Password-based Authenticated Key Exchange State of the Art

David Pointcheval

CNRS-ENS - France

LBNL
Berkeley - California - USA
August 2004

Summary

- Authenticated Key Exchange
- Password-based Authentication
- Encrypted Key Exchange
- Open Key Exchange
- Implementation Concerns
- In Practice

David Pointcheval - CNRS - ENS

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

Summary

■ Authenticated Key Exchange

- Password-based Authentication
- Encrypted Key Exchange
- Open Key Exchange
- Implementation Concerns
- In Practice

Authenticated Key Exchange

Two parties (Alice and Bob) agree on a **common** secret key *SK*, in order to establish a secret channel

- Intuitive goal: implicit authentication
 - only the intended partners can compute the session key
- Formally: semantic security
 - the session key SK is indistinguishable from a random string RS, to anybody else

Password-based Authenticated Key Exchange

Additional Properties

Mutual authentication

- They are both sure to *actually* share the secret with the people they think they do
- Forward-secrecy
 - Even if a long-term secret data is corrupted (leaked to the adversary), previously shared secrets are still semantically secure

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

The Leakage of Information

- The protocol is run over a public network, then the transcripts are public:
 - an execute-query provides such a transcript to the adversary
- The secret data SK may be misused (with a weak encryption scheme, ...):
 - the **reveal**-query is answered by this secret data *SK*

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

Passive/Active Adversaries

- Passive: history built using
 - execute-queries → transcripts
 - reveal-queries → session keys
- Active: entire control of the network
 - send-queries
 active, adaptive adversary
 on concurrent executions
 - to send message to Alice or Bob
 (in place of Bob or Alice respectively)
 - to intercept, forward and/or modify messages

Diffie-Hellman Key Exchange

The most famous key exchange protocol:

Diffie-Hellman

It is **not** authenticated: anybody can say "I am Alice" or "I am Bob"

⇒ semantic security

against *passive* adversaries

Authentication

To prevent active attacks (manufactured **send**), some kind of authentication is required:

- **Asymmetric**: (sk_A, pk_A) and possibly (sk_B, pk_B) parties authenticate to each other using the knowledge of the private key associated to the certified public key
- **Symmetric**: common (high-entropy) secret they use the long term secret to derive a secure and authenticated ephemeral key *SK*
- **Password**: common (low-entropy) secret e.g. a 20-bit password

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

Password-based Authentication

Password (low-entropy secret) e.g. 20 bits

- exhaustive search is possible
- basic attack: on-line exhaustive search
 - the adversary guesses a password
 - tries to play the protocol with this guess
 - failure ⇒ it erases the password from the list
 - and restarts...
- after 1,000,000 attempts, the adversary wins

cannot be avoided

Summary

- Authenticated Key Exchange
- Password-based Authentication
- Encrypted Key Exchange
- Open Key Exchange
- Implementation Concerns
- In Practice

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

Dictionary Attack

- On-line exhaustive search
 - cannot be avoided
 - can be made less serious (delay, limitations, ...)

 We want it to be the **best attack**...
- Off-line exhaustive search
 - a few passive or active attacks
 - failure ⇒ erasure of **MANY** passwords from the list this is called **dictionary attack**

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

David Pointcheval - CNRS - ENS

Security

One wants to prevent dictionary attacks:

- any passive trial (execute + reveal)
 - no useful information about the password
- one active trial (send)
 - cancels at most one password from the list of possible passwords

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

Summary

- Authenticated Key Exchange
- Password-based Authentication
- Encrypted Key Exchange
- Open Key Exchange
- Implementation Concerns
- In Practice

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

EKE = Encrypted Key Exchange

EKE = Diffie-Hellman, with encrypted flows

Must be done carefully...

bad one

- From X', for any password π
 - decrypt X'
 - check whether it begins with "Alice"

avoid any redundancy

EKE = Encrypted Key Exchange

The correct scheme:

Bellovin-Merritt 1992

without redundancy

E_{π} must be a *bijection* from the group < g >

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

David Pointcheval - CNRS - ENS

SPEKE = Simple Password Exponential Key Exchange

Variant of DH-EKE:

Jablon 1996

- According to the function f, this scheme can be either secure or totally insecure
 - If f is a random function (random oracle)
 onto the whole group <g>: provably secure

[MacKenzie 2001]

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

PPK - AuthA - MDHKE

Boyko-MacKenzie-Patel 2000 - Bellare-Rogaway 2000 Bresson-Chevassut-P. 2003/2004

A simple variant: **one-time pad** $E_{\pi}(X) = X H(\pi)$

If H is a random function (random oracle) onto the whole group <g>: provably secure

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

Simple Encrypted Key Exchange

Abdalla-P. 2004

The simplest variant: $E_{\pi}(X) = X U^{\pi}$

- No random function onto groups
- Just two fixed elements U, V in <g>
- Non-concurrent executions: provably secure

Generalized Encrypted Key Exchange

- More generally
 - Alice generates a public key pk,
 sends pk encrypted with the password → pk'
 - Bob recovers pk, generates a random r, encrypts it with pk → c, sends c encrypted with the password → c'
 - Alice recovers the common random r
 - The session key SK is derived from this r

Generalized Encrypted Key Exchange

- Problems:
 - pk must be truly random (no redundancy)
 - pk and r are not on the same space, in general
- Nice exception: ElGamal (DH-EKE)
 - requires E_{π} to be over $\langle g \rangle$
 - impossible to be used with RSA...

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

Summary

- Authenticated Key Exchange
- Password-based Authentication
- Encrypted Key Exchange
- Open Key Exchange
- Implementation Concerns
- In Practice

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

Open Key Exchange

Lucks 1997

■ The public key pk is sent in **clear**:

- Requirements to avoid partition attacks:
 - \bullet $\mathsf{E}_{_{\pi}}$ must be a bijection from the ciphertext space
 - \bullet E_{nk} must be a surjection onto this space

Surjection

Since pk can be chosen by the adversary, one must check " E_{pk} is a surjection"

- If not, given c', one eliminates the π 's, that lead to c's which are not in the image set of E_{nk} : partition attack
- If so, given c', any π is possible: sending the correct k means *guessing the good* π
- ⇒ zero-knowledge proof
 - concurrent

David Pointcheval - CNRS - ENS

non-malleable

Password-based Authenticated Key Exchange

Protected OKE

Lucks 1997

- Specific to RSA
- Additional proof of valid modulus
 - Flaw in the original scheme
 - Repaired in SNAPI

[MacKenzie-Patel-Swaminathan - 2000]

But not very efficient: very large exponents (e > n)

Efficient variant with RSA-IPAKE

[Catalano-P. -Pornin - 2004]

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

IPAKE = Generalized OKE

Catalano-P. -Pornin 2004

Using any isomorphism and one-time pad

Isomorphism for Password-based Authenticated Key Exchange

- ullet f_{pk} isomorphism from F_{pk} onto the group (G_{pk},\otimes)
- Must be trapdoor "hard-to-invert"

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

IPAKE = Applications

- ElGamal encryption (Diffie-Hellman function)
 - PAK

[Boyko-MacKenzie-Patel 2000]

AuthA

[Bellare-Rogaway 2000]

OMDHKE

[Bresson-Chevassut-P. 2003]

- RSA function
 - Protected OKE

[Lucks 1997]

SNAPI

[MacKenzie-Patel-Swaminathan 2000]

- Modular square
 - The first Password-based AKE related to integer factoring

Summary

- Authenticated Key Exchange
- Password-based Authentication
- Encrypted Key Exchange
- Open Key Exchange
- Implementation Concerns
- In Practice

Several Candidates

Many proposals:

In the standard model: KOY protocol (DDH)

[Katz-Ostrovsky-Yung 2001]

- But quite inefficient
- In the random oracle model:
 - EKE (CDH), OKE (CDH/RSA), SPEKE (CDH)
 - IPAKE (*CDH/RSA/Fact*), simple EKE (*CDH*)
 Which seem very efficient...

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

Full-domain Functions

Most of these schemes require full-domain random functions/bijections:

- Hash function onto <g>
- Block cipher over <g>
- How to implement them?
 - Take a hash function / block cipher onto {0,1}^k,
 where k is the length of any encoding of
 elements in <g>
 - Iterate it until falling in <g>

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

Implementation Details

Requirement:

- $2^k / \operatorname{Card}(\langle g \rangle)$, must not be too large
 - Average number of iterations
- \Rightarrow g of (almost) maximal order
- ⇒ use of large exponents... or *elliptic curves*
- In \mathbf{Z}_{p}^{*} , $|p| = 1024 \Rightarrow$ exponents over >1000 bits
 - Small subgroups are possible, but at the same high cost (large co-factor)
- On EC, 160 bit field ⇒ exponents over 160 bits
 - Just one iteration on average

Timing Attacks

The number of iterations may depend on the password:

On basic EKE: responding time

- = number of iterations for (X, X') and (Y, Y')
- Each passive attack divides the set by 4
 - ⇒ partition attack!

One-Time Pad

The use of the one-time pad limits the damages:

- No pre-computation: responding time
 - = number of iterations for $H(\pi)$
 - But always the same information
- Pre-computation of $H(\pi)$: no information leaked

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

Password-based Authenticated Key Exchange

Simple EKE

Particular case: the "simple EKE"

- No full-domain function: easy to implement
- Apply to any prime sub-group: quite efficient
- But: restricted to non-concurrent executions

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

Summary

- Authenticated Key Exchange
- Password-based Authentication
- Encrypted Key Exchange
- Open Key Exchange
- Implementation Concerns
- In Practice

Additional Properties

- Mutual authentication:
 - General construction (with key confirmation)
 [Bellare-P. -Rogaway 2000]

- Forward secrecy:
 - EKE/OKE provide it [Abdalla-Chevassut-P. 2004]

David Pointcheval - CNRS - ENS

Hostile Environments

- The client machine may not be fully trusted:
 - When the user types his password: leaked...
 - ⇒ for some schemes, it is possible to use any kind of ephemeral secret shared between the user and the server (OTP, SecurID)

Work in progress...

David Pointcheval - CNRS - ENS

Password-based Authenticated Key Exchange

Vulnerable Server

- The server machine may not be fully trusted:
 - The machine may be vulnerable, in case of corruption, all the passwords are leaked...
 - ⇒ verifier-based variants exist (the server just owns a verifier –an image of the password throught a one-way function)
 - In case of corruption, a dictionary attack is necessary
 - By adding salts, it is made less effective
 - ⇒ the password can be distributed among several servers (threshold AKE)

Work in progress...

David Pointcheval - CNRS - ENS