
PAKE in the UC-Framework

Adaptive Security

David Pointcheval
CNRS-ENS-INRIA

Paris - France

CANS '2007
Singapore

Sunday, December 9th, 2007

PAKE in the UC-Framework - 2David Pointcheval

Universal ComposabilityUniversal Composability

Universal Composability
Password-Based AKE
UC Password-Based AKE

PAKE in the UC-Framework - 3David Pointcheval

Provable SecurityProvable Security

Security proofs give the guarantee that an
assumption is enough for security:
if an adversary can break the system
one can break the assumption

⇒ “reductionist” proof

PAKE in the UC-Framework - 4David Pointcheval

Proof by ReductionProof by Reduction

Reduction of a problem P to an attack Atk:
Let A be an adversary that breaks the scheme
Then A can be used to solve P

A

PAKE in the UC-Framework - 5David Pointcheval

Proof by ReductionProof by Reduction

Reduction of a problem P to an attack Atk:
Let A be an adversary that breaks the scheme
Then A can be used to solve P

A

Instance
I of P

P intractable ⇒ scheme unbreakable

Solution
of I

PAKE in the UC-Framework - 6David Pointcheval

Provably Secure SchemeProvably Secure Scheme

To prove the security of a cryptographic scheme,
one has to make precise
the algorithmic assumptions
the security notions to be guaranteed
a reduction: an adversary can help

to break the assumption

PAKE in the UC-Framework - 7David Pointcheval

SimulationSimulation
In such a reduction,

our simulator tries to
emulate the environment,
until the adversary may
win the attack game

What about the composition of multiple protocols?
the simulation fails as soon as an adversary may
break one part of the global system, whereas other
parts may provide a protection
other executing protocols may provide additional
information to the adversary

⟹ either we re-prove the global system,
or we prove each component in the UC Framework

A

PAKE in the UC-Framework - 8David Pointcheval

P1

P3
P4

P2

F

S

Ideal process: Protocol execution:

Universal ComposabilityUniversal Composability
[Canetti - FOCS ‘01][Canetti - FOCS ‘01]

Z

Protocol π securely realizes F if:
• For any adversary A
• There exists a simulator S
• Such that no environment Z can tell
whether it interacts with:

• a run of π with A
• an ideal run with F and S

P1

P3 P4

P2

A
π

PAKE in the UC-Framework - 9David Pointcheval

Real vs. IdealReal vs. Ideal

Definition of security
Protocol π emulates the ideal process for F if

for any adversary A
there exists a simulator S
such that for all Z

IDEALFS,Z ~ EXECπ,A,Z .
⇒ we say that protocol π securely realizes F.

(∀ A) (∃ S) (∀ Z) IDEALFS,Z ~ EXECπ,A,Z.
Equivalently:

(∃ S
d
) (∀ Z) IDEALFS,Z ~ EXECπ,Ad,Z

(∀ A) (∀ Z) (∃ S) IDEALFS,Z ~ EXECπ,A,Z

PAKE in the UC-Framework - 10David Pointcheval

UC Theorem: CompositionUC Theorem: Composition

Modular composition

Q

Q Q

Q

F

Q
 P

Q
P

Q

 Q

PP

P

Q

Q Q

 Q

FFF

Q

PP

P

Q

P

PP

Q

PPP

Q

PPP

PPP

PPPPPP

P PPP





PAKE in the UC-Framework - 11David Pointcheval

UC Theorem: IdeaUC Theorem: Idea

Z
Ad

Q1

Q3 Q4

Q2P1

P3 P4

P2

PAKE in the UC-Framework - 12David Pointcheval

UC Theorem: IdeaUC Theorem: Idea

Ad

Q1

Q3 Q4

Q2

Z

P1

P3 P4

P2

PAKE in the UC-Framework - 13David Pointcheval

UC Theorem: IdeaUC Theorem: Idea

P1

P3
P4

P2

F

S
Q1

Q3 Q4

Q2

Ideal Functionality F

Z

PAKE in the UC-Framework - 14David Pointcheval

Implications of UCImplications of UC

Can design and analyze protocols in a modular way:
Partition a given task T to simpler sub-tasks T1…Tk

Construct protocols for realizing T1…Tk.
Construct a protocol for T assuming ideal access to T1…Tk.
Use the composition theorem to obtain a protocol for T from
scratch.

 (Now can be done concurrently and in parallel.)

PAKE in the UC-Framework - 15David Pointcheval

Password-Based AKEPassword-Based AKE

Universal Composability
Password-Based AKE
UC Password-Based AKE

PAKE in the UC-Framework - 16David Pointcheval

Key Exchange: a two-party protocol to generate a common
random key that is “secret” for external adversaries.

Assuming authenticated communication (Diffie-Hellman model)
Unauthenticated communication (AKE)

Different ways to authenticate the exchange:
Long-term public keys for signature or encryption

plus “public-key infrastructure”.
Long-term pre-shared keys
Trusted third parties (The Kerberos model)
Passwords

Key ExchangeKey Exchange

PAKE in the UC-Framework - 17David Pointcheval

AKE has been studied extensively:
Protocols were proposed, and later broken

First complexity-based notion: [Bellare-Rogaway - Crypto ‘93]
Based on a “distinguishing game” for the adversary (FtG)
Explicitly handles multiple concurrent sessions

Treatments that argue usability for secure sessions:
Bellare-Canetti-Krawczyk - STOC ’98

simulation based (but has problems)
Canetti-Krawczyk – EC ‘01: based on BR93

with a different system model, defines and obtains “secure sessions”.
Canetti-Krawczyk – EC ‘02: A UC treatment of AKE

Analysis of AKEAnalysis of AKE

PAKE in the UC-Framework - 18David Pointcheval

Ideal Functionality: KEIdeal Functionality: KE

PAKE in the UC-Framework - 19David Pointcheval

• Password-Based AuthenticationPassword-Based Authentication

Asymmetric: (skA,pkA) and possibly (skB,pkB)
they authenticate to each other using the knowledge
of the private key associated to the certified public key

Symmetric: common (long – high-entropy) secret
they use the long term secret to derive a secure
and authenticated ephemeral key sk

Password: common (short - low-entropy) secret
let us assume a 20-bit password

⇒ it is possible to win with non-negligible advantage

PAKE in the UC-Framework - 20David Pointcheval

Ideal Functionality: pwKEIdeal Functionality: pwKE
[[Canetti-Halevi-Katz-Lindell-MacKenzie – EC ‘05]Canetti-Halevi-Katz-Lindell-MacKenzie – EC ‘05]

PAKE in the UC-Framework - 21David Pointcheval

In this ideal functionality:
TestPwd query, which gives the authorization to the
adversary to test one password per session
In case of correct password guess,
the adversary can choose the key

Passwords:
The environment chooses the passwords
Can thus make players run with different passwords,
or related passwords

⇒ passwords are not in an internal state of the
functionality: no need of joint-state UC

Concurrent ExecutionsConcurrent Executions

PAKE in the UC-Framework - 22David Pointcheval

KOY/GL ProtocolKOY/GL Protocol

PAKE in the UC-Framework - 23David Pointcheval

KOY/GL: Security AnalysisKOY/GL: Security Analysis
Commitment:

c = Commit(pw,r) = Encrypt(pke, pw,r)
IND-CCA ⇒ NM for multiple commitments

Smooth Projective Hash Functions:
H(c,pw) = Hash(hk;c,pw) = ProjHash(hp;c,pw;r)

No information about H(c,pw) if pw≠Decrypt(ske,c)
Hard to compute H(c,pw') without
either the hash-key hk or the witness r

Session Key:
c

1
= Encrypt(pke, pw, r

1
) c

2
= Encrypt(pke, pw, r

2
)

sk = Hash(hk
2
;c

1
,pw) + ProjHash(hp

1
;c

2
,pw;r

2
)

= ProjHash(hp
2
;c

1
,pw;r

1
) + Hash(hk

1
;c

2
,pw)

PAKE in the UC-Framework - 24David Pointcheval

KOY/GL: Security AnalysisKOY/GL: Security Analysis

Passive Adversary:
Pseudo-randomness without the witness
⇒ indistinguishability of the session key

Active Adversary:
NM for multiple commitments
⇒ no new valid commitment (except chance with pw)
Invalid commitment
⇒ indistinguishability of sk (statistic)
Replay of commitment: does not know the witness
⇒ indistinguishability of sk (computational)

PAKE in the UC-Framework - 25David Pointcheval

KOY/GL: Security AnalysisKOY/GL: Security Analysis

Proof: with an extractable commitment
Adversary sends c

1
: we can extract the password, and

check whether it is correct or not
Simulator sends c

1
: with a random/dummy pw!

adversary sends c
2
: extract and check

wrong ⇒ random key
correct ⇒ we get stuck

Wrong simulation if adversary
has guessed pw

 Not negligible and thus not UC secure

PAKE in the UC-Framework - 26David Pointcheval

UC Password-Based AKEUC Password-Based AKE

Universal Composability
Password-Based AKE
UC Password-Based AKE

PAKE in the UC-Framework - 27David Pointcheval

UC PAKEUC PAKE
[[Canetti-Halevi-Katz-Lindell-MacKenzie – EC ‘05]Canetti-Halevi-Katz-Lindell-MacKenzie – EC ‘05]

PAKE in the UC-Framework - 28David Pointcheval

CHKLMK: IdeaCHKLMK: Idea

UC Proof: with an extractable commitment
Adversary sends c

0
: we can extract the password,

and check whether it is correct or not
Simulator sends c

0
: with a random/dummy pw!

adversary sends c
1
: extract and check pw

wrong ⇒ random key
correct ⇒ we commit the correct
password in c

2
 and simulate

a fake ZKP

PAKE in the UC-Framework - 29David Pointcheval

Adaptive AdversaryAdaptive Adversary

An adaptive adversary can corrupt players
at any time and receive the internal state
in KOY/GL-like scheme: not secure

in the simulation, use of “dummy password” for c
0

if corruption right after that: how to simulate r
0
?

in EKE-like scheme: secure
granted the Programmability
of the Ideal-Cipher and the Random Oracle

⇒ Adaptive adversaries and strong corruption
[Abdalla-Catalano-Chevalier-Pointcheval – CT-RSA '08]

PAKE in the UC-Framework - 30David Pointcheval

EKE SchemeEKE Scheme

