Group Key Exchange and Provable Security

joint work with E. Bresson and O. Chevassut

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Overview

- Provable Security
 - Key Agreement and Mutual Authentication
 - Definitions
 - Security Model
 - Example
- Group Key Agreement
 - Security Model
 - Example (security result)
- Conclusion

- Key Agreement and Mutual Authentication
- Group Key Agreement
- Conclusion

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 3

Provably Secure Scheme

To prove the security of a cryptographic scheme, one has to make precise

- the algorithmic assumptions
- the security notions to be guaranteed
- a reduction:

an adversary can help to break the assumption

David Pointcheval ENS-CNRS

Practical Security

Adversary within t

Algorithm against **P** within t' = T(t)

- Complexity theory: T polynomial
- Exact Security: T explicit
- Practical Security: T small (linear)
- **Eg** : t' = 4t
 - **P** intractable within less than 2^{80} operations \Rightarrow scheme unbreakable

within less than 2⁷⁸ operations

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 6

Security Notions

According to the needs, one defines
the goals of an adversary
the means of an adversary, i.e. the available information

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 7

Overview

Provable Security

- Key Agreement and Mutual Authentication
 - Definitions
 - Security Model
 - Example
- Group Key Agreement
- Conclusion

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 9

Authenticated Key Exchange

- only the intended partners can compute the session key
- Semantic security
 - the session key is indistinguishable from a random string
 - modeled via a Test-query

Security Definitions (AKE)

Further Properties

Mutual authentication
 they are both sure to share the secret with
 the people they think they do

 Forward secrecy
 even if a long-term secret data is corrupted,
 previous shared secrets are still
 semantically secure

David Pointcheval ENS-CNRS

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 13

Formal Model

Bellare-Rogaway model revisited by Shoup

Semantic Security

- A misuse of the secret data is modeled by the reveal-query, which is answered by this secret data
- For the semantic security, the adversary asks one **test**-query which is answered, according to a bit b, by
 - b=0: the actual secret data
 - *b*=1: a random string
 - \Rightarrow the adversary has to guess this bit b

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 15

Passive/Active Adversaries

- ◆ Passive adversary: history built using the execute-queries → transcripts
- Active adversary: entire control of the network with send-queries:
 - to send message to Alice or Bob (in place of Bob or Alice respectively)
 - to intercept, forward and/or modify messages

Forward Secrecy

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 17

Overview

- Provable Security
- Key Agreement and Mutual Authentication
 - Definitions
 - Security Model
 - Example
- Group Key Agreement
- Conclusion

Diffie-Hellman Key Exchange

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 19

Properties

 If flows are authenticated, it is well-known to provide the semantic security of the session key under the Decisional Diffie-Hellman Problem

 If one derives the session key as k = H(K), where H is assumed to behave like a random oracle, semantic security is relative to the Computational Diffie-Hellman Problem

Further Features

 But there is no explicit authentication (Replay attacks)

 Adding key confirmation rounds: mutual authentication [BPR00]

Overview

- Provable Security
- Key Agreement and Mutual Authentication
- Group Key Agreement
 - Security Model
 - Example (security result)
- Conclusion

David Pointcheval ENS-CNRS

ENS-CNRS

Group Key Exchange and Provable Security - 23

Model of Communication

A set of *n* players, modeled by oracles
A multicast group consisting of a set of players

Group Key Exchange and Provable Security - 24

Modeling the Adversary

- send: send messages to instances
- execute: obtain honest executions of the protocol
- reveal: obtain an instance's session key
- orrupt: obtain the value of the password

ENS-CNRS

Group Key Exchange and Provable Security - 25

Freshness

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 26

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 27

A Group Key Exchange

- Generalization of the 2-party DH, the session key is sk=H(g^{x1x2...xn})
- Ring-based algorithm
 - up-flow: the contributions of each instance are gathered
 - down-flow: the last instance broadcasts the result
 - end: instances compute the session key from the broadcast

The Algorithm

Up-flow: U_i raises received values to the power x_i **Down-flow**: U_n broadcasts (except $g^{x_1x_2...x_n}$) Everything is authenticated (Signature/MAC)

ENS-CNRS

Group Key Exchange and Provable Security - 29

Group CDH

The CDH generalized to the multi-party case

- given the values $g^{\prod x_i}$ for some choice of proper subset of $\{1, ..., n\}$
- one has to compute the value $g^{x_1..x_n}$
- Example (n=3 and l={1,2,3})
 - given the set of the blue values *g*, $g^{x_1}, g^{x_2}, g^{x_{1x_2}}$
 - compute the red value
- ◆ The GCDH ⇔ DDH and CDH [SAC '02]

David Pointcheval ENS-CNRS

 $g^{x_1x_3}, g^{x_2x_3}, g^{x_1x_2x_3}$

 g^{x_1}

Security Result

• Theorem (in the random oracle model) $Adv^{ake}(T,n,q_s,q_e) \leq 2q_s^n q_h \cdot Succ^{gcdh}(n,T)$ $+ 2n \cdot Succ^{sign}(q_s,T)$

Proof:

Game 0 : the adversary A plays against the oracles in order to defeat the AKE-security $\epsilon = (Adv(A)+1)/2 = Pr[b' = b] = Pr[S_0]$

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 31

Security Result (2)

 Exclude games wherein a signature/MAC forgery is performed:

 $|\Pr[S_1] - \Pr[S_0]| < n \cdot \operatorname{Succ^{sign}}(q_s, T)$

Security Result (3)

Game 2:

 guess n indices between 1 and q_s
 (this defines a pool of n instances, involved in the n queries)

 cancel executions of the game such that this pool of instances does not correspond to the Test-query (in other cases, output a random b')

Remarks:

• The probability of a correct guess is exactly $1/q_s^n$

Such a correct guess is independent with S₁

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 33

Security Result (4)

 $\begin{aligned} \Pr[\mathsf{S}_2] &= \Pr[\mathsf{S}_1 \land \operatorname{guess}] + \Pr[\mathsf{S}_1 \land \neg \operatorname{guess}] \\ &= \Pr[\mathsf{S}_1 \mid \operatorname{guess}] \Pr[\operatorname{guess}] \\ &+ \Pr[\mathsf{S}_1 \mid \neg \operatorname{guess}] \Pr[\neg \operatorname{guess}] \\ &= \Pr[\mathsf{S}_1] / q_s^n + 1/2 (1 - 1 / q_s^n) \\ &= 1/2 + (\Pr[\mathsf{S}_1] - 1/2) / q_s^n \\ \Pr[\mathsf{S}_0] &\leq \Pr[\mathsf{S}_1] + n \cdot \operatorname{Succ}^{\operatorname{sign}}(q_s, T) \\ 2 \cdot \Pr[\mathsf{S}_0] - 1 &\leq 2 \cdot \Pr[\mathsf{S}_1] - 1 + 2n \cdot \operatorname{Succ}^{\operatorname{sign}}(q_s, T) \\ &\leq q_s^n (2 \cdot \Pr[\mathsf{S}_2] - 1) + 2n \cdot \operatorname{Succ}^{\operatorname{sign}}(q_s, T) \end{aligned}$

David Pointcheval ENS-CNRS

Security Result (5)

Game 3:

Replace sk for this pool, by a random value

Remark:

• A problem may happen if **A** asks for $H(g^{x_1x_2...x_n})$, which should be equal to *sk*: Event **AskH**₃

 $| \Pr[S_3] - \Pr[S_2] | \leq \Pr[\mathbf{AskH}_3]$

Since *sk* is random
 (independent to the view of the adversary)

 $Pr[S_3] = 1/2$

 $Adv(A) \le 2q_s^n \cdot Pr[AskH_3] + 2n \cdot Succ^{sign}(q_s,T)$

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 35

Security Result (6)

Game 4:

 Inject the GCDH instance for simulating the selected oracle instances

$\Pr[\mathbf{AskH}_4] = \Pr[\mathbf{AskH}_3]$

Remark: event AskH₄ means that

- $H(g^{x_1x_2...x_n})$, has been asked
- $g^{x_1x_2...x_n}$ is in the list of the queries asked to *H*
- With a random guess, one gets it:

 $\Pr[\mathsf{AskH}_4] \le q_h \cdot \operatorname{Succ}^{\operatorname{gcdh}}(n,T)$

- Provable Security
- Key Agreement and Mutual Authentication
- Group Key Agreement
- Conclusion

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 37

Improvements

- Security result: exponential in *n* [ACM CCS '01]
 - No guess of the tested pool
 - Use of the random self-reducibility of the CDH and GCDH problems
 - \Rightarrow reduction linear in *n*
 - Standard Model [Eurocrypt '02]
- Dynamic groups [Asiacrypt '01]
 - If one party leaves or joins the group, the protocol does not need to be restarted from scratch

Improvements: Result

- Group of n people
- Tested group of size s
- Number of dynamic modifications (setup, join, remove): Q
- Time: *T*

 $Adv^{ake}(A) \leq 2 Q \cdot C_n^{s} \cdot q_h \cdot Succ^{gcdh}(s,T)$ $+2n \cdot \operatorname{Succ}^{\operatorname{sign}}(q_{s},T)$

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 39

Mutual Authentication

- Authentication of the parties:
 - Public Key Infrastructures (signatures)
 - Secret keys MAC [Eurocrypt '02]
 - Passwords [Asiacrypt '02]

In the latter case, a new kind of attack has to be considered: dictionary attacks

Conclusion

 Formal model for (Group) AKE
 Provably secure schemes but still not « practical security »
 Various authentication modes

David Pointcheval ENS-CNRS

Group Key Exchange and Provable Security - 41