PAKE in the UC-Framework
Adaptive Security

CANS 2007
Singapore
Sunday, December 9", 2007

David Pointcheval
CNRS-ENS-INRIA
Paris - France

Universal Composability

O Universal Composability
s Password-Based AKE
s UC Password-Based AKE

David Pointcheval PAKE in the UC-Framework - 2

Provable Security

Security proofs give the guarantee that an
assumption is enough for security:

s if an adversary can break the system
s one can break the assumption
= “reductionist” proof

David Pointcheval PAKE in the UC-Framework - 3

Proof by Reduction

Reduction of a problem P to an attack Atk:
s | et A be an adversary that breaks the scheme
s Then A can be used to solve P

9

sA

David Pointcheval PAKE in the UC-Framework - 4

Proof by Reduction

Reduction of a problem P to an attack Atk:
s | et A be an adversary that breaks the scheme
s Then A can be used to solve P

Instance

lof P —
0 Solution

— ofl

P intractable > scheme unbreakable

David Pointcheval PAKE in the UC-Framework - 5

Provably Secure Scheme

To prove the security of a cryptographic scheme,
one has to make precise

s the algorithmic assumptions
s the security notions to be guaranteed

s a reduction: an adversary can help
to break the assumption

David Pointcheval PAKE in the UC-Framework - 6

Simulation

In such a reduction,
our simulator tries to
emulate the environment,
until the adversary may
win the attack game

What about the composition of multiple protocols?

@ the simulation fails as soon as an adversary may
break one part of the global system, whereas other
parts may provide a protection

@ other executing protocols may provide additional
information to the adversary

] either we re-prove the global system,
or we prove each component in the UC Framework

PAKE in the UC-Framework - 7

Universal Composability
[Canetti - FOCS ‘01]

David Pointcheval

Protocol execution:

\®

Protocol 1 securely realizes F if:

* For any adversary A

* There exists a simulator S

* Such that no environment Z can tell
whether it interacts with:

* a run of T with A

* an ideal run with F and S

Ideal process:

David Pointcheval PAKE in the UC-Framework - 8

Real vs. ldeal

Definition of security

Protocol 1m emulates the ideal process for F if
@ for any adversary A

@ there exists a simulator S

@ such that for all Z
IDEALF, ~ EXEC, ,,.

= we say that protocol 1 securely realizes F.

(W A)(3S)(V Z)IDEALF, ~ EXEC_,,.

Equivalently:

(3S,)(V Z) IDEALFg, ~ EXEC,,
(V A)(V Z)(3S)IDEALF,, ~ EXEC,,,

David Pointcheval

PAKE in the UC-Framework - 9

UC Theorem: Composition

N

Modular composition

—>

¥

Q

4
/ »
P

R

W/

—
E

-)

/

EX
'Ud’l/

David Pointcheval

PAKE in the UC-Framework - 10

UC Theorem: Idea

David Pointcheval PAKE in the UC-Framework - 11

UC Theorem: ldea

David Pointcheval PAKE in the UC-Framework - 12

UC Theorem: Idea

|ldeal Functionality F

David Pointcheval PAKE in the UC-Framework - 13

Implications of UC

Can design and analyze protocols in a modular way:
@ Partition a given task T to simpler sub-tasks T,...T,

@ Construct protocols for realizing T,...T,.
@ Construct a protocol for T assuming ideal access to T,...T,.

@ Use the composition theorem to obtain a protocol for T from
scratch.

(Now can be done concurrently and in parallel.)

David Pointcheval PAKE in the UC-Framework - 14

Password-Based AKE

s Universal Composability
Password-Based AKE
s UC Password-Based AKE

David Pointcheval PAKE in the UC-Framework - 15

Key Exchange

Key Exchange: a two-party protocol to generate a common
random key that is “secret” for external adversaries.

@ Assuming authenticated communication (Diffie-Hellman model)
@ Unauthenticated communication (AKE)

s Different ways to authenticate the exchange:

@ Long-term public keys for signature or encryption
plus “public-key infrastructure”.

@ Long-term pre-shared keys
@ Trusted third parties (The Kerberos model)
@ Passwords

David Pointcheval PAKE in the UC-Framework - 16

Analysis of AKE

AKE has been studied extensively:
@ Protocols were proposed, and later broken

First complexity-based notion: [Bellare-Rogaway - Crypto ‘93]

@ Based on a “distinguishing game” for the adversary (FtG)
@ Explicitly handles multiple concurrent sessions

Treatments that argue usability for secure sessions:
@ Bellare-Canetti-Krawczyk - STOC ’98

s simulation based (but has problems)

@ Canetti-Krawczyk — EC ‘01: based on BR93

s with a different system model, defines and obtains “secure sessions”.

@ Canetti-Krawczyk — EC ‘02: A UC treatment of AKE

David Pointcheval PAKE in the UC-Framework - 17

Ideal Functionality: KE

Functionality Fge
Fke 1s parameterized by a security parameter k. It interacts with an adversary S and a set of (dummy)
parties via the following queries:
Upon receiving a query (NewSession, sid, P;, Pj,role) from party F;:

Send (NewSession, sid, P;, Pj,role) to S. In addition, if this is the first NewSession query, or if this
1s the second NewSession query and there is a record (P;, F;), then record (P;, P;).

Upon receiving a query (NewKey, sid, F;, sk) from S, where |sk| = k:
If there is a record (P;, P;), and this is the first NewKey query for P;, then:
o If either P; or P; is corrupted, then output (sid, sk) to player P;.
o If there is also a record (P;, P;), and a key sk’ was sent to P;, output (sid,sk’) to ;.

o In any other case, pick a new random key sk’ of length k and send (sid, sk’) to P,.

Figure 1. The authenticated key-exchange functionality Fye

David Pointcheval PAKE in the UC-Framework - 18

Password-Based Authentication

s Asymmetric: (sk ,pk,) and possibly (sk,pk,)

@ they authenticate to each other using the knowledge
of the private key associated to the certified public key

s Symmetric: common (long — high-entropy) secret

@ they use the long term secret to derive a secure
and authenticated ephemeral key sk

s Password: common (short - low-entropy) secret
@ let us assume a 20-bit password
= it is possible to win with non-negligible advantage

David Pointcheval PAKE in the UC-Framework - 19

Ideal Functionality: pwKE

[Canetti-Halevi-Katz-Lindell-MacKenzie — EC ‘05]

Functionality Fuuxe

The functionality Fawke is parameterized by a security parameter k. It interacts with an adversary S and
a set of parties via the following queries:

Upon receiving a query (NewSession, sid, P;, P;, pw,role) from party FP;:
Send (NewSession, sid, P;, P;,role) to S. In addition, if this is the first NewSession query, or if this is
the second NewSession query and there is a record (P;, P;, pw'), then record (P, P;.pw) and mark
this record fresh.

Upon receiving a query (TestPwd, sid, P;, pw') from the adversary S:
If there is a record of the form (F;, P;, pw) which is fresh, then do: If pw = pw’, mark the record
compromised and reply to S with “correct guess”. If pw # pw', mark the record interrupted and
reply with “wrong guess”.

Upon receiving a query (NewKey, sid, P, sk) from S, where |sk| = k:
If there is a record of the form (P, P;, pw), and this is the first NewKey query for P;, then:
e If this record is compromised, or either P; or P; is corrupted, then output (sid, sk) to player F;.
e If this record is fresh, and there is a record (F;, P, pw') with pw' = pw, and a key sk’ was sent

to Pj, and (Pj, P;, pw) was fresh at the time, then output (sid, sk’) to P;.

e In any other case, pick a new random key sk’ of length &k and send (sid, sk') to F;.

Either way, mark the record (F;, Pj, pw) as completed.

Figure 2: The password-based key-exchange functionality Foyke

David Pointcheval PAKE in the UC-Framework - 20

Concurrent Executions

In this ideal functionality:

s TestPwd query, which gives the authorization to the
adversary to test one password per session

s |n case of correct password guess,
the adversary can choose the key

Passwords:
s The environment chooses the passwords

s Can thus make players run with different passwords,
or related passwords

= passwords are not in an internal state of the
functionality: no need of joint-state UC

David Pointcheval PAKE in the UC-Framework - 21

KOY/GL Protocol

P; (client) P; (server)
CRS: pke
(sk,vk) — sigKey($)
cr.vk c1 — E (pwiri)
Co +— Lipke (pu-"a?';?)
hk — H
hp — a(hk;cy) c2, hp .
hk! —'H
hp' «— a(hk';: c3)
hp/, o o — Sign.(eg, hp, hyp')
if (Verify,.((c2, hp, hp'),0) = 1)
session-key «— Hpp (e, pw) session-key « hy,,(cq, pw;ry)
+ hpp (c2. pw;ra) +Hppr (€2, pw)

David Pointcheval PAKE in the UC-Framework - 22

KOYI/GL: Security Analysis

s Commitment:
@ ¢ = Commit(pw,r) = Encrypt(pke, pw,r)
@ IND-CCA = NM for multiple commitments
s Smooth Projective Hash Functions:
H(c,pw) = Hash(hk;c,pw) = ProjHash(hp;c,pw;r)
@ No information about H(c,pw) if pw#Decrypt(ske,c)

@ Hard to compute H(c,pw’) without
either the hash-key hk or the witness r

s Session Key:
c= Encrypt(pke, pw, r1) C,= Encrypt(pke, pw, r2)
sk = Hash(hk ;c,,pw) + ProjHash(hp,;c_.ow;r,)
= ProjHash(hp ;c.,pw;r,) + Hash(hk.;c ,pw)

David Pointcheval PAKE in the UC-Framework - 23

KOY/GL: Security Analysis

s Passive Adversary:

@ Pseudo-randomness without the witness
= indistinguishability of the session key

s Active Adversary:

@ NM for multiple commitments
= no new valid commitment (except chance with pw)

@ Invalid commitment
= indistinguishability of sk (statistic)

@ Replay of commitment: does not know the witness
= indistinguishability of sk (computational)

David Pointcheval PAKE in the UC-Framework - 24

KOY/GL: Security Analysis

Proof: with an extractable commitment

= Adversary sends c.: we can extract the password, and
check whether it is correct or not

s Simulator sends c_: with a random/dummy pw!

@ adversary sends c,: extract and check

c, vk

s wrong = random key
s correct = we get stuck ez, hp

Wrong simulation if adversary
has guessed pw

Not negligible and thus not UC secure

hy',o

David Pointcheval PAKE in the UC-Framework - 25

UC Password-Based AKE

s Universal Composability
s Password-Based AKE
UC Password-Based AKE

David Pointcheval PAKE in the UC-Framework - 26

UC PAKE

[Canetti-Halevi-Katz-Lindell-MacKenzie - EC ‘05]

P; (client) P; (server)
CRS: pke
co — Epke(pwiro) co .
(sk,vk) — sigKey($)
cr.vk o1 — E(pwiri)
Cy — Epke (_DH.-‘, ?‘2)
hk — H
hp — alhk;cy) c2, hp _
ZKP(cp =)
hk! — H
hp' «— a(hk'; c3)
hp/, o o — Sign . (ea, hp, hp')
if (Verify,.((co, hp,hp'),c) = 1)
session-key «— Hpp (e, pw) session-key < hy,,(cq, pw;ry)
+ hhp’ (c-g,pw; ?‘2) +Hpp (Cz,pl{?j
David Pointcheval PAKE in the UC-Framework - 27

CHKLMK: Idea

UC Proof: with an extractable commitment
= Adversary sends c: we can extract the password,

and check whether it is correct or not
s Simulator sends c_: with a random/dummy pw!

@ adversary sends c: extract and check pw

s wrong = random key %
s correct = we commit the correct o1, vk
password in C, and simulate
a fake ZKP c2. hp

ZKP(co = c3)

David Pointcheval PAKE in the UC-Framework - 28

Adaptive Adversary

An adaptive adversary can corrupt players
at any time and receive the internal state

s in KOY/GL-like scheme: not secure
a in the simulation, use of “dummy password” for C,

e if corruption right after that: how to simulate r_?

s In EKE-like scheme: secure

@ granted the Programmability
of the Ideal-Cipher and the Random Oracle

= Adaptive adversaries and strong corruption
[Abdalla-Catalano-Chevalier-Pointcheval — CT-RSA '08]

David Pointcheval PAKE in the UC-Framework - 29

EKE Scheme

Client U Server S
T & l:g-—1 Yy & l:g-—1
(U1) X — g° LN
(S2) Y —g¥

(U3) Y = Dpu (Y*)
Ky — Y*
Auth « Hi(ssid||U||S|X|Y||Ky)
sky +— Ho(ssid||U|S||X]| Y| Ky)

completed .

(S4) if (Auth = Hq(ssid||U[|S|X][Y|Ks))
then completed
sks — Ho(ssid||U||S||X||Y|Ksg)
else error

David Pointcheval PAKE in the UC-Framework - 30

