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Encryption / decryptionEncryption / decryption
attackattack

My secret
is

…/...

Granted Bob’s public key,
Alice can lock the safe,
with the message inside

(encrypt the message)
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Encryption / decryptionEncryption / decryption
attackattack

My secret
is

…/...

Alice sends the safe to Bob
no one can unlock it
(impossible to break)

Granted Bob’s public key,
Alice can lock the safe,
with the message inside

(encrypt the message)

Excepted Bob,
granted his private key
(Bob can decrypt)
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Kerckhoffs’ Principles (1)Kerckhoffs’ Principles (1)

In 1883, in “La Cryptographie Militaire”
Kerckhoffs wrote:
Le système doit être matériellement, sinon 
mathématiquement, indéchiffrable

The system should be, if not theoretically 
unbreakable, unbreakable in practice

Security Proofs and Asymmetric Encryption without RedundancyDavid Pointcheval – CNRS - ENS

Kerckhoffs’ Principles (2)Kerckhoffs’ Principles (2)

Il faut qu’il n’exige pas le secret, et qu’il puisse 
sans inconvénient tomber entre les mains de 
l’ennemi

Compromise of the system should not inconvenience 
the correspondents
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Kerckhoffs’ Principles (3)Kerckhoffs’ Principles (3)

La clef doit pouvoir en être communiquée et 
retenue sans le secours de notes écrites, et être 
changée ou modifiée au gré des correspondants

the key should be rememberable without notes and 
should be easily changeable

etc …
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Symmetric EncryptionSymmetric Encryption

Principles 2 and 3 define the concept
of the symmetric cryptography:

Encryption Algorithm, � Decryption Algorithm, �

Security = secrecy:
 impossible to recover m
 from c only (without k)

kk

� �m c m

Security : heuristic
1st Principle
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Asymmetric CryptographyAsymmetric Cryptography

Extends 2nd principle
Diffie-Hellman 1976

Asymmetric Encryption:
Bob owns two “keys”
A public key (encryption ke)

so that anybody can encrypt
a message for him

A private key (decryption kd)
to help him to decrypt

Alice Bob
secrecy

authenticity

⇒  known by everybody
(included Alice)

⇒  known by Bob only
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Integer Factoring and RSAInteger Factoring and RSA

Multiplication/Factorization:
p, q � n = p.q easy (quadratic)

n = p.q � p, q difficult (super-polynomial)

One-Way
Function
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Integer Factoring and RSAInteger Factoring and RSA

One-Way
Function

RSA Problem

RSA Function, from �n in �n (with n=pq)
 for a fixed exponent e Rivest-Shamir-Adleman 1978

x � xe mod n easy (cubic)
y=xe mod n � x difficult (without p or q)

x = yd mod n where d = e-1 mod � (n) 

Multiplication/Factorization:
p, q � n = p.q easy (quadratic)

n = p.q � p, q difficult (super-polynomial)
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decryption

Integer Factoring and RSAInteger Factoring and RSA

One-Way
Function

RSA Function, from �n in �n (with n=pq)
 for a fixed exponent e Rivest-Shamir-Adleman 1978

x � xe mod n easy (cubic)
y=xe mod n � x difficult (without p or q)

x = yd mod n where d = e-1 mod � (n) 

Multiplication/Factorization:
p, q � n = p.q easy (quadratic)

n = p.q � p, q difficult (super-polynomial)

trapdoor

key
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Algorithmic AssumptionsAlgorithmic Assumptions
necessarynecessary

n=pq : public 
modulus
e : public exponent
d=e-1 mod � (n) : private

RSA Encryption

�(m) = me mod n

�(c) = cd mod n

If the RSA problem is easy,
secrecy is not satisfied:
anybody may recover m from c
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Algorithmic AssumptionsAlgorithmic Assumptions
sufficient?sufficient?

Security proofs give the guarantee that the 
assumption is enough for secrecy:

if an adversary can break the secrecy

one can break the assumption

 � � “reductionist” proof

Extends the 1st Principle
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Proof by ReductionProof by Reduction

Reduction of a problem ��to an attack Atk:

Let � be an adversary that breaks the scheme

Then � can be used to solve �

�
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Provably Secure SchemeProvably Secure Scheme

To prove the security of a cryptographic scheme, 
one has to make precise
the algorithmic assumptions

some have been presented 

the security notions to be guaranteed
depends on the scheme

a reduction:
an adversary can help

to break the assumption
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Practical SecurityPractical Security

Complexity theory: T polynomial
Exact Security: T explicit
Practical Security: T small (linear)

Adversary
within t

Algorithm
against �

within t’ = T (t)
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Encryption SchemeEncryption Scheme

(ke,kd)�
ω

kdke

� �r
c mm

3 algorithms:

� - key generation

� - encryption

� - decryption
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Security NotionsSecurity Notions

One-Wayness (OW) :
without the private key, it is computationally impossible 

to recover the plaintext

Semantic Security (IND - Indistinguishability) :
the ciphertext reveals no more information

about the plaintext to a polynomial adversary
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AttacksAttacks

Chosen-Plaintext Attacks (CPA)
the basic attack in the public-key setting

the adversary can encrypt any message of its choice

More information: oracle access
Chosen-Ciphertext Attacks (CCA)

the adversary has access to the decryption oracle
on any ciphertext of its choice (except the challenge)
non-adaptive (CCA1): only before receiving
  the challenge
adaptive  (CCA2): unlimited oracle access
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IND-CCA2IND-CCA2

�

c

m or ⊥
m1

m0

kdke �

�r
mb c*

b’

b� {0,1}
r random

�

c ≠ c*

m or ⊥
b’ = b? CCA2

�
CCA1
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IndistinguishabilitIndistinguishability: Probabilisticy: Probabilistic

To achieve indistinguishability, a public-key 
encryption scheme must be probabilistic

Otherwise, with the challenge c = �(m
b
)

one computes c
0 
= �(m

0
)

and checks whether c
0
 = c

For any plaintext, the number of possible 
ciphertexts must be lower-bounded by 2k,
for a security level in 2k :

at least length(c) � length(m) + k
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Chosen-Ciphertext Security: Chosen-Ciphertext Security: 
RedundancyRedundancy

To resist chosen-ciphertext attacks,
one makes the decryption oracle unuseful:

Very few ciphertexts are valid
For building a valid ciphertext, the adversary necessarily 
knows the corresponding plaintext

Examples
Zero-knowledge proof of knowledge of the plaintext
Zero-knowledge proof of validity (CCA1 - Naor-Yung 90)

C = (c1, c2, p) where c1 = �pk1
(m1), c2 = �pk2

(m2)

and p is a proof that m1 = m2
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CCA: Redundancy (Cont'd)CCA: Redundancy (Cont'd)

Practical constructions:
OAEP: redundancy in the padding
REACT: MAC in the ciphertext
Cramer-Shoup: Proof of validity = redundancy

Such a redundancy makes that a random
ciphertext is valid (a possible output of the 
encryption algorithm) with a very small 
probability, less than 2-k:

in practice: at least length(c) � length(m) + 2k
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Optimal Size = No RedundancyOptimal Size = No Redundancy

No redundancy = any ciphertext is valid:
is a possible output of �(m,r)

the function �: � �  � ����→ �

(m,r) �����→ c is a surjection
Advantages:

optimal bandwidth
no reaction attack / implementation issues
easier distribution of the decryption process 
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Full-Domain Permutation EncryptionFull-Domain Permutation Encryption

First candidate: in the same vein as
the Full-Domain Hash Signature

Public permutation �
(Random Permutation Model)

onto �������� ��≈���≈ {0,1}n ���{0,1}k�≈ {0,1}l

Trapdoor one-way permutation f onto {0,1}l

�: ������ →  �
(m,r) �→  c = f (�(m,r))

the public key is the pair ( f , �) which includes �-1

the private key is the trapdoor f -1
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Game IND-CCA2Game IND-CCA2

�

c

m or ⊥
m1

m0

kdke �

�r
mb c*

b’

b� {0,1}
r random

�

c ≠ c*

m or ⊥
b’ = b? CCA2

�
CCA1
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FDP Encryption is IND-CCA2 SecureFDP Encryption is IND-CCA2 Secure

Simulation of the oracles
�, for generating f     and         �, outputting y

�, �-1 and � using a list  � of tuples {(m, r, p, c)}

p = �(m,r), c = f (p) = �(m,r)
problem if (m,r) is assumed to correspond to �-1( f -1(c))
from the �-simulation, and � asks for �(m,r):
the simulation should output p = f -1(c), which is unknown
but � outputs m only: r is unpredictable

 � � unless there are collisions on m, the probability of such an 
event is less than q

�
/2k
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FDP Encryption: PropertiesFDP Encryption: Properties

No redundancy
Optimal bandwidth: length(c) = length(m) + k
High security level: IND-CCA2

with efficient reduction
but in the Random-Permutation Model

Can we weaken the assumptions?

Security Proofs and Asymmetric Encryption without RedundancyDavid Pointcheval – CNRS - ENS

The Random-Oracle ModelThe Random-Oracle Model

A weaker model : the random-oracle model
access to a truly random function

How to build a random permutation
from a random function?
Luby-Rackoff: a Feistel construction
not that easy:
here, one has access to the internal function...

Let us try anyway:
OAEP, a 2-round Feistel Network
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2-round OAEP2-round OAEP

�(m) : c = f (s || t)

�(c)  : s || t = f -1(c)
then invert OAEP,
if the redundancy is satisfied, 

one returns m

M = m || 0k r random

�

�

�, �: random functions
s t
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2-round OAEP (cont'd)2-round OAEP (cont'd)

In the random-oracle model
If f is a trapdoor partial-domain OW permutation:

(s,t) �  f (s || t) trapdoor one-way
f (s || t) �  s also hard to compute

With a redundancy 0k and random of size k
0

The encryption scheme f -OAEP:

IND-CCA2 with quadratic lost  (in q
�
q
��

/ 2k0: k
0 
= 2k)

length(c) = length(m) + 3k
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What About the Redundancy?What About the Redundancy?

For IND-CCA2: redundancy
Plaintext-awareness = invalid ciphertexts

Without redundancy... is it still IND-CCA2?
2-round OAEP: no known attack, but no proof either

Any simulation seems to be subject
to the Shoup's attack (malleability of OAEP)

3-round OAEP: can be proven
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3-round OAEP3-round OAEP

�(m) : c = f (t || u)

�(c)  : t || u = f -1(c)
then invert OAEP,

and return m

m

	

	, � and �: random functions
tu

r

s
�

�
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Idea of the SecurityIdea of the Security

2-round OAEP: as in the Shoup's attack,
the adversary can forge a ciphertext c,
with the same r as in the challenge ciphertext
the simulator cannot check it
the adversary can always distinguish the simulation

With one more round:
the adversary is stuck!

  � � one can simulate everything
in a consistent way

at random when not already known
anticipating some future answers, when determined
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Tightness of the ReductionTightness of the Reduction

Everything works well with lists, � 	, � �, � �, � � 

But for g = �(s), which implies
	(r) = m ���⊕ s for r = t � ���⊕ g
for any (t, h) ��∈� �, and (m,c) ��∈� �

 such that c = f (t, h � ���⊕ s) 
in case such a query is asked later

Problem if such a query has already been asked...

Since g is random, the overall probability of such a 
bad event is upper-bounded by  q� q	 / 2k.
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Security ResultSecurity Result

With a random of size k
0
, but no redundancy

In the ROM, a (t,� )-IND-CCA2 adversary helps
to partially invert f within t' ≈ t + q

�
q
�
T

f
, and with 

success probability greater than �  – q
�
Q
�
/ 2k0

The 3-round OAEP is:
IND-CCA2 with quadratic lost  (k

0 
= 2k)

length(c) = length(m) + 2k
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ConclusionConclusion

We have proposed the first IND-CCA2
encryption schemes, without redundancy:

the FDP encryption is optimal
based on the OW of the trapdoor permutation
optimal bandwidth
but in the Random-Permutation Model

the 3-round OAEP
with similar characteristics
  as the 2-round OAEP
but without redundancy


