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Encryption / decryption
attack

s Granted Bob’s public key,
Alice can lock the safe,
with the message inside

(encrypt the message)

= Alice sends the safe to Bob
no one can unlock it
(impossible to break)
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Encryption / decryption
attack

s Granted Bob’s public key,
Alice can lock the safe,
with the message inside

(encrypt the message)

s Excepted Bob,
granted his private key
(Bob can decrypt)

= Alice sends the safe to Bob
no one can unlock it
(impossible to break)
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Kerckhoffs’ Principles (1)

In 1883, in “La Cryptographie Militaire”
Kerckhoffs wrote:

s | e systéeme doit étre matériellement, sinon
mathématiquement, indéchiffrable

a The system should be, if not theoretically
unbreakable, unbreakable in practice

Kerckhoffs’ Principles (2)

= |l faut qu’il n’exige pas le secret, et qu’il puisse
sans inconvénient tomber entre les mains de
l'ennemi

@ Compromise of the system should not inconvenience
the correspondents
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Kerckhofts’ Principles (3)
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Symmetric Encryption

= | g clef doit pouvoir en étre communiquée et
retenue sans le secours de notes écrites, et étre
changée ou modifiée au gré des correspondants

@ the key should be rememberable without notes and
should be easily changeable

s etc ...

= Principles 2 and 3 define the concept
of the symmetric cryptography:

Encryption Algorithm, E Decryption Algorithm, D

mH@ @Hm

Security = secrecy: Security : heuristic
1 A : St Dyl
impossible to recover m i1 Principle

from ¢ only (without k)
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Asymmetric Cryptography
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Integer Factoring and RSA

secrecy

‘Extends 2 principle‘ Alice authenticity Bob

Diffie-Hellman 1976

Asymmetric Encryption:
Bob owns two “keys”
s A public key (encryption k,) = known by everybody
s s0 that anybody can encrypt (included Alice)
a message for him
s A private key (decryption k) = known by Bob only

s to help him to decrypt
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One-Way

s Multiplication/Factorization: Function

@ p, g+ n = p.qeasy (quadratic)
@ n = p.q p, qdifficult (super-polynomial)
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Integer Factoring and RSA

One-Way

= Multiplication/Factorization: X
Function

8 p, g n = p.q easy (quadratic)
s n = p.q > p, qdifficult (super-polynomial)

= RSA Function, from Z,in Z, (with n=pq)

for a fixed exponent e Rivest-Shamir-Adleman 1978
s x — x* mod n easy (cubic)

@ y=x* mod n - x difficult (without p or ¢)
x =y’mod n where d = ¢! mod (n)

Rsa Probje,y

Integer Factoring and RSA
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Integer Factoring and RSA

One-Way

= Multiplication/Factorization: X
Function

8 p, g+ n = p.q easy (quadratic)
s n =p.q- p, q difficult (super-polynomial)

= RSA Function, from Z,in Z, (with n=pq)

for a fixed exponent e Rivest-Shamir-Adleman 1978
s x > x* mod n easy (cubic)

@ y=x*mod n - x difficult (without p or g)
x =y’mod n where d = e'mod (1)

encryption

One-Way

s Multiplication/Factorization: Function

2 p, g n = p.q easy (quadratic)
@ n =p.q+> p, qdifficult (super-polynomial)

s RSA Function, from Z, in Z, (with n=pq)

for a fixed exponent e Rivest-Shamir-Adleman 1978
@ x — x* mod n easy (cubic)
@ y=x* mod n > x difficult (without p or g)
\x: y*mod n where d = ¢! mod (n)
«_diffioul
=== to break
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Integer Factoring and RSA
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Summary

One-Way

s Multiplication/Factorization: Function

2 p, g+ n = p.qeasy (quadratic)
@ n = p.q p, qdifficult (super-polynomial)
s RSA Function, from Z in Z, (with n=pq)

for a fixed exponent e Rivest-Shamir-Adleman 1978
@ x — x* mod n easy (cubic)

@ y=x* mod n i x difficult (without p or g
= ydmod n where d = ¢! mod ( ) trapdoor

decryption

s Introduction

3 Provable Security

s Asymmetric Encryption
s New Schemes
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Algorithmic Assumptions
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necessary
s n=pq : public RSA Encryption
modulus s E(m) = m* mod n
# ¢ : public exponent s D(c) = ¢!mod n

s d=¢'mod (n): private

If the RSA problem is easy,
secrecy is not satisfied:
anybody may recover m from ¢
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Algorithmic Assumptions
sufficient?

Security proofs give the guarantee that the
assumption is enough for secrecy:

= if an adversary can break the secrecy
s one can break the assumption

“reductionist” proof

Extends the 1° Principle

Proof by Reduction
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Proof by Reduction

Reduction of a problem P to an attack Atk:

= | et A be an adversary that breaks the scheme
s Then A can be used to solve P

©X

sA

Reduction of a problem P to an attack Atk:
s | et A be an adversary that breaks the scheme
s Then A can be used to solve P

Instance ﬁ e
Sl L&)
il @‘ Solution
{@

of 1
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Proof by Reduction
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Provably Secure Scheme

Reduction of a problem P to an attack Atk:

2 | et A be an adversary that breaks the scheme
s Then A can be used to solve P

Instance Lié::[ /
Jairl? | 4 Solution

©,

’@ — ofl

—g—'\/\/"\"
— P intractable =P scheme unbreakable

To prove the security of a cryptographic scheme,
one has to make precise

s the algorithmic assumptions

s some have been presented
= the security notions to be guaranteed

@ depends on the scheme
s a reduction:

an adversary can help
to break the assumption
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Practical Security
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[~} a .
Algorithm
Adversary L )
within ¢ ‘ | ‘ A= against P
S ® = ‘| withint' =T ()

s Complexity theory: T polynomial
s Exact Security: T explicit
s Practical Security: 7 small (linear)
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Summary

Encryption Scheme

= |ntroduction

s Provable Security

O Asymmetric Encryption
s New Schemes

3 algorithms:
» G - key generation

s E - encryption @ ~{ : ‘—(kﬂkﬂ

s D - decryption
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Security Notions

k, k,
m C
m
r
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s One-Wayness (OW) :

without the private key, it is computationally impossible
to recover the plaintext

s Semantic Security (IND - Indistinguishability) :

the ciphertext reveals no more information
about the plaintext to a polynomial adversary

s Chosen-Plaintext Attacks (CPA)
= the basic attack in the public-key setting
s the adversary can encrypt any message of its choice
= More information: oracle access

s Chosen-Ciphertext Attacks (CCA)
the adversary has access to the decryption oracle
on any ciphertext of its choice (except the challenge)

s non-adaptive (CCA1): only before receiving
the challenge

s adaptive (CCA2): unlimited oracle access
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IND-CCA2
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Indistinguishability: Probabilistic

hh— G —— &

=
e —
n Y
bi{0.1) 1 >> @
r random Z‘: ] BT CCA1

b=b | »._ | 7 CCA2

= To achieve indistinguishability, a public-key
encryption scheme must be probabilistic
@ Otherwise, with the challenge ¢ = E(m,)
= one computes c, = E(m,)
= and checks whether ¢ = ¢
= For any plaintext, the number of possible
ciphertexts must be lower-bounded by 2%,
for a security level in 2¢:
at least length(c) *length(m) + k
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Chosen-Ciphertext Security:
Redundancy

= To resist chosen-ciphertext attacks,
one makes the decryption oracle unuseful:
2 Very few ciphertexts are valid
@ For building a valid ciphertext, the adversary necessarily
knows the corresponding plaintext
s Examples
@ Zero-knowledge proof of knowledge of the plaintext
@ Zero-knowledge proof of validity (CCA1 - Naor-Yung 90)
s C=(c,c,p)Wherec = Epkl(m]), c,= Epkz(m )
and p is a proof that m, = m,
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Optimal Size = No Redundancy

a No redundancy = any ciphertext is valid:

s is a possible output of E(m,r)

° the function E:M 'R —C

(m,r) — ¢ is a surjection

a Advantages:

@ optimal bandwidth

@ no reaction attack / implementation issues

e easier distribution of the decryption process
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Full-Domain Permutation Encryption

s First candidate: in the same vein as
the Full-Domain Hash Signature

s Public permutation P
(Random Permutation Model)

onto M R=C={0,1}" "{0,1}}={0,1}'
s Trapdoor one-way permutation fonto {0,1}’
E: MR —C
(m,r) - c=f(P(m,r))
@ the public key is the pair (f, P) which includes P!
s the private key is the trapdoor f!

CCA: Redundancy (Cont'd)

Practical constructions:

s OAEP: redundancy in the padding

s REACT: MAC in the ciphertext

s Cramer-Shoup: Proof of validity = redundancy

Such a redundancy makes that a random
ciphertext is valid (a possible output of the
encryption algorithm) with a very small
probability, less than 2+

in practice: at least length(c) *length(m) + 2k
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Summary

s |ntroduction

a Provable Security

a Asymmetric Encryption
3 New Schemes
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FDP Encryption is IND-CCA2 Secure

s |In the RPM, a (z,6)-IND-CCAZ2 adversary helps
to invert f'within almost the same time ¢, and
with success probability greater than & — ¢/2"*

Instance

y=f(

@‘ Solution
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Game IND-CCA2
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FDP Encryption: Properties

s No redundancy
s Optimal bandwidth: length(c) = length(m) + k
s High security level: IND-CCA2

» with efficient reduction

s but in the Random-Permutation Model

Can we weaken the assumptions?
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2-round OAEP
sEm):c=f(sllp) M =m |l O* r random
2 D(c) :sllt=f"(c)
) B G +—
then invert OAEP, N\

if the redundancy is satisfied,
one returns m

‘H\\

v v
S t

G, H: random functions
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FDP Encryption is IND-CCA2 Secure

Simulation of the oracles
® G, for generatingf and E, outputting y
° P, P"and D using a list of tuples {(m, r, p, ¢)}
p=P(mr), c=f(p)=E(mr)

4 problem if (m,r) is assumed to correspond to P'( f'(c))
from the D-simulation, and A asks for P(m,r):
the simulation should output p =f'(c), which is unknown
but D outputs m only: r is unpredictable
unless there are collisions on m, the probability of such an
event is less than ¢,/2*
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The Random-Oracle Model

= A weaker model : the random-oracle model

@ access to a truly random function
s How to build a random permutation
from a random function?

s Luby-Rackoff: a Feistel construction

e not that easy:
here, one has access to the internal function...

Let us try anyway:
s OAEP, a 2-round Feistel Network
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2-round OAEP (cont'd)

s |n the random-oracle model

s If fis a trapdoor partial-domain OW permutation:
a (s5,0) ® f(sllt) trapdoor one-way
s f(sllt) ® s also hard to compute

« With a redundancy 0 and random of size k_

s The encryption scheme f-OAEP:

s IND-CCA2 with quadratic lost (in quG/an: k= 2k)
length(c) = length(m) + 3k
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What About the Redundancy?

s For IND-CCAZ2: redundancy
Plaintext-awareness = invalid ciphertexts
s Without redundancy... is it still IND-CCA2?
@ 2-round OAEP: no known attack, but no proof either

s Any simulation seems to be subject
to the Shoup's attack (malleability of OAEP)

@ 3-round OAEP: can be proven

3-round OAEP
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Idea of the Security

s E(m):c=f(tllu) L’" "
= D(c) :tllu=f"1c) r'f F |«
then invert OAEP,
and return m s ES
"G >
(): H |«
v U Iy

F. G and H: random functions

a 2-round OAEP: as in the Shoup's attack,

@ the adversary can forge a ciphertext c,
with the same r as in the challenge ciphertext

@ the simulator cannot check it

@ the adversary can always distinguish the simulation
a With one more round:

s the adversary is stuck!

one can simulate everything
in a consistent way
@ at random when not already known
@ anticipating some future answers, when determined
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Tightness of the Reduction
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Security Result

s Everything works well with lists, ¢, & w b

= But for g = G(s), which implies
SFrn=m®sforr=r®g
e forany (t, h)e ,,and (mc)e
suchthatc=f( h ®s)
in case such a query is asked later
s Problem if such a query has already been asked...

Since g is random, the overall probability of such a
bad event is upper-bounded by ¢p g¢ / 2*.

= With a random of size k , but no redundancy

s |In the ROM, a (1, )-IND-CCAZ2 adversary helps
to partially invert f within ¢' =t + quHT/, and with

success probability greater than — qDQ/z"0

s The 3-round OAEP is:
s IND-CCA2 with quadratic lost (k = 2k)

length(c) = length(m) + 2k
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Conclusion
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s We have proposed the first IND-CCA2
encryption schemes, without redundancy:

* the FDP encryption is optimal
+based on the OW of the trapdoor permutation
s optimal bandwidth
s but in the Random-Permutation Model

@ the 3-round OAEP

s with similar characteristics
as the 2-round OAEP

s but without redundancy
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