}^{\mathsf{euf}-\mathsf{cma}}(t) \leq q_{H} imes \mathbf{Adv}^{\mathsf{cdh}}(t+q_{H} au_{ heta})$$

Assumptions:

- $\bullet\,$ any signing query has been first asked to ${\cal H}$
- $\bullet\,$ the forgery has been asked to ${\cal H}$

Real Attack Game

$$\mathcal{S}(m)$$
: $M = \mathcal{H}(m)$, output $\sigma = M^{sl}$

Cryptography cocco	Game-based Proofs	Assumptions oo	BLS Signature	BF IB-Encryption coccoccoccocco	Conclusion o	Cryptography 00000	Game-based Proofs 00000000000	Assumptions oo	BLS Signature	BF IB-Encryption	Conclusion o
Security Proof						Security Proof					
Simula	tions					H-Que	y Selectior	۱			
Gan	neo: use of the	oracles K, S	S and \mathcal{H}			Gan	ne3: random inc	lex $t \stackrel{R}{\leftarrow} \{1,\}$, a _H }		

• Game1: use of the simulation of the Random Oracle

Simulation of H

 $\mathcal{H}(m)$: $\mu \stackrel{R}{\leftarrow} \mathbb{Z}_p$, output $M = q^{\mu}$

 \implies Hop-D-Perfect: Pr[Game₁] = Pr[Game₀]

• Game2: use of the simulation of the Signing Oracle

Simulation of S

 $\mathcal{S}(m)$: find μ such that $M = \mathcal{H}(m) = g^{\mu}$, output $\sigma = pk^{\mu}$

⇒ Hop-S-Perfect: Pr[Game₂] = Pr[Game₁]

ames. random muex l

Event Ev

If the *t*-th query to \mathcal{H} is not the output forgery

We terminate the game and output 1 if Ev happens ⇒ Hop-S-Non-Neal Then, clearly

 $Pr[Game_3] = Pr[Game_2] \times Pr[\neg Ev]$ $Pr[Ev] = 1 - 1/q_H$

 $\Pr[\text{Game}_3] = \Pr[\text{Game}_2] \times \frac{1}{\alpha_1}$

				David P	ointcheval - 29/47	,				David	d Pointcheval - 30/4
Cryptography 00000	Game-based Proofs 00000000000	Assumptions oo	BLS Signature	BF IB-Encryption coccoccoccocco		Cryptography 00000	Game-based Proofs occooccooccooc	Assumptions oo	BLS Signature ○00000●	BF IB-Encryption 000000000000	
Security Proof						Security Proof					
CDH Ins	tance					Conclu	ision				

• Game₄: CDH instance $(a, A = a^a, B = a^b)$ Use of the simulation of the Key Generation Oracle

Simulation of K

 $\mathcal{K}()$: set pk $\leftarrow A$

Modification of the simulation of the Bandom Oracle

Simulation of H

If this is the *t*-th query, $\mathcal{H}(m)$: $M \leftarrow \mathcal{B}$, output M

The unique difference is for the *t*-th simulation of the random oracle, for which we cannot compute a signature. But since it corresponds to the forgery output, it cannot be queried to the signing oracle:

⇒ Hop-S-Perfect: Pr[Game₄] = Pr[Game₃]

In **Game**₄, when the output is 1, $\sigma = \mathbf{CDH}(a, A = a^a, B = a^b)$ and the simulator computes one exponentiation per hashing:

$$\begin{array}{ll} \Pr[\texttt{Game}_4] & \leq & \texttt{Adv}^{\texttt{cdh}}(t + q_H \tau_{\theta}) \\ \Pr[\texttt{Game}_4] & = & \Pr[\texttt{Game}_3] \\ \Pr[\texttt{Game}_3] & = & \Pr[\texttt{Game}_2] \times \frac{1}{q_H} \\ \Pr[\texttt{Game}_2] & = & \Pr[\texttt{Game}_1] \\ \Pr[\texttt{Game}_1] & = & \Pr[\texttt{Game}_0] \\ \Pr[\texttt{Game}_0] & = & \texttt{Adv}^{\texttt{euf}-\texttt{cma}}(\mathcal{A}) \end{array}$$

 $\mathbf{Adv}^{\mathsf{euf}-\mathsf{cma}}(\mathcal{A}) \leq q_H \times \mathbf{Adv}^{\mathsf{cdh}}(t+q_{H^{\mathcal{T}_{\boldsymbol{\theta}}}})$

Cryptography 00000	Game-based Proofs 00000000000	Assumptions oo	BLS Signature	BF IB-Encryption	Conclusion o	Cryptography 00000	Game-based Proofs 00000000000	Assumptions oo	BLS Signature	BF IB-Encryption	Conclusion o
Outline						Definition	-Based Cry	untogra	abu		
Outime						luentity	-based Cr	ypiogra	JIIY	[Shamir	- Crypto '84]
 Intr Pro Game Ga Tra Assur 	ography oduction wable Security e-based Method me-based Appro- nsition Hops mptions					Each use a pu a ce	ey Cryptograp or \mathcal{ID} owns blic key pk rtificate that gua vate key sk, rel	arantees th	e link betwee	en \mathcal{ID} and pk	
De: Sec	Signatures Scription of BLS Curity Proof					\mathcal{ID} , toge	to access a dic ther with the ce Based Crypto	rtificate, in			
	ity-Based Encr finition	yption						grapny			
 De: Sec 	scription of BF curity Proof lusion					 a pri 	er \mathcal{ID} owns vate key sk, rel public key pk is		itself		
Cryptography	Game-based Proofs	Assumptions	BLS Signature	David Pe BF IB-Encryption	conclusion	Cryptography	Game-based Proofs	Assumptions	BLS Signature	David F BF IB-Encryption	Pointcheval – 34 Conclusion

David Pointcheval – 33/47													
Cryptography 00000	Game-based Proofs 00000000000	Assumptions oo	BLS Signature	BF IB-Encryption		Cryptography 00000	Game-based Proofs 00000000000	Assumptions co	BLS Signature 0000000	BF IB-Encryption			
Definition							Definition						
Identity-Based Encryption							Security Model: IND – ID – CCA						

Identity-Based Encryption

Setup

The authority generates a master secret key msk, and publishes the public parameters, PK

Extraction

Given an identity ID, the authority computes the private key sk granted the master secret key msk

Encryption

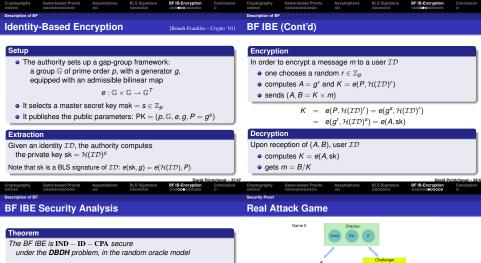
Any one can encrypt a message m to a user IDusing only m, ID and the public parameters PK

Decryption

Given a ciphertext, user ID can recover the plaintext, with sk

Definition (IND - ID - CCA Security)

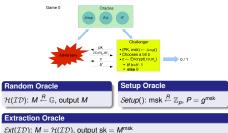
- A receives the global parameters
- · A asks any extraction-query, and any decryption-query
- A outputs a target identity \mathcal{ID}^* and two messages (m_0, m_1)


The challenger flips a bit b, and encrypts m_b for \mathcal{ID}^* into c^*

- · A asks any extraction-query, and any decryption-query
- A outputs its guess b' for b

Restriction: ID^* never asked to the extraction oracle. and (\mathcal{ID}^*, c^*) never asked to the decryption oracle.

CPA: no decryption-oracle access


$$Adv^{ind-id-cca} = 2 \times Pr[b' = b] - 1$$

By masking m with H(K): $B = m \oplus H(K)$, the BF IBE is IND – ID – CPA secure under the **CBDH** problem, in the random oracle model

Theorem

The BLS signature achieves EUF - CMA security, under the *CDH* assumption in \mathbb{G} , in the Random Oracle Model

Cryptography 00000	Game-based Proofs	Assumptions oo	BLS Signature 0000000	BF IB-Encryption	Conclusion o	Cryptography 00000	Game-based Proofs 00000000000	Assumptions co	BLS Signature 0000000	BF IB-Encryption	Conclusion o			
Security Proof						Security Proof								
Simulations							\mathcal{H} -Query Selection							

- Game₀: use of the oracles Setup, Ext, and H
- · Game1: use of the simulation of the Random Oracle

Simulation of \mathcal{H}

 $\mathcal{H}(\mathcal{ID}): \mu \stackrel{R}{\leftarrow} \mathbb{Z}_p$, output $M = g^{\mu}$

- \implies Hop-D-Perfect: $Pr[Game_1] = Pr[Game_0]$
- Game2: use of the simulation of the Extraction Oracle

Simulation of Ext

 $\mathcal{E}xt(\mathcal{ID})$: find μ such that $M = \mathcal{H}(\mathcal{ID}) = g^{\mu}$, output sk = P^{μ}

⇒ Hop-S-Perfect: Pr[Game₂] = Pr[Game₁]

• **Game**₃: random index $t \stackrel{R}{\leftarrow} \{1, \ldots, q_H\}$

Event Ev

If the *t*-th query to \mathcal{H} is not the challence \mathcal{ID}

We terminate the game and flip a coin if Ev happens $\implies \textbf{Hop-S-Non-Negl}$

$$\begin{split} \mathsf{Pr}[\mathsf{Game}_3] &= \frac{1}{2} + \left(\mathsf{Pr}[\mathsf{Game}_2] - \frac{1}{2}\right) \times \mathsf{Pr}[\neg\mathsf{Ev}] \quad \mathsf{Pr}[\mathsf{Ev}] = 1 - 1/q_{\mathcal{H}} \\ \\ \mathsf{Pr}[\mathsf{Game}_3] &= \frac{1}{2} + \left(\mathsf{Pr}[\mathsf{Game}_2] - \frac{1}{2}\right) \times \frac{1}{q_{\mathcal{H}}} \end{split}$$

David Pointcheval – 41/47											David Pointcheval - 42/47		
	Game-based Proofs 00000000000			BF IB-Encryption	Conclusion o	Cryptography 00000	Game-based Proofs 000000000000	Assumptions 00	BLS Signature	BF IB-Encryption			
Security Proof						Security Proof							
Challenge ID						Challenge Ciphertext							

 Game₄: True DBDH instance (g, g^α, g^β, g^γ) with h = e(g, g)^{αβγ} Use of the simulation of the Setup Oracle

Simulation of Setup

Setup(): set $P \leftarrow g^{\alpha}$

Modification of the simulation of the Random Oracle

Simulation of \mathcal{H}

If this is the *t*-th query, $\mathcal{H}(\mathcal{ID})$: $M \leftarrow g^{\beta}$, output M

Difference for the *t*-th simulation of the random oracle: we cannot extract the secret key. Since this is the challenge \mathcal{ID} , it cannot be queried to the extraction oracle:

 \implies Hop-D-Perfect: $Pr[Game_4] = Pr[Game_3]$

 Game₅: True DBDH instance (g, g^α, g^β, g^γ) with h = e(g, g)^{αβγ} We have set P ← g^α, and for the *t*-th query to H: M = g^β

Ciphertext

- Set $A \leftarrow g^{\gamma}$ and $K \leftarrow h$ to generate the encryption of m_b under \mathcal{ID}
 - \implies Hop-D-Perfect: $Pr[Game_5] = Pr[Game_4]$
 - Game₆: Random DBDH instance (g, g^α, g^β, g^γ) with h ^R ⊂ C^T ⇒ Hop-D-Comp:

 $|\Pr[Game_6] - \Pr[Game_5]| \le Adv^{dbdh}(t + q_{H_{\tau_{\theta}}})$

Cryptography cooco	Game-based Proofs	Assumptions oo	BLS Signature	BF IB-Encryption	Conclusion o	Cryptography 00000	Game-based Proofs 00000000000	Assumptions co	BLS Signature	BF IB-Encryption	Conclusion o	
Security Proof												
Conclus	sion				Outline							
	Pr[G Pr[G Pr[G Pr[G Pr[G	$ \leq $ $ ame_5 = $ $ ame_5 = $ $ ame_3 = $ $ ame_1 = $ $ ame_0 = $	Adv ^{dbdh} (t + Pr[Game ₄] Pr[Game ₃]	$-q_{H au_{e}})$ $\mathbf{me}_{2}]-rac{1}{2}) imes q_{H au_{e}}$ $-\mathrm{id}-\mathrm{cpa}(\mathcal{A})$ $+q_{H au_{e}})$	1 9H	 intu Pro Game Game Game Game Game Traine De Se Ident De Se Ident De Se Se Conce 	tography oduction svable Security -based Metho me-based Appr nstiton Hops t Signatures scription of BLS curity Proof ity-Based Enco finition scription of BF curity Proof lusion	roach		David B	nintcheval _ 46/4	
Cryptography 00000	Game-based Proofs	Assumptions oo	BLS Signature	BF IB-Encryption	Conclusion					David P	onneneväi = 40/4	
Conclusion												

The game-based methodology uses a sequence of games

- The transition hops
 - are simple

Conclusion

easy to check

It leads to easy-to-read and easy-to-verify security proofs:

· Some mistakes have been found granted this methodology

[Analysis of OAEP]

· Some security analyses became possible to handle

[Analysis of EKE]

This approach can be automized

[CryptoVerif]